Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion2D Class Referenceabstract

#include <StdExpansion2D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion2D:
[legend]

Public Member Functions

 StdExpansion2D ()
 
 StdExpansion2D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdExpansion2D (const StdExpansion2D &T)
 
virtual ~StdExpansion2D () override
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
 Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble >> &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble >> &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray) override
 
virtual void v_GetElmtTraceToTraceMap (const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q) override
 Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with the standard element) into the orientation of the local trace given by edgeOrient. More...
 
virtual void v_GetTraceToElementMap (const int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient=eForwards, int P=-1, int Q=-1) override
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 

Private Member Functions

virtual int v_GetShapeDimension () const override final
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 48 of file StdExpansion2D.h.

Constructor & Destructor Documentation

◆ StdExpansion2D() [1/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( )

Definition at line 47 of file StdExpansion2D.cpp.

48 {
49 }

◆ StdExpansion2D() [2/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb 
)

Definition at line 51 of file StdExpansion2D.cpp.

53  : StdExpansion(numcoeffs, 2, Ba, Bb)
54 {
55 }
StdExpansion()
Default Constructor.

◆ StdExpansion2D() [3/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( const StdExpansion2D T)

Definition at line 57 of file StdExpansion2D.cpp.

57  : StdExpansion(T)
58 {
59 }

◆ ~StdExpansion2D()

Nektar::StdRegions::StdExpansion2D::~StdExpansion2D ( )
overridevirtual

Definition at line 61 of file StdExpansion2D.cpp.

62 {
63 }

Member Function Documentation

◆ BaryTensorDeriv()

NekDouble Nektar::StdRegions::StdExpansion2D::BaryTensorDeriv ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
inline

Definition at line 103 of file StdExpansion2D.h.

107  {
108  const int nq0 = m_base[0]->GetNumPoints();
109  const int nq1 = m_base[1]->GetNumPoints();
110 
111  const NekDouble *ptr = &inarray[0];
112  Array<OneD, NekDouble> deriv0(nq1, 0.0);
113  Array<OneD, NekDouble> phys0(nq1, 0.0);
114 
115  for (int j = 0; j < nq1; ++j, ptr += nq0)
116  {
117  phys0[j] =
118  StdExpansion::BaryEvaluate<0, true>(coord[0], ptr, deriv0[j]);
119  }
120  firstOrderDerivs[0] =
121  StdExpansion::BaryEvaluate<1, false>(coord[1], &deriv0[0]);
122 
123  return StdExpansion::BaryEvaluate<1, true>(coord[1], &phys0[0],
124  firstOrderDerivs[1]);
125  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
double NekDouble

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdQuadExp::v_PhysEvaluate(), and Nektar::StdRegions::StdTriExp::v_PhysEvaluate().

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion2D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0 = true,
bool  doCheckCollDir1 = true 
)

Definition at line 201 of file StdExpansion2D.cpp.

207 {
208  v_BwdTrans_SumFacKernel(base0, base1, inarray, outarray, wsp,
209  doCheckCollDir0, doCheckCollDir1);
210 }
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdQuadExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTriExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ Integral()

NekDouble Nektar::StdRegions::StdExpansion2D::Integral ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  w0,
const Array< OneD, const NekDouble > &  w1 
)

Definition at line 174 of file StdExpansion2D.cpp.

177 {
178  int i;
179  NekDouble Int = 0.0;
180  int nquad0 = m_base[0]->GetNumPoints();
181  int nquad1 = m_base[1]->GetNumPoints();
182  Array<OneD, NekDouble> tmp(nquad0 * nquad1);
183 
184  // multiply by integration constants
185  for (i = 0; i < nquad1; ++i)
186  {
187  Vmath::Vmul(nquad0, &inarray[0] + i * nquad0, 1, w0.get(), 1,
188  &tmp[0] + i * nquad0, 1);
189  }
190 
191  for (i = 0; i < nquad0; ++i)
192  {
193  Vmath::Vmul(nquad1, &tmp[0] + i, nquad0, w1.get(), 1, &tmp[0] + i,
194  nquad0);
195  }
196  Int = Vmath::Vsum(nquad0 * nquad1, tmp, 1);
197 
198  return Int;
199 }
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:895

References Nektar::StdRegions::StdExpansion::m_base, Vmath::Vmul(), and Vmath::Vsum().

Referenced by Nektar::StdRegions::StdQuadExp::v_Integral(), and Nektar::StdRegions::StdTriExp::v_Integral().

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0 = true,
bool  doCheckCollDir1 = true 
)

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion2D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d0,
Array< OneD, NekDouble > &  outarray_d1 
)

Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d0the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d0 as output of the function
outarray_d1the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d1 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Quadrilateral} & -1 \leq \xi_1,\xi_2 \leq 1 & -1 \leq \eta_1,\eta_2 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2\\ \mbox{Triangle} & -1 \leq \xi_1,\xi_2; \xi_1+\xi_2 \leq 0 & -1 \leq \eta_1,\eta_2 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \eta_2 = \xi_2 \\ \end{array} \)

Definition at line 68 of file StdExpansion2D.cpp.

71 {
72  int nquad0 = m_base[0]->GetNumPoints();
73  int nquad1 = m_base[1]->GetNumPoints();
74 
75  if (outarray_d0.size() > 0) // calculate du/dx_0
76  {
77  DNekMatSharedPtr D0 = m_base[0]->GetD();
78  if (inarray.data() == outarray_d0.data())
79  {
80  Array<OneD, NekDouble> wsp(nquad0 * nquad1);
81  Vmath::Vcopy(nquad0 * nquad1, inarray.get(), 1, wsp.get(), 1);
82  Blas::Dgemm('N', 'N', nquad0, nquad1, nquad0, 1.0,
83  &(D0->GetPtr())[0], nquad0, &wsp[0], nquad0, 0.0,
84  &outarray_d0[0], nquad0);
85  }
86  else
87  {
88  Blas::Dgemm('N', 'N', nquad0, nquad1, nquad0, 1.0,
89  &(D0->GetPtr())[0], nquad0, &inarray[0], nquad0, 0.0,
90  &outarray_d0[0], nquad0);
91  }
92  }
93 
94  if (outarray_d1.size() > 0) // calculate du/dx_1
95  {
96  DNekMatSharedPtr D1 = m_base[1]->GetD();
97  if (inarray.data() == outarray_d1.data())
98  {
99  Array<OneD, NekDouble> wsp(nquad0 * nquad1);
100  Vmath::Vcopy(nquad0 * nquad1, inarray.get(), 1, wsp.get(), 1);
101  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0, &wsp[0], nquad0,
102  &(D1->GetPtr())[0], nquad1, 0.0, &outarray_d1[0],
103  nquad0);
104  }
105  else
106  {
107  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0, &inarray[0],
108  nquad0, &(D1->GetPtr())[0], nquad1, 0.0,
109  &outarray_d1[0], nquad0);
110  }
111  }
112 }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:368
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdQuadExp::v_PhysDeriv(), and Nektar::StdRegions::StdTriExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion2D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion2D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 223 of file StdExpansion2D.cpp.

224 {
225  ASSERTL1((dir == 0) || (dir == 1), "Invalid direction.");
226 
227  int nquad0 = m_base[0]->GetNumPoints();
228  int nquad1 = m_base[1]->GetNumPoints();
229  int nqtot = nquad0 * nquad1;
230  int nmodes0 = m_base[0]->GetNumModes();
231 
232  Array<OneD, NekDouble> tmp1(2 * nqtot + m_ncoeffs + nmodes0 * nquad1, 0.0);
233  Array<OneD, NekDouble> tmp3(tmp1 + 2 * nqtot);
234  Array<OneD, NekDouble> tmp4(tmp1 + 2 * nqtot + m_ncoeffs);
235 
236  switch (dir)
237  {
238  case 0:
239  for (int i = 0; i < nqtot; i++)
240  {
241  tmp1[i] = 1.0;
242  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
243  m_base[1]->GetBdata(), tmp1, tmp3,
244  tmp4, false, true);
245  tmp1[i] = 0.0;
246 
247  for (int j = 0; j < m_ncoeffs; j++)
248  {
249  (*mat)(j, i) = tmp3[j];
250  }
251  }
252  break;
253  case 1:
254  for (int i = 0; i < nqtot; i++)
255  {
256  tmp1[i] = 1.0;
257  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
258  m_base[1]->GetDbdata(), tmp1, tmp3,
259  tmp4, true, false);
260  tmp1[i] = 0.0;
261 
262  for (int j = 0; j < m_ncoeffs; j++)
263  {
264  (*mat)(j, i) = tmp3[j];
265  }
266  }
267  break;
268  default:
269  NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
270  break;
271  }
272 }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetElmtTraceToTraceMap()

void Nektar::StdRegions::StdExpansion2D::v_GetElmtTraceToTraceMap ( const unsigned int  eid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  edgeOrient,
int  P,
int  Q 
)
overrideprotectedvirtual

Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with the standard element) into the orientation of the local trace given by edgeOrient.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 397 of file StdExpansion2D.cpp.

400 {
401  // Q is only used in 2D traces.
402  boost::ignore_unused(Q);
403 
404  unsigned int i;
405 
406  int dir;
407  // determine basis direction for edge.
409  {
410  dir = (eid == 0) ? 0 : 1;
411  }
412  else
413  {
414  dir = eid % 2;
415  }
416 
417  int numModes = m_base[dir]->GetNumModes();
418 
419  // P is the desired length of the map
420  P = (P == -1) ? numModes : P;
421 
422  // decalare maparray
423  if (maparray.size() != P)
424  {
425  maparray = Array<OneD, unsigned int>(P);
426  }
427 
428  // fill default mapping as increasing index
429  for (i = 0; i < P; ++i)
430  {
431  maparray[i] = i;
432  }
433 
434  if (signarray.size() != P)
435  {
436  signarray = Array<OneD, int>(P, 1);
437  }
438  else
439  {
440  std::fill(signarray.get(), signarray.get() + P, 1);
441  }
442 
443  // Zero signmap and set maparray to zero if
444  // elemental modes are not as large as trace modes
445  for (i = numModes; i < P; ++i)
446  {
447  signarray[i] = 0.0;
448  maparray[i] = maparray[0];
449  }
450 
451  if (edgeOrient == eBackwards)
452  {
453  const LibUtilities::BasisType bType = GetBasisType(dir);
454 
455  if ((bType == LibUtilities::eModified_A) ||
456  (bType == LibUtilities::eModified_B))
457  {
458  std::swap(maparray[0], maparray[1]);
459 
460  for (i = 3; i < std::min(P, numModes); i += 2)
461  {
462  signarray[i] *= -1;
463  }
464  }
465  else if (bType == LibUtilities::eGLL_Lagrange ||
467  {
468  ASSERTL1(P == numModes, "Different trace space edge dimension "
469  "and element edge dimension not currently "
470  "possible for GLL-Lagrange bases");
471 
472  std::reverse(maparray.get(), maparray.get() + P);
473  }
474  else
475  {
476  ASSERTL0(false, "Mapping not defined for this type of basis");
477  }
478  }
479 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:373
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:51
@ eGauss_Lagrange
Lagrange Polynomials using the Gauss points.
Definition: BasisType.h:59
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:58
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50

References ASSERTL0, ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eBackwards, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eTriangle, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::P.

Referenced by v_GetTraceToElementMap().

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion2D::v_GetShapeDimension ( ) const
inlinefinaloverrideprivatevirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 218 of file StdExpansion2D.h.

219  {
220  return 2;
221  }

◆ v_GetTraceCoeffMap()

void Nektar::StdRegions::StdExpansion2D::v_GetTraceCoeffMap ( const unsigned int  traceid,
Array< OneD, unsigned int > &  maparray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdTriExp, and Nektar::StdRegions::StdQuadExp.

Definition at line 383 of file StdExpansion2D.cpp.

385 {
386  boost::ignore_unused(traceid, maparray);
387 
388  ASSERTL0(false,
389  "This method must be defined at the individual shape level");
390 }

References ASSERTL0.

Referenced by v_GetTraceToElementMap().

◆ v_GetTraceToElementMap()

void Nektar::StdRegions::StdExpansion2D::v_GetTraceToElementMap ( const int  eid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  edgeOrient = eForwards,
int  P = -1,
int  Q = -1 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTriExp.

Definition at line 481 of file StdExpansion2D.cpp.

486 {
487  Array<OneD, unsigned int> map1, map2;
488  v_GetTraceCoeffMap(eid, map1);
489  v_GetElmtTraceToTraceMap(eid, map2, signarray, edgeOrient, P, Q);
490 
491  if (maparray.size() != map2.size())
492  {
493  maparray = Array<OneD, unsigned int>(map2.size());
494  }
495 
496  for (int i = 0; i < map2.size(); ++i)
497  {
498  maparray[i] = map1[map2[i]];
499  }
500 }
virtual void v_GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray) override
virtual void v_GetElmtTraceToTraceMap(const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q) override
Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with...

References Nektar::LibUtilities::P, v_GetElmtTraceToTraceMap(), and v_GetTraceCoeffMap().

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion2D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 323 of file StdExpansion2D.cpp.

326 {
327  if (mkey.GetNVarCoeff() == 0 &&
328  !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
329  !mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio))
330  {
331  using std::max;
332 
333  int nquad0 = m_base[0]->GetNumPoints();
334  int nquad1 = m_base[1]->GetNumPoints();
335  int nqtot = nquad0 * nquad1;
336  int nmodes0 = m_base[0]->GetNumModes();
337  int nmodes1 = m_base[1]->GetNumModes();
338  int wspsize =
339  max(max(max(nqtot, m_ncoeffs), nquad1 * nmodes0), nquad0 * nmodes1);
340  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
341 
342  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
343  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
344 
345  // Allocate temporary storage
346  Array<OneD, NekDouble> wsp0(5 * wspsize); // size wspsize
347  Array<OneD, NekDouble> wsp1(wsp0 + wspsize); // size wspsize
348  Array<OneD, NekDouble> wsp2(wsp0 + 2 * wspsize); // size 3*wspsize
349 
350  if (!(m_base[0]->Collocation() && m_base[1]->Collocation()))
351  {
352  // MASS MATRIX OPERATION
353  // The following is being calculated:
354  // wsp0 = B * u_hat = u
355  // wsp1 = W * wsp0
356  // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
357  BwdTrans_SumFacKernel(base0, base1, inarray, wsp0, wsp2, true,
358  true);
359  MultiplyByQuadratureMetric(wsp0, wsp1);
360  IProductWRTBase_SumFacKernel(base0, base1, wsp1, outarray, wsp2,
361  true, true);
362 
363  LaplacianMatrixOp_MatFree_Kernel(wsp0, wsp1, wsp2);
364  }
365  else
366  {
367  MultiplyByQuadratureMetric(inarray, outarray);
368  LaplacianMatrixOp_MatFree_Kernel(inarray, wsp1, wsp2);
369  }
370 
371  // outarray = lambda * outarray + wsp1
372  // = (lambda * M + L ) * u_hat
373  Vmath::Svtvp(m_ncoeffs, lambda, &outarray[0], 1, &wsp1[0], 1,
374  &outarray[0], 1);
375  }
376  else
377  {
379  mkey);
380  }
381 }
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdQuadExp::v_HelmholtzMatrixOp(), and Nektar::StdRegions::StdTriExp::v_HelmholtzMatrixOp().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion2D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion2D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 274 of file StdExpansion2D.cpp.

277 {
278  if (mkey.GetNVarCoeff() == 0 &&
279  !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
280  !mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio))
281  {
282  using std::max;
283 
284  // This implementation is only valid when there are no
285  // coefficients associated to the Laplacian operator
286  int nquad0 = m_base[0]->GetNumPoints();
287  int nquad1 = m_base[1]->GetNumPoints();
288  int nqtot = nquad0 * nquad1;
289  int nmodes0 = m_base[0]->GetNumModes();
290  int nmodes1 = m_base[1]->GetNumModes();
291  int wspsize =
292  max(max(max(nqtot, m_ncoeffs), nquad1 * nmodes0), nquad0 * nmodes1);
293 
294  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
295  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
296 
297  // Allocate temporary storage
298  Array<OneD, NekDouble> wsp0(4 * wspsize); // size wspsize
299  Array<OneD, NekDouble> wsp1(wsp0 + wspsize); // size 3*wspsize
300 
301  if (!(m_base[0]->Collocation() && m_base[1]->Collocation()))
302  {
303  // LAPLACIAN MATRIX OPERATION
304  // wsp0 = u = B * u_hat
305  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
306  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
307  BwdTrans_SumFacKernel(base0, base1, inarray, wsp0, wsp1, true,
308  true);
309  LaplacianMatrixOp_MatFree_Kernel(wsp0, outarray, wsp1);
310  }
311  else
312  {
313  LaplacianMatrixOp_MatFree_Kernel(inarray, outarray, wsp1);
314  }
315  }
316  else
317  {
319  mkey);
320  }
321 }
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

Referenced by Nektar::StdRegions::StdQuadExp::v_LaplacianMatrixOp(), and Nektar::StdRegions::StdTriExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate() [1/3]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

This function is a wrapper around the virtual function v_PhysEvaluate()

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #m_phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TriExp, Nektar::LocalRegions::QuadExp, and Nektar::LocalRegions::NodalTriExp.

Definition at line 114 of file StdExpansion2D.cpp.

117 {
118  ASSERTL2(coords[0] > -1 - NekConstants::kNekZeroTol, "coord[0] < -1");
119  ASSERTL2(coords[0] < 1 + NekConstants::kNekZeroTol, "coord[0] > 1");
120  ASSERTL2(coords[1] > -1 - NekConstants::kNekZeroTol, "coord[1] < -1");
121  ASSERTL2(coords[1] < 1 + NekConstants::kNekZeroTol, "coord[1] > 1");
122 
123  Array<OneD, NekDouble> coll(2);
124  LocCoordToLocCollapsed(coords, coll);
125 
126  const int nq0 = m_base[0]->GetNumPoints();
127  const int nq1 = m_base[1]->GetNumPoints();
128 
129  Array<OneD, NekDouble> wsp(nq1);
130  for (int i = 0; i < nq1; ++i)
131  {
132  wsp[i] = StdExpansion::BaryEvaluate<0>(coll[0], &physvals[0] + i * nq0);
133  }
134 
135  return StdExpansion::BaryEvaluate<1>(coll[1], &wsp[0]);
136 }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:272
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
static const NekDouble kNekZeroTol

References ASSERTL2, Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdNodalTriExp::GenNBasisTransMatrix().

◆ v_PhysEvaluate() [2/3]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 138 of file StdExpansion2D.cpp.

141 {
142  NekDouble val;
143  int i;
144  int nq0 = m_base[0]->GetNumPoints();
145  int nq1 = m_base[1]->GetNumPoints();
146  Array<OneD, NekDouble> wsp1(nq1);
147 
148  // interpolate first coordinate direction
149  for (i = 0; i < nq1; ++i)
150  {
151  wsp1[i] =
152  Blas::Ddot(nq0, &(I[0]->GetPtr())[0], 1, &physvals[i * nq0], 1);
153  }
154 
155  // interpolate in second coordinate direction
156  val = Blas::Ddot(nq1, I[1]->GetPtr(), 1, wsp1, 1);
157 
158  return val;
159 }
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:182

References Blas::Ddot(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_PhysEvaluate() [3/3]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdTriExp, Nektar::StdRegions::StdQuadExp, Nektar::LocalRegions::TriExp, Nektar::LocalRegions::QuadExp, and Nektar::LocalRegions::NodalTriExp.

Definition at line 161 of file StdExpansion2D.cpp.

165 {
166  boost::ignore_unused(coord, inarray, firstOrderDerivs);
167  return 0;
168 }