Nektar++
ProcessWSS.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessWSS.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes wss field.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 
38 #include "ProcessWSS.h"
39 
41 #include <MultiRegions/ExpList.h>
42 
43 using namespace std;
44 
45 namespace Nektar
46 {
47 namespace FieldUtils
48 {
49 
50 ModuleKey ProcessWSS::className = GetModuleFactory().RegisterCreatorFunction(
51  ModuleKey(eProcessModule, "wss"), ProcessWSS::create,
52  "Computes wall shear stress field.");
53 
54 ProcessWSS::ProcessWSS(FieldSharedPtr f) : ProcessBoundaryExtract(f)
55 {
56 }
57 
59 {
60 }
61 
62 void ProcessWSS::v_Process(po::variables_map &vm)
63 {
65 
66  int i, j;
67  int nfields = m_f->m_variables.size();
68  int expdim = m_f->m_graph->GetSpaceDimension();
69  m_spacedim = expdim + m_f->m_numHomogeneousDir;
70 
71  if (m_f->m_exp[0]->GetNumElmts() == 0)
72  {
73  return;
74  }
75 
76  if (m_spacedim == 1)
77  {
78  ASSERTL0(false, "Error: wss for a 1D problem cannot "
79  "be computed");
80  }
81 
82  // Declare arrays
83  int nshear = m_spacedim + 1;
84  int nstress = m_spacedim * m_spacedim;
85  int ngrad = m_spacedim * m_spacedim;
86 
87  Array<OneD, Array<OneD, NekDouble>> velocity(nfields);
89  Array<OneD, Array<OneD, NekDouble>> stress(nstress), fstress(nstress);
90  Array<OneD, Array<OneD, NekDouble>> fshear(nshear);
91 
94  Array<OneD, Array<OneD, NekDouble>> BndElmtPhys(nfields);
95  Array<OneD, Array<OneD, NekDouble>> BndElmtCoeffs(nfields);
96 
97  // will resuse nfields expansions to write shear components.
98  if (nshear > nfields)
99  {
100  m_f->m_exp.resize(nshear);
101  for (i = nfields; i < nshear; ++i)
102  {
103  m_f->m_exp[nfields + i] =
104  m_f->AppendExpList(m_f->m_numHomogeneousDir);
105  }
106  }
107 
108  // Create map of boundary ids for partitioned domains
110  m_f->m_exp[0]->GetGraph());
112  bcs.GetBoundaryRegions();
113  map<int, int> BndRegionMap;
114  int cnt = 0;
115  for (auto &breg_it : bregions)
116  {
117  BndRegionMap[breg_it.first] = cnt++;
118  }
119 
120  // Loop over boundaries to Write
121  for (int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
122  {
123  if (BndRegionMap.count(m_f->m_bndRegionsToWrite[b]) == 1)
124  {
125  int bnd = BndRegionMap[m_f->m_bndRegionsToWrite[b]];
126  // Get expansion list for boundary and for elements containing this
127  // bnd
128  for (i = 0; i < nshear; i++)
129  {
130  BndExp[i] = m_f->m_exp[i]->UpdateBndCondExpansion(bnd);
131  }
132 
133  Array<OneD, int> ElmtID, edgeID;
134  Array<OneD, NekDouble> tmp1, tmp2;
135 
136  for (i = 0; i < nfields; i++)
137  {
138  m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
139  BndElmtPhys[i] = BndElmtExp[i]->UpdatePhys();
140  }
141 
142  // Get number of points in expansions
143  int nqb = BndExp[0]->GetTotPoints();
144  int nqe = BndElmtExp[0]->GetTotPoints();
145 
146  // Initialise local arrays for the velocity gradients, and
147  // stress components size of total number of quadrature
148  // points for elements in this bnd
149  for (i = 0; i < ngrad; ++i)
150  {
151  grad[i] = Array<OneD, NekDouble>(nqe);
152  }
153 
154  for (i = 0; i < nstress; ++i)
155  {
156  stress[i] = Array<OneD, NekDouble>(nqe);
157  }
158 
159  Array<OneD, NekDouble> div(nqe, 0.0);
160 
161  // initialise arrays in the boundary
162  for (i = 0; i < nstress; ++i)
163  {
164  fstress[i] = Array<OneD, NekDouble>(nqb);
165  }
166 
167  for (i = 0; i < nshear; ++i)
168  {
169  fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
170  }
171 
172  // Extract Velocities
173  GetVelocity(BndElmtExp, BndElmtPhys, velocity);
174 
175  // Extract viscosity coefficients
176  NekDouble lambda;
177  Array<OneD, NekDouble> mu(nqe, 0.0);
178  GetViscosity(BndElmtExp, BndElmtPhys, mu, lambda);
179 
180  // Compute gradients
181  for (i = 0; i < m_spacedim; ++i)
182  {
183  if (m_spacedim == 2)
184  {
185  BndElmtExp[i]->PhysDeriv(velocity[i],
186  grad[i * m_spacedim + 0],
187  grad[i * m_spacedim + 1]);
188  }
189  else
190  {
191  BndElmtExp[i]->PhysDeriv(
192  velocity[i], grad[i * m_spacedim + 0],
193  grad[i * m_spacedim + 1], grad[i * m_spacedim + 2]);
194  }
195  // Add contribution to div(u)
196  Vmath::Vadd(nqe, grad[i * m_spacedim + i], 1, div, 1, div, 1);
197  }
198 
199  // Velocity divergence scaled by lambda * mu
200  Vmath::Smul(nqe, lambda, div, 1, div, 1);
201  Vmath::Vmul(nqe, mu, 1, div, 1, div, 1);
202 
203  // Compute stress component terms
204  // tau_ij = mu*(u_i,j + u_j,i) + mu*lambda*delta_ij*div(u)
205  for (i = 0; i < m_spacedim; ++i)
206  {
207  for (j = i; j < m_spacedim; ++j)
208  {
209  Vmath::Vadd(nqe, grad[i * m_spacedim + j], 1,
210  grad[j * m_spacedim + i], 1,
211  stress[i * m_spacedim + j], 1);
212 
213  Vmath::Vmul(nqe, mu, 1, stress[i * m_spacedim + j], 1,
214  stress[i * m_spacedim + j], 1);
215 
216  if (i == j)
217  {
218  // Add divergence term to diagonal
219  Vmath::Vadd(nqe, stress[i * m_spacedim + j], 1, div, 1,
220  stress[i * m_spacedim + j], 1);
221  }
222  else
223  {
224  // Copy to make symmetric
225  Vmath::Vcopy(nqe, stress[i * m_spacedim + j], 1,
226  stress[j * m_spacedim + i], 1);
227  }
228  }
229  }
230 
231  // Get boundary stress values.
232  for (j = 0; j < nstress; ++j)
233  {
234  m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j], fstress[j]);
235  }
236 
237  // Get normals
239  m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
240  // Reverse normals, to get correct orientation for the body
241  for (i = 0; i < m_spacedim; ++i)
242  {
243  Vmath::Neg(nqb, normals[i], 1);
244  }
245 
246  // calculate wss, and update coeffs in the boundary expansion
247  // S = tau_ij * n_j
248  for (i = 0; i < m_spacedim; ++i)
249  {
250  for (j = 0; j < m_spacedim; ++j)
251  {
252  Vmath::Vvtvp(nqb, normals[j], 1,
253  fstress[i * m_spacedim + j], 1, fshear[i], 1,
254  fshear[i], 1);
255  }
256  }
257 
258  // T = S - (S.n)n
259  for (i = 0; i < m_spacedim; ++i)
260  {
261  Vmath::Vvtvp(nqb, normals[i], 1, fshear[i], 1,
262  fshear[nshear - 1], 1, fshear[nshear - 1], 1);
263  }
264  Vmath::Smul(nqb, -1.0, fshear[nshear - 1], 1, fshear[nshear - 1],
265  1);
266 
267  for (i = 0; i < m_spacedim; i++)
268  {
269  Vmath::Vvtvp(nqb, normals[i], 1, fshear[nshear - 1], 1,
270  fshear[i], 1, fshear[i], 1);
271  BndExp[i]->FwdTransLocalElmt(fshear[i],
272  BndExp[i]->UpdateCoeffs());
273  }
274 
275  // Tw
276  Vmath::Zero(nqb, fshear[nshear - 1], 1);
277  for (i = 0; i < m_spacedim; ++i)
278  {
279  Vmath::Vvtvp(nqb, fshear[i], 1, fshear[i], 1,
280  fshear[nshear - 1], 1, fshear[nshear - 1], 1);
281  }
282  Vmath::Vsqrt(nqb, fshear[nshear - 1], 1, fshear[nshear - 1], 1);
283  BndExp[nshear - 1]->FwdTransLocalElmt(
284  fshear[nshear - 1], BndExp[nshear - 1]->UpdateCoeffs());
285  }
286  }
287 
288  if (m_spacedim == 2)
289  {
290  m_f->m_variables[0] = "Shear_x";
291  m_f->m_variables[1] = "Shear_y";
292  m_f->m_variables[2] = "Shear_mag";
293  }
294  else
295  {
296  m_f->m_variables[0] = "Shear_x";
297  m_f->m_variables[1] = "Shear_y";
298  m_f->m_variables[2] = "Shear_z";
299  m_f->m_variables[3] = "Shear_mag";
300  }
301 }
302 
305  const Array<OneD, Array<OneD, NekDouble>> &BndElmtPhys,
306  Array<OneD, NekDouble> &mu, NekDouble &lambda)
307 {
308  NekDouble m_mu;
309  int npoints = exp[0]->GetNpoints();
310 
311  if (boost::iequals(m_f->m_variables[0], "u"))
312  {
313  // IncNavierStokesSolver
314  m_mu = m_f->m_session->GetParameter("Kinvis");
315  Vmath::Fill(npoints, m_mu, mu, 1);
316  lambda = 0;
317  }
318  else if (boost::iequals(m_f->m_variables[0], "rho") &&
319  boost::iequals(m_f->m_variables[1], "rhou"))
320  {
321  // CompressibleFlowSolver
322  std::string m_ViscosityType;
323  m_f->m_session->LoadParameter("mu", m_mu, 1.78e-05);
324  m_f->m_session->LoadParameter("lambda", lambda, -2.0 / 3.0);
325  m_f->m_session->LoadSolverInfo("ViscosityType", m_ViscosityType,
326  "Constant");
327 
328  if (m_ViscosityType == "Variable")
329  {
330  // Check equation of state
331  std::string eosType;
332  bool m_idealGas;
333  m_f->m_session->LoadSolverInfo("EquationOfState", eosType,
334  "IdealGas");
335  m_idealGas = boost::iequals(eosType, "IdealGas");
336  ASSERTL0(
337  m_idealGas,
338  "Only IdealGas EOS implemented for Variable ViscosityType");
339 
340  // Get relevant parameters
341  NekDouble m_gamma;
342  NekDouble m_pInf;
344  NekDouble m_gasConstant;
345  NekDouble cv_inv;
346  NekDouble m_Tref;
347  NekDouble m_TRatioSutherland;
348  m_f->m_session->LoadParameter("Gamma", m_gamma, 1.4);
349  m_f->m_session->LoadParameter("pInf", m_pInf, 101325);
350  m_f->m_session->LoadParameter("rhoInf", m_rhoInf, 1.225);
351  m_f->m_session->LoadParameter("GasConstant", m_gasConstant,
352  287.058);
353  m_f->m_session->LoadParameter("Tref", m_Tref, 288.15);
354  m_TRatioSutherland = 110.0 / m_Tref;
355 
356  // Get temperature from flowfield
357  cv_inv = (m_gamma - 1.0) / m_gasConstant;
358  // e = 1/rho ( E - 1/2 ( rhou^2/rho + ... ) )
359  Array<OneD, NekDouble> tmp(npoints, 0.0);
360  Array<OneD, NekDouble> energy(npoints, 0.0);
361  Array<OneD, NekDouble> temperature(npoints, 0.0);
362 
363  Vmath::Vcopy(npoints, BndElmtPhys[m_spacedim + 1], 1, energy, 1);
364  for (int i = 0; i < m_spacedim; i++)
365  {
366  // rhou^2
367  Vmath::Vmul(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[i + 1],
368  1, tmp, 1);
369  // rhou^2/rho
370  Vmath::Vdiv(npoints, tmp, 1, BndElmtPhys[0], 1, tmp, 1);
371 
372  // 0.5 rhou^2/rho
373  Vmath::Smul(npoints, 0.5, tmp, 1, tmp, 1);
374  // E - 0.5 rhou^2/rho - ...
375  Vmath::Vsub(npoints, energy, 1, tmp, 1, energy, 1);
376  }
377 
378  // rhou^2/rho
379  Vmath::Vdiv(npoints, energy, 1, BndElmtPhys[0], 1, energy, 1);
380 
381  // T = e/Cv
382  Vmath::Smul(npoints, cv_inv, energy, 1, temperature, 1);
383 
384  // Variable viscosity through the Sutherland's law
385  //
386  // WARNING, if this routine is modified the same must be done in the
387  // CompressibleFlowSolver function in VariableConverter.cpp
388  // (this class should be restructured).
389 
390  const NekDouble C = m_TRatioSutherland;
391  NekDouble mu_star = m_mu;
392  NekDouble T_star = m_pInf / (m_rhoInf * m_gasConstant);
393  NekDouble ratio;
394  for (int i = 0; i < npoints; ++i)
395  {
396  ratio = temperature[i] / T_star;
397  mu[i] = mu_star * ratio * sqrt(ratio) * (1 + C) / (ratio + C);
398  }
399  }
400  else
401  {
402  Vmath::Fill(npoints, m_mu, mu, 1);
403  }
404  }
405  else
406  {
407  // Unknown
408  ASSERTL0(false, "Invalid variables for WSS");
409  }
410 }
411 
414  const Array<OneD, Array<OneD, NekDouble>> &BndElmtPhys,
416 {
417  int npoints = exp[0]->GetNpoints();
418  if (boost::iequals(m_f->m_variables[0], "u"))
419  {
420  // IncNavierStokesSolver
421  for (int i = 0; i < m_spacedim; ++i)
422  {
423  vel[i] = Array<OneD, NekDouble>(npoints);
424  Vmath::Vcopy(npoints, BndElmtPhys[i], 1, vel[i], 1);
425  }
426  }
427  else if (boost::iequals(m_f->m_variables[0], "rho") &&
428  boost::iequals(m_f->m_variables[1], "rhou"))
429  {
430  // CompressibleFlowSolver
431  for (int i = 0; i < m_spacedim; ++i)
432  {
433  vel[i] = Array<OneD, NekDouble>(npoints);
434  Vmath::Vdiv(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[0], 1,
435  vel[i], 1);
436  }
437  }
438  else
439  {
440  // Unknown
441  ASSERTL0(false, "Could not identify velocity for WSS");
442  }
443 }
444 
445 } // namespace FieldUtils
446 } // namespace Nektar
NekDouble m_mu
NekDouble m_rhoInf
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
This processing module sets up for the boundary field to be extracted.
virtual void v_Process(po::variables_map &vm) override
void GetVelocity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble >> &BndElmtdPhys, Array< OneD, Array< OneD, NekDouble >> &vel)
Definition: ProcessWSS.cpp:412
void GetViscosity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble >> &BndElmtdPhys, Array< OneD, NekDouble > &mu, NekDouble &lambda)
Definition: ProcessWSS.cpp:303
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Definition: ProcessWSS.cpp:62
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
const BoundaryRegionCollection & GetBoundaryRegions(void) const
Definition: Conditions.h:234
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:210
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:534
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294