Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | List of all members
Nektar::FieldUtils::ProcessWSS Class Reference

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file. More...

#include <ProcessWSS.h>

Inheritance diagram for Nektar::FieldUtils::ProcessWSS:
[legend]

Public Member Functions

 ProcessWSS (FieldSharedPtr f)
 
virtual ~ProcessWSS ()
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessBoundaryExtract
 ProcessBoundaryExtract (FieldSharedPtr f)
 
virtual ~ProcessBoundaryExtract ()
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
- Public Member Functions inherited from Nektar::FieldUtils::Module
FIELD_UTILS_EXPORT Module (FieldSharedPtr p_f)
 
virtual ~Module ()=default
 
void Process (po::variables_map &vm)
 
std::string GetModuleName ()
 
std::string GetModuleDescription ()
 
const ConfigOptionGetConfigOption (const std::string &key) const
 
ModulePriority GetModulePriority ()
 
FIELD_UTILS_EXPORT void RegisterConfig (std::string key, std::string value="")
 Register a configuration option with a module. More...
 
FIELD_UTILS_EXPORT void PrintConfig ()
 Print out all configuration options for a module. More...
 
FIELD_UTILS_EXPORT void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
FIELD_UTILS_EXPORT void AddFile (std::string fileType, std::string fileName)
 
FIELD_UTILS_EXPORT void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 

Static Public Member Functions

static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 
- Static Public Member Functions inherited from Nektar::FieldUtils::ProcessBoundaryExtract
static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 
- Static Public Attributes inherited from Nektar::FieldUtils::ProcessBoundaryExtract
static ModuleKey className
 

Protected Member Functions

virtual void v_Process (po::variables_map &vm) override
 Write mesh to output file. More...
 
virtual std::string v_GetModuleName () override
 
virtual std::string v_GetModuleDescription () override
 
void GetViscosity (const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble >> &BndElmtdPhys, Array< OneD, NekDouble > &mu, NekDouble &lambda)
 
void GetVelocity (const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble >> &BndElmtdPhys, Array< OneD, Array< OneD, NekDouble >> &vel)
 
- Protected Member Functions inherited from Nektar::FieldUtils::ProcessBoundaryExtract
virtual ModulePriority v_GetModulePriority () override
 
- Protected Member Functions inherited from Nektar::FieldUtils::Module
 Module ()
 

Private Attributes

int m_spacedim
 

Additional Inherited Members

- Public Attributes inherited from Nektar::FieldUtils::Module
FieldSharedPtr m_f
 Field object. More...
 
- Protected Attributes inherited from Nektar::FieldUtils::Module
std::map< std::string, ConfigOptionm_config
 List of configuration values. More...
 
std::set< std::string > m_allowedFiles
 List of allowed file formats. More...
 

Detailed Description

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file.

Definition at line 49 of file ProcessWSS.h.

Constructor & Destructor Documentation

◆ ProcessWSS()

Nektar::FieldUtils::ProcessWSS::ProcessWSS ( FieldSharedPtr  f)

Definition at line 54 of file ProcessWSS.cpp.

◆ ~ProcessWSS()

Nektar::FieldUtils::ProcessWSS::~ProcessWSS ( )
virtual

Definition at line 58 of file ProcessWSS.cpp.

59 {
60 }

Member Function Documentation

◆ create()

static std::shared_ptr<Module> Nektar::FieldUtils::ProcessWSS::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 53 of file ProcessWSS.h.

54  {
56  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetVelocity()

void Nektar::FieldUtils::ProcessWSS::GetVelocity ( const Array< OneD, MultiRegions::ExpListSharedPtr exp,
const Array< OneD, Array< OneD, NekDouble >> &  BndElmtdPhys,
Array< OneD, Array< OneD, NekDouble >> &  vel 
)
protected

Definition at line 412 of file ProcessWSS.cpp.

416 {
417  int npoints = exp[0]->GetNpoints();
418  if (boost::iequals(m_f->m_variables[0], "u"))
419  {
420  // IncNavierStokesSolver
421  for (int i = 0; i < m_spacedim; ++i)
422  {
423  vel[i] = Array<OneD, NekDouble>(npoints);
424  Vmath::Vcopy(npoints, BndElmtPhys[i], 1, vel[i], 1);
425  }
426  }
427  else if (boost::iequals(m_f->m_variables[0], "rho") &&
428  boost::iequals(m_f->m_variables[1], "rhou"))
429  {
430  // CompressibleFlowSolver
431  for (int i = 0; i < m_spacedim; ++i)
432  {
433  vel[i] = Array<OneD, NekDouble>(npoints);
434  Vmath::Vdiv(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[0], 1,
435  vel[i], 1);
436  }
437  }
438  else
439  {
440  // Unknown
441  ASSERTL0(false, "Could not identify velocity for WSS");
442  }
443 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References ASSERTL0, Nektar::FieldUtils::Module::m_f, m_spacedim, Vmath::Vcopy(), and Vmath::Vdiv().

Referenced by v_Process().

◆ GetViscosity()

void Nektar::FieldUtils::ProcessWSS::GetViscosity ( const Array< OneD, MultiRegions::ExpListSharedPtr exp,
const Array< OneD, Array< OneD, NekDouble >> &  BndElmtdPhys,
Array< OneD, NekDouble > &  mu,
NekDouble lambda 
)
protected

Definition at line 303 of file ProcessWSS.cpp.

307 {
308  NekDouble m_mu;
309  int npoints = exp[0]->GetNpoints();
310 
311  if (boost::iequals(m_f->m_variables[0], "u"))
312  {
313  // IncNavierStokesSolver
314  m_mu = m_f->m_session->GetParameter("Kinvis");
315  Vmath::Fill(npoints, m_mu, mu, 1);
316  lambda = 0;
317  }
318  else if (boost::iequals(m_f->m_variables[0], "rho") &&
319  boost::iequals(m_f->m_variables[1], "rhou"))
320  {
321  // CompressibleFlowSolver
322  std::string m_ViscosityType;
323  m_f->m_session->LoadParameter("mu", m_mu, 1.78e-05);
324  m_f->m_session->LoadParameter("lambda", lambda, -2.0 / 3.0);
325  m_f->m_session->LoadSolverInfo("ViscosityType", m_ViscosityType,
326  "Constant");
327 
328  if (m_ViscosityType == "Variable")
329  {
330  // Check equation of state
331  std::string eosType;
332  bool m_idealGas;
333  m_f->m_session->LoadSolverInfo("EquationOfState", eosType,
334  "IdealGas");
335  m_idealGas = boost::iequals(eosType, "IdealGas");
336  ASSERTL0(
337  m_idealGas,
338  "Only IdealGas EOS implemented for Variable ViscosityType");
339 
340  // Get relevant parameters
341  NekDouble m_gamma;
342  NekDouble m_pInf;
344  NekDouble m_gasConstant;
345  NekDouble cv_inv;
346  NekDouble m_Tref;
347  NekDouble m_TRatioSutherland;
348  m_f->m_session->LoadParameter("Gamma", m_gamma, 1.4);
349  m_f->m_session->LoadParameter("pInf", m_pInf, 101325);
350  m_f->m_session->LoadParameter("rhoInf", m_rhoInf, 1.225);
351  m_f->m_session->LoadParameter("GasConstant", m_gasConstant,
352  287.058);
353  m_f->m_session->LoadParameter("Tref", m_Tref, 288.15);
354  m_TRatioSutherland = 110.0 / m_Tref;
355 
356  // Get temperature from flowfield
357  cv_inv = (m_gamma - 1.0) / m_gasConstant;
358  // e = 1/rho ( E - 1/2 ( rhou^2/rho + ... ) )
359  Array<OneD, NekDouble> tmp(npoints, 0.0);
360  Array<OneD, NekDouble> energy(npoints, 0.0);
361  Array<OneD, NekDouble> temperature(npoints, 0.0);
362 
363  Vmath::Vcopy(npoints, BndElmtPhys[m_spacedim + 1], 1, energy, 1);
364  for (int i = 0; i < m_spacedim; i++)
365  {
366  // rhou^2
367  Vmath::Vmul(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[i + 1],
368  1, tmp, 1);
369  // rhou^2/rho
370  Vmath::Vdiv(npoints, tmp, 1, BndElmtPhys[0], 1, tmp, 1);
371 
372  // 0.5 rhou^2/rho
373  Vmath::Smul(npoints, 0.5, tmp, 1, tmp, 1);
374  // E - 0.5 rhou^2/rho - ...
375  Vmath::Vsub(npoints, energy, 1, tmp, 1, energy, 1);
376  }
377 
378  // rhou^2/rho
379  Vmath::Vdiv(npoints, energy, 1, BndElmtPhys[0], 1, energy, 1);
380 
381  // T = e/Cv
382  Vmath::Smul(npoints, cv_inv, energy, 1, temperature, 1);
383 
384  // Variable viscosity through the Sutherland's law
385  //
386  // WARNING, if this routine is modified the same must be done in the
387  // CompressibleFlowSolver function in VariableConverter.cpp
388  // (this class should be restructured).
389 
390  const NekDouble C = m_TRatioSutherland;
391  NekDouble mu_star = m_mu;
392  NekDouble T_star = m_pInf / (m_rhoInf * m_gasConstant);
393  NekDouble ratio;
394  for (int i = 0; i < npoints; ++i)
395  {
396  ratio = temperature[i] / T_star;
397  mu[i] = mu_star * ratio * sqrt(ratio) * (1 + C) / (ratio + C);
398  }
399  }
400  else
401  {
402  Vmath::Fill(npoints, m_mu, mu, 1);
403  }
404  }
405  else
406  {
407  // Unknown
408  ASSERTL0(false, "Invalid variables for WSS");
409  }
410 }
NekDouble m_mu
NekDouble m_rhoInf
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Vmath::Fill(), Nektar::FieldUtils::Module::m_f, m_mu, m_rhoInf, m_spacedim, Vmath::Smul(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsub().

Referenced by v_Process().

◆ v_GetModuleDescription()

virtual std::string Nektar::FieldUtils::ProcessWSS::v_GetModuleDescription ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::ProcessBoundaryExtract.

Definition at line 71 of file ProcessWSS.h.

72  {
73  return "Calculating wall shear stress";
74  }

◆ v_GetModuleName()

virtual std::string Nektar::FieldUtils::ProcessWSS::v_GetModuleName ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::ProcessBoundaryExtract.

Definition at line 66 of file ProcessWSS.h.

67  {
68  return "ProcessWSS";
69  }

◆ v_Process()

void Nektar::FieldUtils::ProcessWSS::v_Process ( po::variables_map &  vm)
overrideprotectedvirtual

Write mesh to output file.

Reimplemented from Nektar::FieldUtils::ProcessBoundaryExtract.

Definition at line 62 of file ProcessWSS.cpp.

63 {
65 
66  int i, j;
67  int nfields = m_f->m_variables.size();
68  int expdim = m_f->m_graph->GetSpaceDimension();
69  m_spacedim = expdim + m_f->m_numHomogeneousDir;
70 
71  if (m_f->m_exp[0]->GetNumElmts() == 0)
72  {
73  return;
74  }
75 
76  if (m_spacedim == 1)
77  {
78  ASSERTL0(false, "Error: wss for a 1D problem cannot "
79  "be computed");
80  }
81 
82  // Declare arrays
83  int nshear = m_spacedim + 1;
84  int nstress = m_spacedim * m_spacedim;
85  int ngrad = m_spacedim * m_spacedim;
86 
87  Array<OneD, Array<OneD, NekDouble>> velocity(nfields);
88  Array<OneD, Array<OneD, NekDouble>> grad(ngrad);
89  Array<OneD, Array<OneD, NekDouble>> stress(nstress), fstress(nstress);
90  Array<OneD, Array<OneD, NekDouble>> fshear(nshear);
91 
92  Array<OneD, MultiRegions::ExpListSharedPtr> BndExp(nshear);
93  Array<OneD, MultiRegions::ExpListSharedPtr> BndElmtExp(nfields);
94  Array<OneD, Array<OneD, NekDouble>> BndElmtPhys(nfields);
95  Array<OneD, Array<OneD, NekDouble>> BndElmtCoeffs(nfields);
96 
97  // will resuse nfields expansions to write shear components.
98  if (nshear > nfields)
99  {
100  m_f->m_exp.resize(nshear);
101  for (i = nfields; i < nshear; ++i)
102  {
103  m_f->m_exp[nfields + i] =
104  m_f->AppendExpList(m_f->m_numHomogeneousDir);
105  }
106  }
107 
108  // Create map of boundary ids for partitioned domains
109  SpatialDomains::BoundaryConditions bcs(m_f->m_session,
110  m_f->m_exp[0]->GetGraph());
112  bcs.GetBoundaryRegions();
113  map<int, int> BndRegionMap;
114  int cnt = 0;
115  for (auto &breg_it : bregions)
116  {
117  BndRegionMap[breg_it.first] = cnt++;
118  }
119 
120  // Loop over boundaries to Write
121  for (int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
122  {
123  if (BndRegionMap.count(m_f->m_bndRegionsToWrite[b]) == 1)
124  {
125  int bnd = BndRegionMap[m_f->m_bndRegionsToWrite[b]];
126  // Get expansion list for boundary and for elements containing this
127  // bnd
128  for (i = 0; i < nshear; i++)
129  {
130  BndExp[i] = m_f->m_exp[i]->UpdateBndCondExpansion(bnd);
131  }
132 
133  Array<OneD, int> ElmtID, edgeID;
134  Array<OneD, NekDouble> tmp1, tmp2;
135 
136  for (i = 0; i < nfields; i++)
137  {
138  m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
139  BndElmtPhys[i] = BndElmtExp[i]->UpdatePhys();
140  }
141 
142  // Get number of points in expansions
143  int nqb = BndExp[0]->GetTotPoints();
144  int nqe = BndElmtExp[0]->GetTotPoints();
145 
146  // Initialise local arrays for the velocity gradients, and
147  // stress components size of total number of quadrature
148  // points for elements in this bnd
149  for (i = 0; i < ngrad; ++i)
150  {
151  grad[i] = Array<OneD, NekDouble>(nqe);
152  }
153 
154  for (i = 0; i < nstress; ++i)
155  {
156  stress[i] = Array<OneD, NekDouble>(nqe);
157  }
158 
159  Array<OneD, NekDouble> div(nqe, 0.0);
160 
161  // initialise arrays in the boundary
162  for (i = 0; i < nstress; ++i)
163  {
164  fstress[i] = Array<OneD, NekDouble>(nqb);
165  }
166 
167  for (i = 0; i < nshear; ++i)
168  {
169  fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
170  }
171 
172  // Extract Velocities
173  GetVelocity(BndElmtExp, BndElmtPhys, velocity);
174 
175  // Extract viscosity coefficients
176  NekDouble lambda;
177  Array<OneD, NekDouble> mu(nqe, 0.0);
178  GetViscosity(BndElmtExp, BndElmtPhys, mu, lambda);
179 
180  // Compute gradients
181  for (i = 0; i < m_spacedim; ++i)
182  {
183  if (m_spacedim == 2)
184  {
185  BndElmtExp[i]->PhysDeriv(velocity[i],
186  grad[i * m_spacedim + 0],
187  grad[i * m_spacedim + 1]);
188  }
189  else
190  {
191  BndElmtExp[i]->PhysDeriv(
192  velocity[i], grad[i * m_spacedim + 0],
193  grad[i * m_spacedim + 1], grad[i * m_spacedim + 2]);
194  }
195  // Add contribution to div(u)
196  Vmath::Vadd(nqe, grad[i * m_spacedim + i], 1, div, 1, div, 1);
197  }
198 
199  // Velocity divergence scaled by lambda * mu
200  Vmath::Smul(nqe, lambda, div, 1, div, 1);
201  Vmath::Vmul(nqe, mu, 1, div, 1, div, 1);
202 
203  // Compute stress component terms
204  // tau_ij = mu*(u_i,j + u_j,i) + mu*lambda*delta_ij*div(u)
205  for (i = 0; i < m_spacedim; ++i)
206  {
207  for (j = i; j < m_spacedim; ++j)
208  {
209  Vmath::Vadd(nqe, grad[i * m_spacedim + j], 1,
210  grad[j * m_spacedim + i], 1,
211  stress[i * m_spacedim + j], 1);
212 
213  Vmath::Vmul(nqe, mu, 1, stress[i * m_spacedim + j], 1,
214  stress[i * m_spacedim + j], 1);
215 
216  if (i == j)
217  {
218  // Add divergence term to diagonal
219  Vmath::Vadd(nqe, stress[i * m_spacedim + j], 1, div, 1,
220  stress[i * m_spacedim + j], 1);
221  }
222  else
223  {
224  // Copy to make symmetric
225  Vmath::Vcopy(nqe, stress[i * m_spacedim + j], 1,
226  stress[j * m_spacedim + i], 1);
227  }
228  }
229  }
230 
231  // Get boundary stress values.
232  for (j = 0; j < nstress; ++j)
233  {
234  m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j], fstress[j]);
235  }
236 
237  // Get normals
238  Array<OneD, Array<OneD, NekDouble>> normals;
239  m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
240  // Reverse normals, to get correct orientation for the body
241  for (i = 0; i < m_spacedim; ++i)
242  {
243  Vmath::Neg(nqb, normals[i], 1);
244  }
245 
246  // calculate wss, and update coeffs in the boundary expansion
247  // S = tau_ij * n_j
248  for (i = 0; i < m_spacedim; ++i)
249  {
250  for (j = 0; j < m_spacedim; ++j)
251  {
252  Vmath::Vvtvp(nqb, normals[j], 1,
253  fstress[i * m_spacedim + j], 1, fshear[i], 1,
254  fshear[i], 1);
255  }
256  }
257 
258  // T = S - (S.n)n
259  for (i = 0; i < m_spacedim; ++i)
260  {
261  Vmath::Vvtvp(nqb, normals[i], 1, fshear[i], 1,
262  fshear[nshear - 1], 1, fshear[nshear - 1], 1);
263  }
264  Vmath::Smul(nqb, -1.0, fshear[nshear - 1], 1, fshear[nshear - 1],
265  1);
266 
267  for (i = 0; i < m_spacedim; i++)
268  {
269  Vmath::Vvtvp(nqb, normals[i], 1, fshear[nshear - 1], 1,
270  fshear[i], 1, fshear[i], 1);
271  BndExp[i]->FwdTransLocalElmt(fshear[i],
272  BndExp[i]->UpdateCoeffs());
273  }
274 
275  // Tw
276  Vmath::Zero(nqb, fshear[nshear - 1], 1);
277  for (i = 0; i < m_spacedim; ++i)
278  {
279  Vmath::Vvtvp(nqb, fshear[i], 1, fshear[i], 1,
280  fshear[nshear - 1], 1, fshear[nshear - 1], 1);
281  }
282  Vmath::Vsqrt(nqb, fshear[nshear - 1], 1, fshear[nshear - 1], 1);
283  BndExp[nshear - 1]->FwdTransLocalElmt(
284  fshear[nshear - 1], BndExp[nshear - 1]->UpdateCoeffs());
285  }
286  }
287 
288  if (m_spacedim == 2)
289  {
290  m_f->m_variables[0] = "Shear_x";
291  m_f->m_variables[1] = "Shear_y";
292  m_f->m_variables[2] = "Shear_mag";
293  }
294  else
295  {
296  m_f->m_variables[0] = "Shear_x";
297  m_f->m_variables[1] = "Shear_y";
298  m_f->m_variables[2] = "Shear_z";
299  m_f->m_variables[3] = "Shear_mag";
300  }
301 }
virtual void v_Process(po::variables_map &vm) override
void GetVelocity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble >> &BndElmtdPhys, Array< OneD, Array< OneD, NekDouble >> &vel)
Definition: ProcessWSS.cpp:412
void GetViscosity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble >> &BndElmtdPhys, Array< OneD, NekDouble > &mu, NekDouble &lambda)
Definition: ProcessWSS.cpp:303
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:210
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:534
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492

References ASSERTL0, Nektar::SpatialDomains::BoundaryConditions::GetBoundaryRegions(), GetVelocity(), GetViscosity(), Nektar::FieldUtils::Module::m_f, m_spacedim, Vmath::Neg(), Vmath::Smul(), Nektar::FieldUtils::ProcessBoundaryExtract::v_Process(), Vmath::Vadd(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

Member Data Documentation

◆ className

ModuleKey Nektar::FieldUtils::ProcessWSS::className
static
Initial value:
"Computes wall shear stress field.")
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessWSS.h:53
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49

Definition at line 57 of file ProcessWSS.h.

◆ m_spacedim

int Nektar::FieldUtils::ProcessWSS::m_spacedim
private

Definition at line 85 of file ProcessWSS.h.

Referenced by GetVelocity(), GetViscosity(), and v_Process().