Nektar++
RCROutflow.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: RCROutflow.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description:
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
38 
39 using namespace std;
40 
41 namespace Nektar
42 {
43 
44 std::string RCROutflow::className =
46  "RCR-terminal", RCROutflow::create, "RCR outflow boundary condition");
47 
48 RCROutflow::RCROutflow(Array<OneD, MultiRegions::ExpListSharedPtr> pVessel,
50  PulseWavePressureAreaSharedPtr pressureArea)
51  : PulseWaveBoundary(pVessel, pSession, pressureArea)
52 {
53  m_session->LoadParameter("TimeStep", m_timestep);
54 }
55 
57 {
58 }
59 
61  const Array<OneD, const Array<OneD, NekDouble>> &inarray,
64  Array<OneD, Array<OneD, NekDouble>> &alpha, const NekDouble time, int omega,
65  int offset, int n)
66 {
67  boost::ignore_unused(time);
68 
69  NekDouble A_r = 0.0;
70  NekDouble u_r = 0.0;
71  NekDouble A_u = 0.0;
72  NekDouble u_u = 0.0;
73  NekDouble A_l = 0.0;
74  NekDouble u_l = 0.0;
75  NekDouble c_0 = 0.0;
76  NekDouble R1 = 0.0;
77  NekDouble R2 = 0.0;
78  NekDouble POut = m_pout;
79  NekDouble rho = m_rho;
80 
82 
83  // Pointers to the domains
84  vessel[0] = m_vessels[2 * omega];
85  vessel[1] = m_vessels[2 * omega + 1];
86 
87  /* Find the terminal RCR boundary condition and calculates
88  the updated velocity and area as well as the updated
89  boundary conditions */
90 
91  /* Load terminal resistance, capacitance, outflow pressure,
92  and number of points from the input file */
93  NekDouble RT = ((vessel[0]->GetBndCondExpansions())[n])->GetCoeffs()[0];
94  NekDouble C = ((vessel[1]->GetBndCondExpansions())[n])->GetCoeffs()[0];
95  int nq = vessel[0]->GetTotPoints();
96 
97  // Get the values of all variables needed for the Riemann problem
98  A_l = inarray[0][offset + nq - 1];
99  u_l = inarray[1][offset + nq - 1];
100 
101  // Goes through the first resistance; calculates c_0
102  m_pressureArea->GetC(c_0, beta[omega][nq - 1], A_0[omega][nq - 1],
103  A_0[omega][nq - 1], alpha[omega][nq - 1]);
104 
105  /* Calculate R1 and R2, R1 being calculated so as
106  to eliminate reflections in the vessel */
107  R1 = rho * c_0 / A_0[omega][nq - 1];
108 
109  if (R1 > 0.9 * RT)
110  {
111  // In case the resistance is lower than the characteristic impedance.
112  R1 = 0.9 * RT;
113  }
114 
115  R2 = RT - R1;
116 
117  // Call the R RiemannSolver
118  R_RiemannSolver(R1, A_l, u_l, A_0[omega][nq - 1], beta[omega][nq - 1],
119  alpha[omega][nq - 1], m_pc, A_u, u_u);
120 
121  /* Fix the boundary conditions in the virtual region to ensure
122  upwind state matches the boundary condition at the next time step */
123  A_r = A_l;
124  u_r = 2 * u_u - u_l;
125 
126  /* Goes through the CR system, which
127  just updates the pressure pc */
128  m_pc += (m_timestep / C) * (A_u * u_u - (m_pc - POut) / R2);
129 
130  // Store the updated values
131  (vessel[0]->UpdateBndCondExpansion(n))->UpdatePhys()[0] = A_r;
132  (vessel[1]->UpdateBndCondExpansion(n))->UpdatePhys()[0] = u_r;
133 }
134 
136  NekDouble A_0, NekDouble beta, NekDouble alpha,
137  NekDouble POut, NekDouble &A_u, NekDouble &u_u)
138 {
139  NekDouble W1 = 0.0;
140  NekDouble c = 0.0;
141  NekDouble cL = 0.0;
142  NekDouble I = 0.0;
143  NekDouble A_calc = 0.0;
144  NekDouble FA = 0.0;
145  NekDouble dFdA = 0.0;
146  NekDouble delta_A_calc = 0.0;
147  NekDouble P = 0.0;
148  NekDouble rho = m_rho;
149 
150  int proceed = 1;
151  int iter = 0;
152  int MAX_ITER = 100;
153 
154  // Tolerances for the algorithm
155  NekDouble Tol = 1.0E-10;
156 
157  // Calculate the wave speed
158  m_pressureArea->GetC(cL, beta, A_l, A_0, alpha);
159 
160  // Riemann invariant \f$W_1(Al,ul)\f$
161  m_pressureArea->GetW1(W1, u_l, beta, A_l, A_0, alpha);
162 
163  // Newton Iteration (Area only)
164  A_calc = A_l;
165  while ((proceed) && (iter < MAX_ITER))
166  {
167  iter += 1;
168 
169  m_pressureArea->GetPressure(P, beta, A_calc, A_0, 0, 0, alpha);
170  m_pressureArea->GetC(c, beta, A_calc, A_0, alpha);
171  m_pressureArea->GetCharIntegral(I, beta, A_calc, A_0, alpha);
172 
173  FA = R * A_calc * (W1 - I) - P + POut;
174  dFdA = R * (W1 - I - c) - c * c * rho / A_calc;
175  delta_A_calc = FA / dFdA;
176  A_calc -= delta_A_calc;
177 
178  if (sqrt(delta_A_calc * delta_A_calc) < Tol)
179  {
180  proceed = 0;
181  }
182  }
183 
184  m_pressureArea->GetPressure(P, beta, A_calc, A_0, 0, 0, alpha);
185 
186  // Obtain u_u and A_u
187  u_u = (P - POut) / (R * A_calc);
188  A_u = A_calc;
189 }
190 
191 } // namespace Nektar
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
PulseWavePressureAreaSharedPtr m_pressureArea
LibUtilities::SessionReaderSharedPtr m_session
virtual ~RCROutflow()
Definition: RCROutflow.cpp:56
void R_RiemannSolver(NekDouble R, NekDouble A_l, NekDouble u_l, NekDouble A_0, NekDouble beta, NekDouble alpha, NekDouble POut, NekDouble &A_u, NekDouble &u_u)
Definition: RCROutflow.cpp:135
virtual void v_DoBoundary(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &A_0, Array< OneD, Array< OneD, NekDouble >> &beta, Array< OneD, Array< OneD, NekDouble >> &alpha, const NekDouble time, int omega, int offset, int n) override
Definition: RCROutflow.cpp:60
NekDouble m_pc
Definition: RCROutflow.h:87
NekDouble m_timestep
Definition: RCROutflow.h:86
std::shared_ptr< SessionReader > SessionReaderSharedPtr
@ beta
Gauss Radau pinned at x=-1,.
Definition: PointsType.h:61
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
std::shared_ptr< PulseWavePressureArea > PulseWavePressureAreaSharedPtr
BoundaryFactory & GetBoundaryFactory()
double NekDouble
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294