Nektar++
ProcessInterpField.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessInterpField.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Interpolate one field to another.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 #include <iostream>
35 #include <string>
36 
37 #include <boost/core/ignore_unused.hpp>
38 #include <boost/geometry.hpp>
39 #include <boost/math/special_functions/fpclassify.hpp>
40 
45 
46 #include "ProcessInterpField.h"
47 
48 using namespace std;
49 namespace bg = boost::geometry;
50 namespace bgi = boost::geometry::index;
51 
52 namespace Nektar
53 {
54 namespace FieldUtils
55 {
56 
57 ModuleKey ProcessInterpField::className =
59  ModuleKey(eProcessModule, "interpfield"), ProcessInterpField::create,
60  "Interpolates one field to another, requires fromxml, "
61  "fromfld to be defined");
62 
63 ProcessInterpField::ProcessInterpField(FieldSharedPtr f) : ProcessModule(f)
64 {
65 
66  m_config["fromxml"] = ConfigOption(
67  false, "NotSet", "Xml file from which to interpolate field");
68  m_config["fromfld"] = ConfigOption(
69  false, "NotSet", "Fld file from which to interpolate field");
70 
71  m_config["clamptolowervalue"] =
72  ConfigOption(false, "-10000000", "Lower bound for interpolation value");
73  m_config["clamptouppervalue"] =
74  ConfigOption(false, "10000000", "Upper bound for interpolation value");
75  m_config["defaultvalue"] =
76  ConfigOption(false, "0", "Default value if point is outside domain");
77  m_config["realmodetoimag"] =
78  ConfigOption(false, "NotSet", "Take fields as sin mode");
79 }
80 
82 {
83 }
84 
85 void ProcessInterpField::v_Process(po::variables_map &vm)
86 {
87  m_f->SetUpExp(vm);
88 
89  FieldSharedPtr fromField = std::shared_ptr<Field>(new Field());
90 
91  std::vector<std::string> files;
92 
93  // set up session file for from field
94  char *argv[] = {const_cast<char *>("FieldConvert"), nullptr};
95  ParseUtils::GenerateVector(m_config["fromxml"].as<string>(), files);
96  fromField->m_session = LibUtilities::SessionReader::CreateInstance(
97  1, argv, files,
98  LibUtilities::GetCommFactory().CreateInstance("Serial", 0, 0));
99 
100  // Set up range based on min and max of local parallel partition
103 
104  int numHomoDir = m_f->m_numHomogeneousDir;
105  int coordim = m_f->m_exp[0]->GetCoordim(0) + numHomoDir;
106  int npts = m_f->m_exp[0]->GetTotPoints();
108 
109  for (int i = 0; i < coordim; ++i)
110  {
111  coords[i] = Array<OneD, NekDouble>(npts);
112  }
113 
114  for (int i = coordim; i < 3; ++i)
115  {
116  coords[i] = NullNekDouble1DArray;
117  }
118 
119  m_f->m_exp[0]->GetCoords(coords[0], coords[1], coords[2]);
120 
121  rng->m_checkShape = false;
122  switch (coordim)
123  {
124  case 3:
125  rng->m_doZrange = true;
126  rng->m_zmin = Vmath::Vmin(npts, coords[2], 1);
127  rng->m_zmax = Vmath::Vmax(npts, coords[2], 1);
128  /* Falls through. */
129  case 2:
130  rng->m_doYrange = true;
131  rng->m_ymin = Vmath::Vmin(npts, coords[1], 1);
132  rng->m_ymax = Vmath::Vmax(npts, coords[1], 1);
133  /* Falls through. */
134  case 1:
135  rng->m_doXrange = true;
136  rng->m_xmin = Vmath::Vmin(npts, coords[0], 1);
137  rng->m_xmax = Vmath::Vmax(npts, coords[0], 1);
138  break;
139  default:
140  NEKERROR(ErrorUtil::efatal, "coordim should be <= 3");
141  }
142 
143  // setup rng parameters.
144  fromField->m_graph =
145  SpatialDomains::MeshGraph::Read(fromField->m_session, rng);
146 
147  // Read in local from field partitions
148  const SpatialDomains::ExpansionInfoMap &expansions =
149  fromField->m_graph->GetExpansionInfo();
150 
151  // check for case where no elements are specified on this
152  // parallel partition
153  if (!expansions.size())
154  {
155  return;
156  }
157 
158  Array<OneD, int> ElementGIDs(expansions.size());
159 
160  int i = 0;
161  for (auto &expIt : expansions)
162  {
163  ElementGIDs[i++] = expIt.second->m_geomShPtr->GetGlobalID();
164  }
165 
166  string fromfld = m_config["fromfld"].as<string>();
167  m_f->FieldIOForFile(fromfld)->Import(
168  fromfld, fromField->m_fielddef, fromField->m_data,
170 
171  int fromNumHomoDir = fromField->m_fielddef[0]->m_numHomogeneousDir;
172  for (i = 0; i < fromField->m_fielddef.size(); ++i)
173  {
174  int d1 = fromField->m_fielddef[i]->m_basis.size();
175  d1 -= 1;
176  if (d1 >= 0 && (fromField->m_fielddef[i]->m_basis[d1] ==
178  fromField->m_fielddef[i]->m_basis[d1] ==
180  {
181  fromField->m_fielddef[i]->m_homogeneousZIDs[0] += 2;
182  fromField->m_fielddef[i]->m_numModes[d1] = 4;
183  fromField->m_fielddef[i]->m_basis[d1] = LibUtilities::eFourier;
184  }
185  }
186 
187  //----------------------------------------------
188  // Set up Expansion information to use mode order from field
189  fromField->m_graph->SetExpansionInfo(fromField->m_fielddef);
190 
191  int nfields = fromField->m_fielddef[0]->m_fields.size();
192 
193  fromField->m_exp.resize(nfields);
194  fromField->m_exp[0] = fromField->SetUpFirstExpList(fromNumHomoDir, true);
195 
196  m_f->m_exp.resize(nfields);
197 
198  // declare auxiliary fields.
199  for (i = 1; i < nfields; ++i)
200  {
201  m_f->m_exp[i] = m_f->AppendExpList(numHomoDir);
202  fromField->m_exp[i] = fromField->AppendExpList(fromNumHomoDir);
203  }
204 
205  // load field into expansion in fromfield.
206  set<int> sinmode;
207  if (m_config["realmodetoimag"].as<string>().compare("NotSet"))
208  {
209  ParseUtils::GenerateVariableSet(m_config["realmodetoimag"].as<string>(),
210  m_f->m_variables, sinmode);
211  }
212  for (int j = 0; j < nfields; ++j)
213  {
214  for (i = 0; i < fromField->m_fielddef.size(); i++)
215  {
216  fromField->m_exp[j]->ExtractDataToCoeffs(
217  fromField->m_fielddef[i], fromField->m_data[i],
218  fromField->m_fielddef[0]->m_fields[j],
219  fromField->m_exp[j]->UpdateCoeffs());
220  }
221  if (fromNumHomoDir == 1)
222  {
223  fromField->m_exp[j]->SetWaveSpace(true);
224  if (sinmode.count(j))
225  {
226  int Ncoeff = fromField->m_exp[j]->GetPlane(2)->GetNcoeffs();
227  Vmath::Smul(
228  Ncoeff, -1., fromField->m_exp[j]->GetPlane(2)->GetCoeffs(),
229  1, fromField->m_exp[j]->GetPlane(3)->UpdateCoeffs(), 1);
230  Vmath::Zero(Ncoeff,
231  fromField->m_exp[j]->GetPlane(2)->UpdateCoeffs(),
232  1);
233  }
234  }
235  fromField->m_exp[j]->BwdTrans(fromField->m_exp[j]->GetCoeffs(),
236  fromField->m_exp[j]->UpdatePhys());
237  }
238 
239  int nq1 = m_f->m_exp[0]->GetTotPoints();
240 
241  NekDouble clamp_low = m_config["clamptolowervalue"].as<NekDouble>();
242  NekDouble clamp_up = m_config["clamptouppervalue"].as<NekDouble>();
243  NekDouble def_value = m_config["defaultvalue"].as<NekDouble>();
244 
245  for (int i = 0; i < nfields; i++)
246  {
247  for (int j = 0; j < nq1; ++j)
248  {
249  m_f->m_exp[i]->UpdatePhys()[j] = def_value;
250  }
251  }
252 
254  if (m_f->m_verbose && m_f->m_comm->TreatAsRankZero())
255  {
257  }
258 
259  interp.Interpolate(fromField->m_exp, m_f->m_exp);
260 
261  if (m_f->m_verbose && m_f->m_comm->TreatAsRankZero())
262  {
263  cout << endl;
264  }
265 
266  for (int i = 0; i < nfields; ++i)
267  {
268  for (int j = 0; j < nq1; ++j)
269  {
270  if (m_f->m_exp[i]->GetPhys()[j] > clamp_up)
271  {
272  m_f->m_exp[i]->UpdatePhys()[j] = clamp_up;
273  }
274  else if (m_f->m_exp[i]->GetPhys()[j] < clamp_low)
275  {
276  m_f->m_exp[i]->UpdatePhys()[j] = clamp_low;
277  }
278  }
279  m_f->m_exp[i]->FwdTransLocalElmt(m_f->m_exp[i]->GetPhys(),
280  m_f->m_exp[i]->UpdateCoeffs());
281  }
282  // save field names
283  m_f->m_variables = fromField->m_fielddef[0]->m_fields;
284 }
285 
286 void ProcessInterpField::PrintProgressbar(const int position,
287  const int goal) const
288 {
289  LibUtilities::PrintProgressbar(position, goal, "Interpolating");
290 }
291 } // namespace FieldUtils
292 } // namespace Nektar
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
A class that contains algorithms for interpolation between pts fields, expansions and different meshe...
FIELD_UTILS_EXPORT void Interpolate(const T expInField, T &expOutField, NekDouble def_value=0.0)
Interpolate from an expansion to an expansion.
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:263
void PrintProgressbar(const int position, const int goal) const
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Abstract base class for processing modules.
Definition: Module.h:292
void SetProgressCallback(FuncPointerT func, ObjectPointerT obj)
sets a callback funtion which gets called every time the interpolation progresses
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SessionReaderSharedPtr CreateInstance(int argc, char *argv[])
Creates an instance of the SessionReader class.
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
static bool GenerateVariableSet(const std::string &str, const std::vector< std::string > &variables, std::set< int > &out)
Generate a set of variable locations.
Definition: ParseUtils.cpp:166
static bool GenerateVector(const std::string &str, std::vector< T > &out)
Takes a comma-separated string and converts it to entries in a vector.
Definition: ParseUtils.cpp:131
static MeshGraphSharedPtr Read(const LibUtilities::SessionReaderSharedPtr pSession, LibUtilities::DomainRangeShPtr rng=LibUtilities::NullDomainRangeShPtr, bool fillGraph=true)
Definition: MeshGraph.cpp:111
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
int PrintProgressbar(const int position, const int goal, const std::string message, int lastprogress=-1)
Prints a progressbar.
Definition: Progressbar.hpp:67
static FieldMetaDataMap NullFieldMetaDataMap
Definition: FieldIO.h:53
std::shared_ptr< DomainRange > DomainRangeShPtr
Definition: DomainRange.h:66
CommFactory & GetCommFactory()
@ eFourierHalfModeIm
Fourier Modified expansions with just the imaginary part of the first mode .
Definition: BasisType.h:70
@ eFourierHalfModeRe
Fourier Modified expansions with just the real part of the first mode .
Definition: BasisType.h:68
@ eFourier
Fourier Expansion .
Definition: BasisType.h:57
std::map< int, ExpansionInfoShPtr > ExpansionInfoMap
Definition: MeshGraph.h:143
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
static Array< OneD, NekDouble > NullNekDouble1DArray
double NekDouble
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:1050
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:945
Represents a command-line configuration option.
Definition: Module.h:131