Nektar++
UnsteadyInviscidBurger.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: UnsteadyInviscidBurger.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Unsteady inviscid Burger solve routines
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 
37 using namespace std;
38 
39 namespace Nektar
40 {
41 string UnsteadyInviscidBurger::className =
43  "UnsteadyInviscidBurger", UnsteadyInviscidBurger::create,
44  "Inviscid Burger equation");
45 
46 UnsteadyInviscidBurger::UnsteadyInviscidBurger(
49  : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
50 {
51 }
52 
53 /**
54  * @brief Initialisation object for the inviscid Burger equation.
55  */
56 void UnsteadyInviscidBurger::v_InitObject(bool DeclareFields)
57 {
58  // Call to the initialisation object of UnsteadySystem
59  AdvectionSystem::v_InitObject(DeclareFields);
60 
61  // Define the normal velocity fields
62  if (m_fields[0]->GetTrace())
63  {
65  }
66 
67  // Type of advection class to be used
68  switch (m_projectionType)
69  {
70  // Continuous field
72  {
73  string advName;
74  m_session->LoadSolverInfo("AdvectionType", advName,
75  "NonConservative");
77  advName, advName);
79  this);
80  break;
81  }
82  // Discontinuous field
84  {
85  string advName;
86  string riemName;
87 
88  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
90  advName, advName);
92  this);
93 
94  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
97  riemName, m_session);
98  m_riemannSolver->SetScalar(
100 
101  m_advObject->SetRiemannSolver(m_riemannSolver);
102  m_advObject->InitObject(m_session, m_fields);
103  break;
104  }
105  default:
106  {
107  ASSERTL0(false, "Unsupported projection type.");
108  break;
109  }
110  }
111 
112  // Forcing terms
113  m_forcing = SolverUtils::Forcing::Load(m_session, shared_from_this(),
114  m_fields, m_fields.size());
115 
116  // If explicit it computes RHS and PROJECTION for the time integration
118  {
121  }
122  // Otherwise it gives an error because (no implicit integration)
123  else
124  {
125  ASSERTL0(false, "Implicit unsteady Advection not set up.");
126  }
127 }
128 
129 /**
130  * @brief Inviscid Burger equation destructor.
131  */
133 {
134 }
135 
136 /**
137  * @brief Get the normal velocity for the inviscid Burger equation.
138  */
140 {
141  // Counter variable
142  int i;
143 
144  // Number of trace (interface) points
145  int nTracePts = GetTraceNpoints();
146 
147  // Number of solution points
148  int nSolutionPts = GetNpoints();
149 
150  // Number of fields (variables of the problem)
151  int nVariables = m_fields.size();
152 
153  // Auxiliary variables to compute the normal velocity
154  Array<OneD, NekDouble> Fwd(nTracePts);
155  Array<OneD, NekDouble> Bwd(nTracePts);
156  Array<OneD, Array<OneD, NekDouble>> physfield(nVariables);
157 
158  // Reset the normal velocity
159  Vmath::Zero(nTracePts, m_traceVn, 1);
160 
161  // The TimeIntegration Class does not update the physical values of the
162  // solution. It is thus necessary to transform back the coefficient into
163  // the physical space and save them in physfield to compute the normal
164  // advection velocity properly. However it remains a critical point.
165  for (i = 0; i < nVariables; ++i)
166  {
167  physfield[i] = Array<OneD, NekDouble>(nSolutionPts);
168  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), physfield[i]);
169  }
170 
171  /// Extract the physical values at the trace space
172  m_fields[0]->GetFwdBwdTracePhys(physfield[0], Fwd, Bwd, true);
173  Vmath::Vadd(nTracePts, Fwd, 1, Bwd, 1, Fwd, 1);
174  Vmath::Smul(nTracePts, 0.5, Fwd, 1, Fwd, 1);
175 
176  /// Compute the normal velocity
177  for (i = 0; i < m_spacedim; ++i)
178  {
179  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Fwd, 1, m_traceVn, 1,
180  m_traceVn, 1);
181 
182  Vmath::Smul(nTracePts, 0.5, m_traceVn, 1, m_traceVn, 1);
183  }
184  return m_traceVn;
185 }
186 
187 /**
188  * @brief Compute the right-hand side for the inviscid Burger equation.
189  *
190  * @param inarray Given fields.
191  * @param outarray Calculated solution.
192  * @param time Time.
193  */
195  const Array<OneD, const Array<OneD, NekDouble>> &inarray,
196  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
197 {
198  // Counter variable
199  int i;
200 
201  // Number of fields (variables of the problem)
202  int nVariables = inarray.size();
203 
204  // Number of solution points
205  int nSolutionPts = GetNpoints();
206 
207  // Unused variable for WeakDG and FR
208  Array<OneD, Array<OneD, NekDouble>> advVel(nVariables);
209  for (int i = 0; i < nVariables; ++i)
210  {
211  advVel[i] = inarray[i];
212  }
213 
214  // RHS computation using the new advection base class
215  m_advObject->Advect(nVariables, m_fields, advVel, inarray, outarray, time);
216 
217  // Negate the RHS
218  for (i = 0; i < nVariables; ++i)
219  {
220  Vmath::Neg(nSolutionPts, outarray[i], 1);
221  }
222 
223  // Add forcing terms
224  for (auto &x : m_forcing)
225  {
226  // set up non-linear terms
227  x->Apply(m_fields, inarray, outarray, time);
228  }
229 }
230 
231 /**
232  * @brief Compute the projection for the inviscid Burger equation.
233  *
234  * @param inarray Given fields.
235  * @param outarray Calculated solution.
236  * @param time Time.
237  */
239  const Array<OneD, const Array<OneD, NekDouble>> &inarray,
240  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
241 {
242  // Counter variable
243  int i;
244 
245  // Number of variables of the problem
246  int nVariables = inarray.size();
247 
248  // Set the boundary conditions
249  SetBoundaryConditions(time);
250 
251  // Switch on the projection type (Discontinuous or Continuous)
252  switch (m_projectionType)
253  {
254  // Discontinuous projection
256  {
257  // Number of quadrature points
258  int nQuadraturePts = GetNpoints();
259 
260  // Just copy over array
261  for (i = 0; i < nVariables; ++i)
262  {
263  Vmath::Vcopy(nQuadraturePts, inarray[i], 1, outarray[i], 1);
264  }
265  break;
266  }
267 
268  // Continuous projection
271  {
273 
274  for (i = 0; i < nVariables; ++i)
275  {
276  m_fields[i]->FwdTrans(inarray[i], coeffs);
277  m_fields[i]->BwdTrans(coeffs, outarray[i]);
278  }
279  break;
280  }
281  default:
282  ASSERTL0(false, "Unknown projection scheme");
283  break;
284  }
285 }
286 
287 /**
288  * @brief Return the flux vector for the inviscid Burger equation.
289  *
290  * @param i Component of the flux vector to calculate.
291  * @param physfield Fields.
292  * @param flux Resulting flux.
293  */
295  const Array<OneD, Array<OneD, NekDouble>> &physfield,
297 {
298  const int nq = GetNpoints();
299 
300  for (int i = 0; i < flux.size(); ++i)
301  {
302  for (int j = 0; j < flux[0].size(); ++j)
303  {
304  Vmath::Vmul(nq, physfield[i], 1, physfield[i], 1, flux[i][j], 1);
305  Vmath::Smul(nq, 0.5, flux[i][j], 1, flux[i][j], 1);
306  }
307  }
308 }
309 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
A base class for PDEs which include an advection component.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:120
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
Array< OneD, NekDouble > m_traceVn
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
virtual void v_InitObject(bool DeclareFields=true) override
Initialise the object.
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity.
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
Evaluate the flux at each solution point.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the projection.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the RHS.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:172
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255