Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | Friends | List of all members
Nektar::UnsteadyAdvectionDiffusion Class Reference

#include <UnsteadyAdvectionDiffusion.h>

Inheritance diagram for Nektar::UnsteadyAdvectionDiffusion:
[legend]

Public Member Functions

virtual ~UnsteadyAdvectionDiffusion ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble >> &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT int GetPararealIterationNumber ()
 
SOLVER_UTILS_EXPORT void SetPararealIterationNumber (int num)
 
SOLVER_UTILS_EXPORT bool GetUseInitialCondition ()
 
SOLVER_UTILS_EXPORT void SetUseInitialCondition (bool num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 
SOLVER_UTILS_EXPORT bool ParallelInTime ()
 Check if solver use Parallel-in-Time. More...
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

 UnsteadyAdvectionDiffusion (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Session reader. More...
 
void GetFluxVectorAdv (const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
 Evaluate the flux at each solution point for the advection part. More...
 
void GetFluxVectorDiff (const Array< OneD, Array< OneD, NekDouble >> &inarray, const Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &qfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &viscousTensor)
 Evaluate the flux at each solution point for the diffusion part. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 Compute the RHS. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 Perform the projection. More...
 
void DoImplicitSolve (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, NekDouble time, NekDouble lambda)
 Solve implicitly the diffusion term. More...
 
Array< OneD, NekDouble > & GetNormalVelocity ()
 Get the normal velocity based on m_velocity. More...
 
Array< OneD, NekDouble > & GetNormalVel (const Array< OneD, const Array< OneD, NekDouble >> &velfield)
 Get the normal velocity based on input velfield. More...
 
virtual void v_InitObject (bool DeclareFields=true) override
 Initialise the object. More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print Summary. More...
 
virtual bool v_PreIntegrate (int step) override
 PreIntegration step for substepping. More...
 
void SubStepAdvance (int nstep, NekDouble time)
 
NekDouble GetSubstepTimeStep ()
 
void SetUpSubSteppingTimeIntegration (const LibUtilities::TimeIntegrationSchemeSharedPtr &IntegrationScheme)
 
void SubStepAdvection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
void SubStepProjection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
void AddAdvectionPenaltyFlux (const Array< OneD, const Array< OneD, NekDouble >> &velfield, const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, NekDouble >> &Outarray)
 
Array< OneD, NekDoubleGetMaxStdVelocity (const Array< OneD, Array< OneD, NekDouble >> inarray)
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise () override
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble >> vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

bool m_subSteppingScheme
 
bool m_useSpecVanVisc
 
bool m_useGJPStabilisation
 
NekDouble m_GJPJumpScale
 
NekDouble m_sVVCutoffRatio
 
NekDouble m_sVVDiffCoeff
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
SolverUtils::DiffusionSharedPtr m_diffusion
 
Array< OneD, Array< OneD, NekDouble > > m_velocity
 
Array< OneD, NekDoublem_traceVn
 
int m_planeNumber
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 Forcing terms. More...
 
LibUtilities::TimeIntegrationSchemeSharedPtr m_subStepIntegrationScheme
 
LibUtilities::TimeIntegrationSchemeOperators m_subStepIntegrationOps
 
int m_intSteps
 
NekDouble m_cflSafetyFactor
 
int m_infosteps
 
int m_minsubsteps
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateRes = 1.0
 
NekDouble m_steadyStateRes0 = 1.0
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::ofstream m_errFile
 
std::vector< int > m_intVariables
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
NekDouble m_filterTimeWarning
 Number of time steps between outputting status information. More...
 
NekDouble m_TimeIntegLambda = 0.0
 coefff of spacial derivatives(rhs or m_F in GLM) in calculating the residual of the whole equation(used in unsteady time integrations) More...
 
bool m_flagImplicitItsStatistics
 
bool m_flagImplicitSolver = false
 
Array< OneD, NekDoublem_magnitdEstimat
 estimate the magnitude of each conserved varibles More...
 
Array< OneD, NekDoublem_locTimeStep
 local time step(notice only for jfnk other see m_cflSafetyFactor) More...
 
NekDouble m_inArrayNorm = -1.0
 
int m_TotLinItePerStep = 0
 
int m_StagesPerStep = 1
 
bool m_flagUpdatePreconMat
 
int m_maxLinItePerNewton
 
int m_TotNewtonIts = 0
 
int m_TotLinIts = 0
 
int m_TotImpStages = 0
 
bool m_CalcPhysicalAV = true
 flag to update artificial viscosity More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_timestepMax = -1.0
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_pararealIter
 Number of parareal time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_useInitialCondition
 Flag to determine if IC are used. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities. More...
 
Array< OneD, NekDoublem_movingFrameTheta
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Private Attributes

NekDouble m_waveFreq
 
NekDouble m_epsilon
 

Friends

class MemoryManager< UnsteadyAdvectionDiffusion >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_cflNonAcoustic
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 maximun cfl in cfl growth More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 

Detailed Description

Definition at line 46 of file UnsteadyAdvectionDiffusion.h.

Constructor & Destructor Documentation

◆ ~UnsteadyAdvectionDiffusion()

Nektar::UnsteadyAdvectionDiffusion::~UnsteadyAdvectionDiffusion ( )
virtual

Destructor.

Unsteady linear advection diffusion equation destructor.

Definition at line 206 of file UnsteadyAdvectionDiffusion.cpp.

207 {
208 }

◆ UnsteadyAdvectionDiffusion()

Nektar::UnsteadyAdvectionDiffusion::UnsteadyAdvectionDiffusion ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Session reader.

Definition at line 50 of file UnsteadyAdvectionDiffusion.cpp.

53  : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
54 {
55  m_planeNumber = 0;
56 }
SOLVER_UTILS_EXPORT AdvectionSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

References m_planeNumber.

Member Function Documentation

◆ AddAdvectionPenaltyFlux()

void Nektar::UnsteadyAdvectionDiffusion::AddAdvectionPenaltyFlux ( const Array< OneD, const Array< OneD, NekDouble >> &  velfield,
const Array< OneD, const Array< OneD, NekDouble >> &  physfield,
Array< OneD, Array< OneD, NekDouble >> &  Outarray 
)
protected

Number of trace points

Forward state array

Backward state array

upwind numerical flux state array

Normal velocity array

Extract forwards/backwards trace spaces Note: Needs to have correct i value to get boundary conditions

Upwind between elements

Construct difference between numflux and Fwd,Bwd

Calculate the numerical fluxes multipling Fwd, Bwd and numflux by the normal advection velocity

Definition at line 677 of file UnsteadyAdvectionDiffusion.cpp.

681 {
682  ASSERTL1(physfield.size() == Outarray.size(),
683  "Physfield and outarray are of different dimensions");
684 
685  int i;
686 
687  /// Number of trace points
688  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
689 
690  /// Forward state array
691  Array<OneD, NekDouble> Fwd(3 * nTracePts);
692 
693  /// Backward state array
694  Array<OneD, NekDouble> Bwd = Fwd + nTracePts;
695 
696  /// upwind numerical flux state array
697  Array<OneD, NekDouble> numflux = Bwd + nTracePts;
698 
699  /// Normal velocity array
700  Array<OneD, NekDouble> Vn = GetNormalVel(velfield);
701 
702  for (i = 0; i < physfield.size(); ++i)
703  {
704  /// Extract forwards/backwards trace spaces
705  /// Note: Needs to have correct i value to get boundary conditions
706  m_fields[i]->GetFwdBwdTracePhys(physfield[i], Fwd, Bwd);
707 
708  /// Upwind between elements
709  m_fields[0]->GetTrace()->Upwind(Vn, Fwd, Bwd, numflux);
710 
711  /// Construct difference between numflux and Fwd,Bwd
712  Vmath::Vsub(nTracePts, numflux, 1, Fwd, 1, Fwd, 1);
713  Vmath::Vsub(nTracePts, numflux, 1, Bwd, 1, Bwd, 1);
714 
715  /// Calculate the numerical fluxes multipling Fwd, Bwd and
716  /// numflux by the normal advection velocity
717  Vmath::Vmul(nTracePts, Fwd, 1, Vn, 1, Fwd, 1);
718  Vmath::Vmul(nTracePts, Bwd, 1, Vn, 1, Bwd, 1);
719 
720  m_fields[0]->AddFwdBwdTraceIntegral(Fwd, Bwd, Outarray[i]);
721  }
722 }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
Array< OneD, NekDouble > & GetNormalVel(const Array< OneD, const Array< OneD, NekDouble >> &velfield)
Get the normal velocity based on input velfield.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419

References ASSERTL1, GetNormalVel(), Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Vmul(), and Vmath::Vsub().

Referenced by SubStepAdvection().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::UnsteadyAdvectionDiffusion::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 52 of file UnsteadyAdvectionDiffusion.h.

55  {
58  pSession, pGraph);
59  p->InitObject();
60  return p;
61  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ DoImplicitSolve()

void Nektar::UnsteadyAdvectionDiffusion::DoImplicitSolve ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
NekDouble  time,
NekDouble  lambda 
)
protected

Solve implicitly the diffusion term.

Definition at line 352 of file UnsteadyAdvectionDiffusion.cpp.

356 {
357  int nvariables = inarray.size();
358  int nq = m_fields[0]->GetNpoints();
359 
361  factors[StdRegions::eFactorLambda] = 1.0 / lambda / m_epsilon;
362 
363  // Add factor is GJP turned on
365  {
367  }
368 
369  if (m_useSpecVanVisc)
370  {
373  }
375  {
376  factors[StdRegions::eFactorTau] = 1.0;
377  }
378 
379  Array<OneD, Array<OneD, NekDouble>> F(nvariables);
380  for (int n = 0; n < nvariables; ++n)
381  {
382  F[n] = Array<OneD, NekDouble>(nq);
383  }
384 
385  // We solve ( \nabla^2 - HHlambda ) Y[i] = rhs [i]
386  // inarray = input: \hat{rhs} -> output: \hat{Y}
387  // outarray = output: nabla^2 \hat{Y}
388  // where \hat = modal coeffs
389  for (int i = 0; i < nvariables; ++i)
390  {
391  // Multiply 1.0/timestep/lambda
392  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i], 1,
393  F[i], 1);
394  }
395 
396  // Setting boundary conditions
397  SetBoundaryConditions(time);
398 
399  for (int i = 0; i < nvariables; ++i)
400  {
401  // Solve a system of equations with Helmholtz solver
402  m_fields[i]->HelmSolve(F[i], m_fields[i]->UpdateCoeffs(), factors);
403 
404  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
405  }
406 }
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:399
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248

References Nektar::MultiRegions::eDiscontinuous, Nektar::StdRegions::eFactorGJP, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorTau, m_epsilon, Nektar::SolverUtils::EquationSystem::m_fields, m_GJPJumpScale, Nektar::SolverUtils::EquationSystem::m_projectionType, m_sVVCutoffRatio, m_sVVDiffCoeff, m_useGJPStabilisation, m_useSpecVanVisc, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), and Vmath::Smul().

Referenced by v_InitObject().

◆ DoOdeProjection()

void Nektar::UnsteadyAdvectionDiffusion::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Perform the projection.

Compute the projection for the unsteady advection diffusion problem.

Parameters
inarrayGiven fields.
outarrayCalculated solution.
timeTime.

Definition at line 305 of file UnsteadyAdvectionDiffusion.cpp.

308 {
309  int i;
310  int nvariables = inarray.size();
311  SetBoundaryConditions(time);
312  switch (m_projectionType)
313  {
315  {
316  // Just copy over array
317  int npoints = GetNpoints();
318 
319  for (i = 0; i < nvariables; ++i)
320  {
321  Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
322  }
323  break;
324  }
327  {
328  Array<OneD, NekDouble> coeffs(m_fields[0]->GetNcoeffs());
329 
330  for (i = 0; i < nvariables; ++i)
331  {
332  m_fields[i]->FwdTrans(inarray[i], coeffs);
333  m_fields[i]->BwdTrans(coeffs, outarray[i]);
334  }
335  break;
336  }
337  default:
338  {
339  ASSERTL0(false, "Unknown projection scheme");
340  break;
341  }
342  }
343 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

◆ DoOdeRhs()

void Nektar::UnsteadyAdvectionDiffusion::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Compute the RHS.

Compute the right-hand side for the unsteady linear advection diffusion problem.

Parameters
inarrayGiven fields.
outarrayCalculated solution.
timeTime.

Definition at line 252 of file UnsteadyAdvectionDiffusion.cpp.

255 {
256  // Number of fields (variables of the problem)
257  int nVariables = inarray.size();
258 
259  // Number of solution points
260  int nSolutionPts = GetNpoints();
261 
262  // RHS computation using the new advection base class
263  m_advObject->Advect(nVariables, m_fields, m_velocity, inarray, outarray,
264  time);
265 
266  // Negate the RHS
267  for (int i = 0; i < nVariables; ++i)
268  {
269  Vmath::Neg(nSolutionPts, outarray[i], 1);
270  }
271 
273  {
274  Array<OneD, Array<OneD, NekDouble>> outarrayDiff(nVariables);
275  for (int i = 0; i < nVariables; ++i)
276  {
277  outarrayDiff[i] = Array<OneD, NekDouble>(nSolutionPts, 0.0);
278  }
279 
280  m_diffusion->Diffuse(nVariables, m_fields, inarray, outarrayDiff);
281 
282  for (int i = 0; i < nVariables; ++i)
283  {
284  Vmath::Vadd(nSolutionPts, &outarrayDiff[i][0], 1, &outarray[i][0],
285  1, &outarray[i][0], 1);
286  }
287  }
288 
289  // Add forcing terms
290  for (auto &x : m_forcing)
291  {
292  // set up non-linear terms
293  x->Apply(m_fields, inarray, outarray, time);
294  }
295 }
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
SolverUtils::DiffusionSharedPtr m_diffusion
Array< OneD, Array< OneD, NekDouble > > m_velocity
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::AdvectionSystem::m_advObject, m_diffusion, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, m_velocity, Vmath::Neg(), and Vmath::Vadd().

Referenced by v_InitObject().

◆ GetFluxVectorAdv()

void Nektar::UnsteadyAdvectionDiffusion::GetFluxVectorAdv ( const Array< OneD, Array< OneD, NekDouble >> &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &  flux 
)
protected

Evaluate the flux at each solution point for the advection part.

Return the flux vector for the advection part.

Parameters
physfieldFields.
fluxResulting flux.

Definition at line 414 of file UnsteadyAdvectionDiffusion.cpp.

417 {
418  ASSERTL1(flux[0].size() == m_velocity.size(),
419  "Dimension of flux array and velocity array do not match");
420 
421  const int nq = m_fields[0]->GetNpoints();
422 
423  for (int i = 0; i < flux.size(); ++i)
424  {
425  for (int j = 0; j < flux[0].size(); ++j)
426  {
427  Vmath::Vmul(nq, physfield[i], 1, m_velocity[j], 1, flux[i][j], 1);
428  }
429  }
430 }

References ASSERTL1, Nektar::SolverUtils::EquationSystem::m_fields, m_velocity, and Vmath::Vmul().

Referenced by v_InitObject().

◆ GetFluxVectorDiff()

void Nektar::UnsteadyAdvectionDiffusion::GetFluxVectorDiff ( const Array< OneD, Array< OneD, NekDouble >> &  inarray,
const Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &  qfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &  viscousTensor 
)
protected

Evaluate the flux at each solution point for the diffusion part.

Return the flux vector for the diffusion part.

Parameters
iEquation number.
jSpatial direction.
physfieldFields.
derivativesFirst order derivatives.
fluxResulting flux.

Definition at line 441 of file UnsteadyAdvectionDiffusion.cpp.

445 {
446  boost::ignore_unused(inarray);
447 
448  unsigned int nDim = qfield.size();
449  unsigned int nConvectiveFields = qfield[0].size();
450  unsigned int nPts = qfield[0][0].size();
451  for (unsigned int j = 0; j < nDim; ++j)
452  {
453  for (unsigned int i = 0; i < nConvectiveFields; ++i)
454  {
455  Vmath::Smul(nPts, m_epsilon, qfield[j][i], 1, viscousTensor[j][i],
456  1);
457  }
458  }
459 }

References m_epsilon, and Vmath::Smul().

Referenced by v_InitObject().

◆ GetMaxStdVelocity()

Array< OneD, NekDouble > Nektar::UnsteadyAdvectionDiffusion::GetMaxStdVelocity ( const Array< OneD, Array< OneD, NekDouble >>  inarray)
protected

Definition at line 724 of file UnsteadyAdvectionDiffusion.cpp.

726 {
727 
728  int n_points_0 = m_fields[0]->GetExp(0)->GetTotPoints();
729  int n_element = m_fields[0]->GetExpSize();
730  int nvel = inarray.size();
731  int cnt;
732 
733  ASSERTL0(nvel >= 2, "Method not implemented for 1D");
734 
735  NekDouble pntVelocity;
736 
737  // Getting the standard velocity vector on the 2D normal space
738  Array<OneD, Array<OneD, NekDouble>> stdVelocity(nvel);
739  Array<OneD, NekDouble> maxV(n_element, 0.0);
741 
742  for (int i = 0; i < nvel; ++i)
743  {
744  stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
745  }
746 
747  if (nvel == 2)
748  {
749  cnt = 0.0;
750  for (int el = 0; el < n_element; ++el)
751  {
752  int n_points = m_fields[0]->GetExp(el)->GetTotPoints();
753  ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
754 
755  // reset local space if necessary
756  if (n_points != n_points_0)
757  {
758  for (int j = 0; j < nvel; ++j)
759  {
760  stdVelocity[j] = Array<OneD, NekDouble>(n_points);
761  }
762  n_points_0 = n_points;
763  }
764 
765  Array<TwoD, const NekDouble> gmat = m_fields[0]
766  ->GetExp(el)
767  ->GetGeom()
768  ->GetMetricInfo()
769  ->GetDerivFactors(ptsKeys);
770 
771  if (m_fields[0]
772  ->GetExp(el)
773  ->GetGeom()
774  ->GetMetricInfo()
775  ->GetGtype() == SpatialDomains::eDeformed)
776  {
777  for (int i = 0; i < n_points; i++)
778  {
779  stdVelocity[0][i] = gmat[0][i] * inarray[0][i + cnt] +
780  gmat[2][i] * inarray[1][i + cnt];
781 
782  stdVelocity[1][i] = gmat[1][i] * inarray[0][i + cnt] +
783  gmat[3][i] * inarray[1][i + cnt];
784  }
785  }
786  else
787  {
788  for (int i = 0; i < n_points; i++)
789  {
790  stdVelocity[0][i] = gmat[0][0] * inarray[0][i + cnt] +
791  gmat[2][0] * inarray[1][i + cnt];
792 
793  stdVelocity[1][i] = gmat[1][0] * inarray[0][i + cnt] +
794  gmat[3][0] * inarray[1][i + cnt];
795  }
796  }
797 
798  cnt += n_points;
799 
800  for (int i = 0; i < n_points; i++)
801  {
802  pntVelocity = stdVelocity[0][i] * stdVelocity[0][i] +
803  stdVelocity[1][i] * stdVelocity[1][i];
804 
805  if (pntVelocity > maxV[el])
806  {
807  maxV[el] = pntVelocity;
808  }
809  }
810  maxV[el] = sqrt(maxV[el]);
811  }
812  }
813  else
814  {
815  cnt = 0;
816  for (int el = 0; el < n_element; ++el)
817  {
818 
819  int n_points = m_fields[0]->GetExp(el)->GetTotPoints();
820  ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
821 
822  // reset local space if necessary
823  if (n_points != n_points_0)
824  {
825  for (int j = 0; j < nvel; ++j)
826  {
827  stdVelocity[j] = Array<OneD, NekDouble>(n_points);
828  }
829  n_points_0 = n_points;
830  }
831 
832  Array<TwoD, const NekDouble> gmat = m_fields[0]
833  ->GetExp(el)
834  ->GetGeom()
835  ->GetMetricInfo()
836  ->GetDerivFactors(ptsKeys);
837 
838  if (m_fields[0]
839  ->GetExp(el)
840  ->GetGeom()
841  ->GetMetricInfo()
842  ->GetGtype() == SpatialDomains::eDeformed)
843  {
844  for (int i = 0; i < n_points; i++)
845  {
846  stdVelocity[0][i] = gmat[0][i] * inarray[0][i + cnt] +
847  gmat[3][i] * inarray[1][i + cnt] +
848  gmat[6][i] * inarray[2][i + cnt];
849 
850  stdVelocity[1][i] = gmat[1][i] * inarray[0][i + cnt] +
851  gmat[4][i] * inarray[1][i + cnt] +
852  gmat[7][i] * inarray[2][i + cnt];
853 
854  stdVelocity[2][i] = gmat[2][i] * inarray[0][i + cnt] +
855  gmat[5][i] * inarray[1][i + cnt] +
856  gmat[8][i] * inarray[2][i + cnt];
857  }
858  }
859  else
860  {
861  for (int i = 0; i < n_points; i++)
862  {
863  stdVelocity[0][i] = gmat[0][0] * inarray[0][i + cnt] +
864  gmat[3][0] * inarray[1][i + cnt] +
865  gmat[6][0] * inarray[2][i + cnt];
866 
867  stdVelocity[1][i] = gmat[1][0] * inarray[0][i + cnt] +
868  gmat[4][0] * inarray[1][i + cnt] +
869  gmat[7][0] * inarray[2][i + cnt];
870 
871  stdVelocity[2][i] = gmat[2][0] * inarray[0][i + cnt] +
872  gmat[5][0] * inarray[1][i + cnt] +
873  gmat[8][0] * inarray[2][i + cnt];
874  }
875  }
876 
877  cnt += n_points;
878 
879  for (int i = 0; i < n_points; i++)
880  {
881  pntVelocity = stdVelocity[0][i] * stdVelocity[0][i] +
882  stdVelocity[1][i] * stdVelocity[1][i] +
883  stdVelocity[2][i] * stdVelocity[2][i];
884 
885  if (pntVelocity > maxV[el])
886  {
887  maxV[el] = pntVelocity;
888  }
889  }
890 
891  maxV[el] = sqrt(maxV[el]);
892  // cout << maxV[el]*maxV[el] << endl;
893  }
894  }
895 
896  return maxV;
897 }
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
@ eDeformed
Geometry is curved or has non-constant factors.
double NekDouble
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Nektar::SpatialDomains::eDeformed, Nektar::SolverUtils::EquationSystem::m_fields, and tinysimd::sqrt().

Referenced by GetSubstepTimeStep().

◆ GetNormalVel()

Array< OneD, NekDouble > & Nektar::UnsteadyAdvectionDiffusion::GetNormalVel ( const Array< OneD, const Array< OneD, NekDouble >> &  velfield)
protected

Get the normal velocity based on input velfield.

Definition at line 219 of file UnsteadyAdvectionDiffusion.cpp.

221 {
222  // Number of trace (interface) points
223  int i;
224  int nTracePts = GetTraceNpoints();
225 
226  // Auxiliary variable to compute the normal velocity
227  Array<OneD, NekDouble> tmp(nTracePts);
228  m_traceVn = Array<OneD, NekDouble>(nTracePts, 0.0);
229 
230  // Reset the normal velocity
231  Vmath::Zero(nTracePts, m_traceVn, 1);
232 
233  for (i = 0; i < velfield.size(); ++i)
234  {
235  m_fields[0]->ExtractTracePhys(velfield[i], tmp);
236 
237  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, tmp, 1, m_traceVn, 1,
238  m_traceVn, 1);
239  }
240 
241  return m_traceVn;
242 }
SOLVER_UTILS_EXPORT int GetTraceNpoints()
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492

References Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_traceNormals, m_traceVn, Vmath::Vvtvp(), and Vmath::Zero().

Referenced by AddAdvectionPenaltyFlux(), and GetNormalVelocity().

◆ GetNormalVelocity()

Array< OneD, NekDouble > & Nektar::UnsteadyAdvectionDiffusion::GetNormalVelocity ( )
protected

Get the normal velocity based on m_velocity.

Get the normal velocity for the unsteady linear advection diffusion equation.

Definition at line 214 of file UnsteadyAdvectionDiffusion.cpp.

215 {
216  return GetNormalVel(m_velocity);
217 }

References GetNormalVel(), and m_velocity.

Referenced by v_InitObject().

◆ GetSubstepTimeStep()

NekDouble Nektar::UnsteadyAdvectionDiffusion::GetSubstepTimeStep ( )
protected

Definition at line 547 of file UnsteadyAdvectionDiffusion.cpp.

548 {
549  int n_element = m_fields[0]->GetExpSize();
550 
551  const Array<OneD, int> ExpOrder = m_fields[0]->EvalBasisNumModesMaxPerExp();
552  Array<OneD, int> ExpOrderList(n_element, ExpOrder);
553 
554  const NekDouble cLambda = 0.2; // Spencer book pag. 317
555 
556  Array<OneD, NekDouble> tstep(n_element, 0.0);
557  Array<OneD, NekDouble> stdVelocity(n_element, 0.0);
558 
559  stdVelocity = GetMaxStdVelocity(m_velocity);
560 
561  for (int el = 0; el < n_element; ++el)
562  {
563  tstep[el] =
564  m_cflSafetyFactor / (stdVelocity[el] * cLambda *
565  (ExpOrder[el] - 1) * (ExpOrder[el] - 1));
566  }
567 
568  NekDouble TimeStep = Vmath::Vmin(n_element, tstep, 1);
569  m_session->GetComm()->AllReduce(TimeStep, LibUtilities::ReduceMin);
570 
571  return TimeStep;
572 }
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble >> inarray)
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:1050

References GetMaxStdVelocity(), m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, m_velocity, Nektar::LibUtilities::ReduceMin, and Vmath::Vmin().

Referenced by SubStepAdvance().

◆ SetUpSubSteppingTimeIntegration()

void Nektar::UnsteadyAdvectionDiffusion::SetUpSubSteppingTimeIntegration ( const LibUtilities::TimeIntegrationSchemeSharedPtr IntegrationScheme)
protected

Definition at line 574 of file UnsteadyAdvectionDiffusion.cpp.

576 {
577  // Set to 1 for first step and it will then be increased in
578  // time advance routines
579  unsigned int order = IntegrationScheme->GetOrder();
580 
581  // Set to 1 for first step and it will then be increased in
582  // time advance routines
583  if ((IntegrationScheme->GetName() == "Euler" &&
584  IntegrationScheme->GetVariant() == "Backward") ||
585  (IntegrationScheme->GetName() == "BDFImplicit" &&
586  (order == 1 || order == 2)))
587  {
588  // Note RK first order SSP is just Forward Euler.
591  "RungeKutta", "SSP", order, std::vector<NekDouble>());
592  }
593  else
594  {
596  "Integration method not suitable: "
597  "Options include BackwardEuler or BDFImplicitOrder1");
598  }
599 
600  m_intSteps = IntegrationScheme->GetNumIntegrationPhases();
601 
602  // set explicit time-integration class operators
607 }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void SubStepAdvection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
LibUtilities::TimeIntegrationSchemeSharedPtr m_subStepIntegrationScheme
void SubStepProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
LibUtilities::TimeIntegrationSchemeOperators m_subStepIntegrationOps
TimeIntegrationSchemeFactory & GetTimeIntegrationSchemeFactory()

References Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), Nektar::ErrorUtil::efatal, Nektar::LibUtilities::GetTimeIntegrationSchemeFactory(), m_intSteps, m_subStepIntegrationOps, m_subStepIntegrationScheme, NEKERROR, SubStepAdvection(), and SubStepProjection().

Referenced by v_InitObject().

◆ SubStepAdvance()

void Nektar::UnsteadyAdvectionDiffusion::SubStepAdvance ( int  nstep,
NekDouble  time 
)
protected

Definition at line 489 of file UnsteadyAdvectionDiffusion.cpp.

490 {
491  int n;
492  int nsubsteps;
493 
494  NekDouble dt;
495 
496  Array<OneD, Array<OneD, NekDouble>> fields, velfields;
497 
498  static int ncalls = 1;
499  int nint = std::min(ncalls++, m_intSteps);
500 
501  Array<OneD, NekDouble> CFL(m_fields[0]->GetExpSize(), m_cflSafetyFactor);
502 
503  LibUtilities::CommSharedPtr comm = m_session->GetComm();
504 
505  // Get the proper time step with CFL control
506  dt = GetSubstepTimeStep();
507 
508  nsubsteps = (m_timestep > dt) ? ((int)(m_timestep / dt) + 1) : 1;
509  nsubsteps = std::max(m_minsubsteps, nsubsteps);
510 
511  dt = m_timestep / nsubsteps;
512 
513  if (m_infosteps && !((nstep + 1) % m_infosteps) && comm->GetRank() == 0)
514  {
515  std::cout << "Sub-integrating using " << nsubsteps
516  << " steps over Dt = " << m_timestep
517  << " (SubStep CFL=" << m_cflSafetyFactor << ")" << std::endl;
518  }
519 
520  const TripleArray &solutionVector = m_intScheme->GetSolutionVector();
521 
522  for (int m = 0; m < nint; ++m)
523  {
524  // We need to update the fields held by the m_intScheme
525  fields = solutionVector[m];
526 
527  // Initialise NS solver which is set up to use a GLM method
528  // with calls to EvaluateAdvection_SetPressureBCs and
529  // SolveUnsteadyStokesSystem
530  m_subStepIntegrationScheme->InitializeScheme(dt, fields, time,
532 
533  for (n = 0; n < nsubsteps; ++n)
534  {
535  fields = m_subStepIntegrationScheme->TimeIntegrate(
536  n, dt, m_subStepIntegrationOps);
537  }
538 
539  // Reset time integrated solution in m_intScheme
540  m_intScheme->SetSolutionVector(m, fields);
541  }
542 }
NekDouble m_timestep
Time step size.
SOLVER_UTILS_EXPORT int GetExpSize()
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
AT< AT< AT< NekDouble > > > TripleArray
std::shared_ptr< Comm > CommSharedPtr
Pointer to a Communicator object.
Definition: Comm.h:54

References Nektar::SolverUtils::EquationSystem::GetExpSize(), GetSubstepTimeStep(), m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_fields, m_infosteps, Nektar::SolverUtils::UnsteadySystem::m_intScheme, m_intSteps, m_minsubsteps, Nektar::SolverUtils::EquationSystem::m_session, m_subStepIntegrationOps, m_subStepIntegrationScheme, and Nektar::SolverUtils::EquationSystem::m_timestep.

Referenced by v_PreIntegrate().

◆ SubStepAdvection()

void Nektar::UnsteadyAdvectionDiffusion::SubStepAdvection ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Explicit Advection terms used by SubStepAdvance time integration

Get the number of coefficients

Define an auxiliary variable to compute the RHS

Operations to compute the RHS

Multiply the flux by the inverse of the mass matrix

Store in outarray the physical values of the RHS

Definition at line 612 of file UnsteadyAdvectionDiffusion.cpp.

615 {
616  int i;
617  int nVariables = inarray.size();
618 
619  /// Get the number of coefficients
620  int ncoeffs = m_fields[0]->GetNcoeffs();
621 
622  /// Define an auxiliary variable to compute the RHS
623  Array<OneD, Array<OneD, NekDouble>> WeakAdv(nVariables);
624  WeakAdv[0] = Array<OneD, NekDouble>(ncoeffs * nVariables);
625  for (i = 1; i < nVariables; ++i)
626  {
627  WeakAdv[i] = WeakAdv[i - 1] + ncoeffs;
628  }
629 
630  // Currently assume velocity field is time independent and does not
631  // therefore need extrapolating. RHS computation using the advection base
632  // class
633  m_advObject->Advect(nVariables, m_fields, m_velocity, inarray, outarray,
634  time);
635 
636  for (i = 0; i < nVariables; ++i)
637  {
638  m_fields[i]->IProductWRTBase(outarray[i], WeakAdv[i]);
639  // negation requried due to sign of DoAdvection term to be consistent
640  Vmath::Neg(ncoeffs, WeakAdv[i], 1);
641  }
642 
643  AddAdvectionPenaltyFlux(m_velocity, inarray, WeakAdv);
644 
645  /// Operations to compute the RHS
646  for (i = 0; i < nVariables; ++i)
647  {
648  // Negate the RHS
649  Vmath::Neg(ncoeffs, WeakAdv[i], 1);
650 
651  /// Multiply the flux by the inverse of the mass matrix
652  m_fields[i]->MultiplyByElmtInvMass(WeakAdv[i], WeakAdv[i]);
653 
654  /// Store in outarray the physical values of the RHS
655  m_fields[i]->BwdTrans(WeakAdv[i], outarray[i]);
656  }
657 }
void AddAdvectionPenaltyFlux(const Array< OneD, const Array< OneD, NekDouble >> &velfield, const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, NekDouble >> &Outarray)

References AddAdvectionPenaltyFlux(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, m_velocity, and Vmath::Neg().

Referenced by SetUpSubSteppingTimeIntegration().

◆ SubStepProjection()

void Nektar::UnsteadyAdvectionDiffusion::SubStepProjection ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Projection used by SubStepAdvance time integration

Definition at line 662 of file UnsteadyAdvectionDiffusion.cpp.

665 {
666  boost::ignore_unused(time);
667 
668  ASSERTL1(inarray.size() == outarray.size(),
669  "Inarray and outarray of different sizes ");
670 
671  for (int i = 0; i < inarray.size(); ++i)
672  {
673  Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
674  }
675 }

References ASSERTL1, and Vmath::Vcopy().

Referenced by SetUpSubSteppingTimeIntegration().

◆ v_GenerateSummary()

void Nektar::UnsteadyAdvectionDiffusion::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print Summary.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 461 of file UnsteadyAdvectionDiffusion.cpp.

462 {
465  {
467  s, "GJP Stab. Impl. ",
468  m_session->GetSolverInfo("GJPStabilisation"));
469  SolverUtils::AddSummaryItem(s, "GJP Stab. JumpScale", m_GJPJumpScale);
470  }
471 }
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:49

References Nektar::SolverUtils::AddSummaryItem(), m_GJPJumpScale, Nektar::SolverUtils::EquationSystem::m_session, m_useGJPStabilisation, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

◆ v_InitObject()

void Nektar::UnsteadyAdvectionDiffusion::v_InitObject ( bool  DeclareFields = true)
overrideprotectedvirtual

Initialise the object.

Initialisation object for the unsteady linear advection diffusion equation.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 62 of file UnsteadyAdvectionDiffusion.cpp.

63 {
64  AdvectionSystem::v_InitObject(DeclareFields);
65 
66  m_session->LoadParameter("wavefreq", m_waveFreq, 0.0);
67  m_session->LoadParameter("epsilon", m_epsilon, 1.0);
68 
69  // turn on substepping
70  m_session->MatchSolverInfo("Extrapolation", "SubStepping",
71  m_subSteppingScheme, false);
72 
73  // Define Velocity fields
74  m_velocity = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
75  std::vector<std::string> vel;
76  vel.push_back("Vx");
77  vel.push_back("Vy");
78  vel.push_back("Vz");
79  vel.resize(m_spacedim);
80 
81  GetFunction("AdvectionVelocity")->Evaluate(vel, m_velocity);
82 
83  m_session->MatchSolverInfo("SpectralVanishingViscosity", "True",
84  m_useSpecVanVisc, false);
85 
86  // check to see if it is explicity turned off
87  m_session->MatchSolverInfo("GJPStabilisation", "False",
88  m_useGJPStabilisation, true);
89 
90  // if GJPStabilisation set to False bool will be true and
91  // if not false so negate/revese bool
93 
94  m_session->LoadParameter("GJPJumpScale", m_GJPJumpScale, 1.0);
95 
96  if (m_useSpecVanVisc)
97  {
98  m_session->LoadParameter("SVVCutoffRatio", m_sVVCutoffRatio, 0.75);
99  m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 0.1);
100  }
101 
102  // Type of advection and diffusion classes to be used
103  switch (m_projectionType)
104  {
105  // Discontinuous field
107  {
108  // Do not forwards transform initial condition
109  m_homoInitialFwd = false;
110 
111  // Advection term
112  std::string advName;
113  std::string riemName;
114  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
116  advName, advName);
117  m_advObject->SetFluxVector(
119  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
122  riemName, m_session);
123  m_riemannSolver->SetScalar(
125  m_advObject->SetRiemannSolver(m_riemannSolver);
126  m_advObject->InitObject(m_session, m_fields);
127 
128  // Diffusion term
130  {
131  std::string diffName;
132  m_session->LoadSolverInfo("DiffusionType", diffName, "LDG");
134  diffName, diffName);
135  m_diffusion->SetFluxVector(
137  m_diffusion->InitObject(m_session, m_fields);
138  }
139 
140  ASSERTL0(m_subSteppingScheme == false,
141  "SubSteppingScheme is not set up for DG projection");
142  break;
143  }
144  // Continuous field
147  {
148  // Advection term
149  std::string advName;
150  m_session->LoadSolverInfo("AdvectionType", advName,
151  "NonConservative");
153  advName, advName);
154  m_advObject->SetFluxVector(
156 
157  if (advName.compare("WeakDG") == 0)
158  {
159  std::string riemName;
160  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
163  riemName, m_session);
164  m_riemannSolver->SetScalar(
166  m_advObject->SetRiemannSolver(m_riemannSolver);
167  m_advObject->InitObject(m_session, m_fields);
168  }
169 
170  // In case of Galerkin explicit diffusion gives an error
172  {
173  ASSERTL0(false, "Explicit Galerkin diffusion not set up.");
174  }
175  // In case of Galerkin implicit diffusion: do nothing
176  break;
177  }
178  default:
179  {
180  ASSERTL0(false, "Unsupported projection type.");
181  break;
182  }
183  }
184 
185  // Forcing terms
186  m_forcing = SolverUtils::Forcing::Load(m_session, shared_from_this(),
187  m_fields, m_fields.size());
188 
190  this);
193 
194  if (m_subSteppingScheme) // Substepping
195  {
197  "Projection must be set to Mixed_CG_Discontinuous for "
198  "substepping");
200  }
201 }
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:120
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
void GetFluxVectorAdv(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
Evaluate the flux at each solution point for the advection part.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the RHS.
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity based on m_velocity.
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, NekDouble time, NekDouble lambda)
Solve implicitly the diffusion term.
void SetUpSubSteppingTimeIntegration(const LibUtilities::TimeIntegrationSchemeSharedPtr &IntegrationScheme)
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Perform the projection.
void GetFluxVectorDiff(const Array< OneD, Array< OneD, NekDouble >> &inarray, const Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &qfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &viscousTensor)
Evaluate the flux at each solution point for the diffusion part.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
DiffusionFactory & GetDiffusionFactory()
Definition: Diffusion.cpp:41
RiemannSolverFactory & GetRiemannSolverFactory()

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoImplicitSolve(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::GetAdvectionFactory(), Nektar::SolverUtils::GetDiffusionFactory(), GetFluxVectorAdv(), GetFluxVectorDiff(), Nektar::SolverUtils::EquationSystem::GetFunction(), GetNormalVelocity(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::Forcing::Load(), Nektar::SolverUtils::AdvectionSystem::m_advObject, m_diffusion, m_epsilon, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, m_GJPJumpScale, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_subSteppingScheme, m_sVVCutoffRatio, m_sVVDiffCoeff, m_useGJPStabilisation, m_useSpecVanVisc, m_velocity, m_waveFreq, SetUpSubSteppingTimeIntegration(), and Nektar::SolverUtils::AdvectionSystem::v_InitObject().

◆ v_PreIntegrate()

bool Nektar::UnsteadyAdvectionDiffusion::v_PreIntegrate ( int  step)
overrideprotectedvirtual

PreIntegration step for substepping.

Perform the extrapolation.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 476 of file UnsteadyAdvectionDiffusion.cpp.

477 {
479  {
480  SubStepAdvance(step, m_time);
481  }
482 
483  return false;
484 }
NekDouble m_time
Current time of simulation.
void SubStepAdvance(int nstep, NekDouble time)

References m_subSteppingScheme, Nektar::SolverUtils::EquationSystem::m_time, and SubStepAdvance().

Friends And Related Function Documentation

◆ MemoryManager< UnsteadyAdvectionDiffusion >

friend class MemoryManager< UnsteadyAdvectionDiffusion >
friend

Definition at line 1 of file UnsteadyAdvectionDiffusion.h.

Member Data Documentation

◆ className

std::string Nektar::UnsteadyAdvectionDiffusion::className
static
Initial value:
=
"UnsteadyAdvectionDiffusion", UnsteadyAdvectionDiffusion::create)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 63 of file UnsteadyAdvectionDiffusion.h.

◆ m_cflSafetyFactor

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_cflSafetyFactor
protected

Definition at line 164 of file UnsteadyAdvectionDiffusion.h.

Referenced by GetSubstepTimeStep(), and SubStepAdvance().

◆ m_diffusion

SolverUtils::DiffusionSharedPtr Nektar::UnsteadyAdvectionDiffusion::m_diffusion
protected

Definition at line 78 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoOdeRhs(), and v_InitObject().

◆ m_epsilon

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_epsilon
private

Definition at line 170 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), GetFluxVectorDiff(), and v_InitObject().

◆ m_forcing

std::vector<SolverUtils::ForcingSharedPtr> Nektar::UnsteadyAdvectionDiffusion::m_forcing
protected

Forcing terms.

Definition at line 87 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoOdeRhs(), and v_InitObject().

◆ m_GJPJumpScale

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_GJPJumpScale
protected

Definition at line 73 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), v_GenerateSummary(), and v_InitObject().

◆ m_infosteps

int Nektar::UnsteadyAdvectionDiffusion::m_infosteps
protected

Definition at line 165 of file UnsteadyAdvectionDiffusion.h.

Referenced by SubStepAdvance().

◆ m_intSteps

int Nektar::UnsteadyAdvectionDiffusion::m_intSteps
protected

◆ m_minsubsteps

int Nektar::UnsteadyAdvectionDiffusion::m_minsubsteps
protected

Definition at line 166 of file UnsteadyAdvectionDiffusion.h.

Referenced by SubStepAdvance().

◆ m_planeNumber

int Nektar::UnsteadyAdvectionDiffusion::m_planeNumber
protected

Definition at line 84 of file UnsteadyAdvectionDiffusion.h.

Referenced by UnsteadyAdvectionDiffusion().

◆ m_riemannSolver

SolverUtils::RiemannSolverSharedPtr Nektar::UnsteadyAdvectionDiffusion::m_riemannSolver
protected

Definition at line 77 of file UnsteadyAdvectionDiffusion.h.

Referenced by v_InitObject().

◆ m_subStepIntegrationOps

LibUtilities::TimeIntegrationSchemeOperators Nektar::UnsteadyAdvectionDiffusion::m_subStepIntegrationOps
protected

◆ m_subStepIntegrationScheme

LibUtilities::TimeIntegrationSchemeSharedPtr Nektar::UnsteadyAdvectionDiffusion::m_subStepIntegrationScheme
protected

◆ m_subSteppingScheme

bool Nektar::UnsteadyAdvectionDiffusion::m_subSteppingScheme
protected

Definition at line 69 of file UnsteadyAdvectionDiffusion.h.

Referenced by v_InitObject(), and v_PreIntegrate().

◆ m_sVVCutoffRatio

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_sVVCutoffRatio
protected

Definition at line 75 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_sVVDiffCoeff

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_sVVDiffCoeff
protected

Definition at line 76 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_traceVn

Array<OneD, NekDouble> Nektar::UnsteadyAdvectionDiffusion::m_traceVn
protected

Definition at line 80 of file UnsteadyAdvectionDiffusion.h.

Referenced by GetNormalVel().

◆ m_useGJPStabilisation

bool Nektar::UnsteadyAdvectionDiffusion::m_useGJPStabilisation
protected

Definition at line 71 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), v_GenerateSummary(), and v_InitObject().

◆ m_useSpecVanVisc

bool Nektar::UnsteadyAdvectionDiffusion::m_useSpecVanVisc
protected

Definition at line 70 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_velocity

Array<OneD, Array<OneD, NekDouble> > Nektar::UnsteadyAdvectionDiffusion::m_velocity
protected

◆ m_waveFreq

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_waveFreq
private

Definition at line 169 of file UnsteadyAdvectionDiffusion.h.

Referenced by v_InitObject().