Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
Nektar::VelocityCorrectionScheme Class Reference

#include <VelocityCorrectionScheme.h>

Inheritance diagram for Nektar::VelocityCorrectionScheme:
[legend]

Public Member Functions

 VelocityCorrectionScheme (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
virtual ~VelocityCorrectionScheme ()
 
virtual void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
void SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble >> &fields, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)
 
void SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)
 
void SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
void SolveViscous (const Array< OneD, const Array< OneD, NekDouble >> &Forcing, const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble aii_Dt)
 
void SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time, const NekDouble a_iixDt)
 
void EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
- Public Member Functions inherited from Nektar::IncNavierStokes
virtual ~IncNavierStokes ()
 
int GetNConvectiveFields (void)
 
void AddForcing (const SolverUtils::ForcingSharedPtr &pForce)
 
virtual void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, NekDouble > &pressure) override
 
virtual void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, NekDouble > &density) override
 
virtual bool v_HasConstantDensity () override
 
virtual void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, NekDouble >> &velocity) override
 
virtual void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels) override
 
virtual void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels) override
 
virtual void v_SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta) override
 
virtual void v_GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta) override
 
virtual void v_SetMovingFrameProjectionMat (const bnu::matrix< NekDouble > &vProjMat) override
 
virtual void v_GetMovingFrameProjectionMat (bnu::matrix< NekDouble > &vProjMat) override
 
bool DefinedForcing (const std::string &sForce)
 
void GetPivotPoint (Array< OneD, NekDouble > &vPivotPoint)
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble >> &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT int GetPararealIterationNumber ()
 
SOLVER_UTILS_EXPORT void SetPararealIterationNumber (int num)
 
SOLVER_UTILS_EXPORT bool GetUseInitialCondition ()
 
SOLVER_UTILS_EXPORT void SetUseInitialCondition (bool num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 
SOLVER_UTILS_EXPORT bool ParallelInTime ()
 Check if solver use Parallel-in-Time. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, NekDouble >> &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
SOLVER_UTILS_EXPORT void GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

void SetupFlowrate (NekDouble aii_dt)
 Set up the Stokes solution used to impose constant flowrate through a boundary. More...
 
NekDouble MeasureFlowrate (const Array< OneD, Array< OneD, NekDouble >> &inarray)
 Measure the volumetric flow rate through the volumetric flow rate reference surface. More...
 
virtual bool v_PostIntegrate (int step) override
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
virtual void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
virtual void v_DoInitialise (void) override
 Sets up initial conditions. More...
 
virtual Array< OneD, bool > v_GetSystemSingularChecks () override
 
virtual int v_GetForceDimension () override
 
virtual void v_SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble >> &fields, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)
 
virtual void v_SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)
 
virtual void v_SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
virtual void v_SolveViscous (const Array< OneD, const Array< OneD, NekDouble >> &Forcing, const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble aii_Dt)
 
virtual void v_EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
virtual bool v_RequireFwdTrans () override
 
virtual std::string v_GetExtrapolateStr (void)
 
virtual std::string v_GetSubSteppingExtrapolateStr (const std::string &instr)
 
void SetUpSVV (void)
 
void SetUpExtrapolation (void)
 
void SVVVarDiffCoeff (const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble >> &vel=NullNekDoubleArrayOfArray)
 
void AppendSVVFactors (StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
 
- Protected Member Functions inherited from Nektar::IncNavierStokes
 IncNavierStokes (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
EquationType GetEquationType (void)
 
void EvaluateAdvectionTerms (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
void WriteModalEnergy (void)
 
void SetBoundaryConditions (NekDouble time)
 time dependent boundary conditions updating More...
 
void SetRadiationBoundaryForcing (int fieldid)
 Set Radiation forcing term. More...
 
void SetZeroNormalVelocity ()
 Set Normal Velocity Component to Zero. More...
 
void SetWomersleyBoundary (const int fldid, const int bndid)
 Set Womersley Profile if specified. More...
 
void SetUpWomersley (const int fldid, const int bndid, std::string womstr)
 Set Up Womersley details. More...
 
void SetMovingReferenceFrameBCs (const NekDouble &time)
 Set the moving reference frame boundary conditions. More...
 
void SetMRFWallBCs (const NekDouble &time)
 
void SetMRFDomainVelBCs (const NekDouble &time)
 
virtual MultiRegions::ExpListSharedPtr v_GetPressure () override
 
virtual Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 
virtual bool v_PreIntegrate (int step) override
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble >> vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 

Protected Attributes

bool m_useHomo1DSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useGJPStabilisation
 bool to identify if GJP semi-implicit is active. More...
 
bool m_useGJPNormalVel
 bool to identify if GJP normal Velocity should be applied in explicit approach More...
 
NekDouble m_GJPJumpScale
 
NekDouble m_sVVCutoffRatio
 cutt off ratio from which to start decayhing modes More...
 
NekDouble m_sVVDiffCoeff
 Diffusion coefficient of SVV modes. More...
 
NekDouble m_sVVCutoffRatioHomo1D
 
NekDouble m_sVVDiffCoeffHomo1D
 Diffusion coefficient of SVV modes in homogeneous 1D Direction. More...
 
Array< OneD, NekDoublem_svvVarDiffCoeff
 Array of coefficient if power kernel is used in SVV. More...
 
bool m_IsSVVPowerKernel
 Identifier for Power Kernel otherwise DG kernel. More...
 
Array< OneD, NekDoublem_diffCoeff
 Diffusion coefficients (will be kinvis for velocities) More...
 
StdRegions::VarCoeffMap m_varCoeffLap
 Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise. More...
 
NekDouble m_flowrate
 Desired volumetric flowrate. More...
 
NekDouble m_flowrateArea
 Area of the boundary through which we are measuring the flowrate. More...
 
bool m_homd1DFlowinPlane
 
NekDouble m_greenFlux
 Flux of the Stokes function solution. More...
 
NekDouble m_alpha
 Current flowrate correction. More...
 
int m_flowrateBndID
 Boundary ID of the flowrate reference surface. More...
 
int m_planeID
 Plane ID for cases with homogeneous expansion. More...
 
MultiRegions::ExpListSharedPtr m_flowrateBnd
 Flowrate reference surface. More...
 
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
 Stokes solution used to impose flowrate. More...
 
std::ofstream m_flowrateStream
 Output stream to record flowrate. More...
 
int m_flowrateSteps
 Interval at which to record flowrate data. More...
 
NekDouble m_flowrateAiidt
 Value of aii_dt used to compute Stokes flowrate solution. More...
 
Array< OneD, Array< OneD, NekDouble > > m_F
 
- Protected Attributes inherited from Nektar::IncNavierStokes
ExtrapolateSharedPtr m_extrapolation
 
std::ofstream m_mdlFile
 modal energy file More...
 
bool m_SmoothAdvection
 bool to identify if advection term smoothing is requested More...
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 Forcing terms. More...
 
int m_nConvectiveFields
 Number of fields to be convected;. More...
 
Array< OneD, int > m_velocity
 int which identifies which components of m_fields contains the velocity (u,v,w); More...
 
MultiRegions::ExpListSharedPtr m_pressure
 Pointer to field holding pressure field. More...
 
NekDouble m_kinvis
 Kinematic viscosity. More...
 
int m_energysteps
 dump energy to file at steps time More...
 
EquationType m_equationType
 equation type; More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToElmtID
 Mapping from BCs to Elmt IDs. More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToTraceID
 Mapping from BCs to Elmt Edge IDs. More...
 
Array< OneD, Array< OneD, NekDouble > > m_fieldsRadiationFactor
 RHS Factor for Radiation Condition. More...
 
int m_intSteps
 Number of time integration steps AND Order of extrapolation for pressure boundary conditions. More...
 
Array< OneD, NekDoublem_pivotPoint
 
std::map< int, std::map< int, WomersleyParamsSharedPtr > > m_womersleyParams
 Womersley parameters if required. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateRes = 1.0
 
NekDouble m_steadyStateRes0 = 1.0
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::ofstream m_errFile
 
std::vector< int > m_intVariables
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
NekDouble m_filterTimeWarning
 Number of time steps between outputting status information. More...
 
NekDouble m_TimeIntegLambda = 0.0
 coefff of spacial derivatives(rhs or m_F in GLM) in calculating the residual of the whole equation(used in unsteady time integrations) More...
 
bool m_flagImplicitItsStatistics
 
bool m_flagImplicitSolver = false
 
Array< OneD, NekDoublem_magnitdEstimat
 estimate the magnitude of each conserved varibles More...
 
Array< OneD, NekDoublem_locTimeStep
 local time step(notice only for jfnk other see m_cflSafetyFactor) More...
 
NekDouble m_inArrayNorm = -1.0
 
int m_TotLinItePerStep = 0
 
int m_StagesPerStep = 1
 
bool m_flagUpdatePreconMat
 
int m_maxLinItePerNewton
 
int m_TotNewtonIts = 0
 
int m_TotLinIts = 0
 
int m_TotImpStages = 0
 
bool m_CalcPhysicalAV = true
 flag to update artificial viscosity More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_timestepMax = -1.0
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_pararealIter
 Number of parareal time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_useInitialCondition
 Flag to determine if IC are used. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities. More...
 
Array< OneD, NekDoublem_movingFrameTheta
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_cflNonAcoustic
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 maximun cfl in cfl growth More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::IncNavierStokes
static std::string eqTypeLookupIds []
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 

Detailed Description

Definition at line 42 of file VelocityCorrectionScheme.h.

Constructor & Destructor Documentation

◆ VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::VelocityCorrectionScheme ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)

Constructor.

Constructor. Creates ...

Parameters

Definition at line 62 of file VelocityCorrectionScheme.cpp.

65  : UnsteadySystem(pSession, pGraph), IncNavierStokes(pSession, pGraph),
67 {
68 }
IncNavierStokes(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Constructor.
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.
StdRegions::VarCoeffMap m_varCoeffLap
Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.
static VarCoeffMap NullVarCoeffMap
Definition: StdRegions.hpp:344

◆ ~VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::~VelocityCorrectionScheme ( void  )
virtual

Destructor

Definition at line 513 of file VelocityCorrectionScheme.cpp.

514 {
515 }

Member Function Documentation

◆ AppendSVVFactors()

void Nektar::VelocityCorrectionScheme::AppendSVVFactors ( StdRegions::ConstFactorMap factors,
MultiRegions::VarFactorsMap varFactorsMap 
)
protected

Definition at line 1158 of file VelocityCorrectionScheme.cpp.

1161 {
1162 
1163  if (m_useSpecVanVisc)
1164  {
1168  {
1169  if (m_IsSVVPowerKernel)
1170  {
1173  }
1174  else
1175  {
1176  varFactorsMap[StdRegions::eFactorSVVDGKerDiffCoeff] =
1178  }
1179  }
1180  }
1181 }
NekDouble m_kinvis
Kinematic viscosity.
Array< OneD, NekDouble > m_svvVarDiffCoeff
Array of coefficient if power kernel is used in SVV.
bool m_IsSVVPowerKernel
Identifier for Power Kernel otherwise DG kernel.
NekDouble m_sVVCutoffRatio
cutt off ratio from which to start decayhing modes
NekDouble m_sVVDiffCoeff
Diffusion coefficient of SVV modes.
bool m_useSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
static Array< OneD, NekDouble > NullNekDouble1DArray

References Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDGKerDiffCoeff, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorSVVPowerKerDiffCoeff, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, m_sVVCutoffRatio, m_sVVDiffCoeff, m_svvVarDiffCoeff, m_useSpecVanVisc, and Nektar::NullNekDouble1DArray.

Referenced by v_SolveViscous().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::VelocityCorrectionScheme::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 46 of file VelocityCorrectionScheme.h.

49  {
52  pGraph);
53  p->InitObject();
54  return p;
55  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
inline

Definition at line 101 of file VelocityCorrectionScheme.h.

104  {
105  v_EvaluateAdvection_SetPressureBCs(inarray, outarray, time);
106  }
virtual void v_EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)

References v_EvaluateAdvection_SetPressureBCs().

Referenced by v_InitObject().

◆ MeasureFlowrate()

NekDouble Nektar::VelocityCorrectionScheme::MeasureFlowrate ( const Array< OneD, Array< OneD, NekDouble >> &  inarray)
protected

Measure the volumetric flow rate through the volumetric flow rate reference surface.

This routine computes the volumetric flow rate

\[ Q(\mathbf{u}) = \frac{1}{\mu(R)} \int_R \mathbf{u} \cdot d\mathbf{s} \]

through the boundary region \( R \).

Definition at line 439 of file VelocityCorrectionScheme.cpp.

441 {
442  NekDouble flowrate = 0.0;
443 
444  if (m_flowrateBnd && m_flowrateBndID >= 0)
445  {
446  // If we're an actual boundary, calculate the vector flux through
447  // the boundary.
448  Array<OneD, Array<OneD, NekDouble>> boundary(m_spacedim);
449 
450  if (!m_homd1DFlowinPlane)
451  {
452  // General case
453  for (int i = 0; i < m_spacedim; ++i)
454  {
455  m_fields[i]->ExtractPhysToBnd(m_flowrateBndID, inarray[i],
456  boundary[i]);
457  }
458  flowrate = m_flowrateBnd->VectorFlux(boundary);
459  }
460  else if (m_planeID == 0)
461  {
462  // Homogeneous with forcing in plane. Calculate flux only on
463  // the meanmode - calculateFlux necessary for hybrid
464  // parallelisation.
465  for (int i = 0; i < m_spacedim; ++i)
466  {
467  m_fields[i]->GetPlane(m_planeID)->ExtractPhysToBnd(
468  m_flowrateBndID, inarray[i], boundary[i]);
469  }
470 
471  // the flowrate is calculated on the mean mode so it needs to be
472  // multiplied by LZ to be consistent with the general case.
473  flowrate = m_flowrateBnd->VectorFlux(boundary) *
474  m_session->GetParameter("LZ");
475  }
476  }
477  else if (m_flowrateBnd && !m_homd1DFlowinPlane)
478  {
479  // 3DH1D case with no Flowrate boundary defined: compute flux
480  // through the zero-th (mean) plane.
481  flowrate = m_flowrateBnd->Integral(inarray[2]);
482  }
483 
484  // Communication to obtain the total flowrate
486  {
487  m_comm->GetColumnComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
488  }
489  else
490  {
491  m_comm->GetSpaceComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
492  }
493  return flowrate / m_flowrateArea;
494 }
int m_spacedim
Spatial dimension (>= expansion dim).
LibUtilities::CommSharedPtr m_comm
Communicator.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
enum HomogeneousType m_HomogeneousType
MultiRegions::ExpListSharedPtr m_flowrateBnd
Flowrate reference surface.
NekDouble m_flowrateArea
Area of the boundary through which we are measuring the flowrate.
int m_planeID
Plane ID for cases with homogeneous expansion.
int m_flowrateBndID
Boundary ID of the flowrate reference surface.
double NekDouble

References Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_planeID, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, and Nektar::LibUtilities::ReduceSum.

Referenced by SetupFlowrate(), and SolveUnsteadyStokesSystem().

◆ SetUpExtrapolation()

void Nektar::VelocityCorrectionScheme::SetUpExtrapolation ( void  )
protected

Definition at line 147 of file VelocityCorrectionScheme.cpp.

148 {
149  // creation of the extrapolation object
152  {
153  std::string vExtrapolation = v_GetExtrapolateStr();
154  if (m_session->DefinesSolverInfo("Extrapolation"))
155  {
156  vExtrapolation = v_GetSubSteppingExtrapolateStr(
157  m_session->GetSolverInfo("Extrapolation"));
158  }
160  vExtrapolation, m_session, m_fields, m_pressure, m_velocity,
161  m_advObject);
162 
163  m_extrapolation->SetForcing(m_forcing);
164  m_extrapolation->SubSteppingTimeIntegration(m_intScheme);
165  m_extrapolation->GenerateHOPBCMap(m_session);
166  }
167 }
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
ExtrapolateSharedPtr m_extrapolation
Array< OneD, int > m_velocity
int which identifies which components of m_fields contains the velocity (u,v,w);
EquationType m_equationType
equation type;
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
virtual std::string v_GetExtrapolateStr(void)
virtual std::string v_GetSubSteppingExtrapolateStr(const std::string &instr)
@ eUnsteadyStokes
@ eUnsteadyNavierStokes
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:48

References Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::eUnsteadyNavierStokes, Nektar::eUnsteadyStokes, Nektar::GetExtrapolateFactory(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::IncNavierStokes::m_equationType, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_velocity, v_GetExtrapolateStr(), and v_GetSubSteppingExtrapolateStr().

Referenced by v_InitObject().

◆ SetupFlowrate()

void Nektar::VelocityCorrectionScheme::SetupFlowrate ( NekDouble  aii_dt)
protected

Set up the Stokes solution used to impose constant flowrate through a boundary.

This routine solves a Stokes equation using a unit forcing direction, specified by the user to be in the desired flow direction. This field can then be used to correct the end of each timestep to impose a constant volumetric flow rate through a user-defined boundary.

There are three modes of operation:

  • Standard two-dimensional or three-dimensional simulations (e.g. pipes or channels)
  • 3DH1D simulations where the forcing is not in the homogeneous direction (e.g. channel flow, where the y-direction of the 2D mesh is perpendicular to the wall);
  • 3DH1D simulations where the forcing is in the homogeneous direction (e.g. pipe flow in the z-direction).

In the first two cases, the user should define:

  • the Flowrate parameter, which dictates the volumetric flux through the reference area
  • tag a boundary region with the Flowrate user-defined type to define the reference area
  • define a FlowrateForce function with components ForceX, ForceY and ForceZ that defines a unit forcing in the appropriate direction.

In the latter case, the user should define only the Flowrate; the reference area is taken to be the homogeneous plane and the force is assumed to be the unit z-vector \( \hat{e}_z \).

This routine solves a single timestep of the Stokes problem (premultiplied by the backwards difference coefficient):

\[ \frac{\partial\mathbf{u}}{\partial t} = -\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f} \]

with a zero initial condition to obtain a field \( \mathbf{u}_s \). The flowrate is then corrected at each timestep \( n \) by adding the correction \( \alpha\mathbf{u}_s \) where

\[ \alpha = \frac{\overline{Q} - Q(\mathbf{u^n})}{Q(\mathbf{u}_s)} \]

where \( Q(\cdot)\) is the volumetric flux through the appropriate surface or line, which is implemented in VelocityCorrectionScheme::MeasureFlowrate. For more details, see chapter 3.2 of the thesis of D. Moxey (University of Warwick, 2011).

Definition at line 217 of file VelocityCorrectionScheme.cpp.

218 {
219  m_flowrateBndID = -1;
220  m_flowrateArea = 0.0;
221 
222  const Array<OneD, const SpatialDomains::BoundaryConditionShPtr> &bcs =
223  m_fields[0]->GetBndConditions();
224 
225  std::string forces[] = {"X", "Y", "Z"};
226  Array<OneD, NekDouble> flowrateForce(m_spacedim, 0.0);
227 
228  // Set up flowrate forces.
229  bool defined = true;
230  for (int i = 0; i < m_spacedim; ++i)
231  {
232  std::string varName = std::string("Force") + forces[i];
233  defined = m_session->DefinesFunction("FlowrateForce", varName);
234 
235  if (!defined && m_HomogeneousType == eHomogeneous1D)
236  {
237  break;
238  }
239 
240  ASSERTL0(defined,
241  "A 'FlowrateForce' function must defined with components "
242  "[ForceX, ...] to define direction of flowrate forcing");
243 
245  m_session->GetFunction("FlowrateForce", varName);
246  flowrateForce[i] = ffunc->Evaluate();
247  }
248 
249  // Define flag for case with homogeneous expansion and forcing not in the
250  // z-direction
251  m_homd1DFlowinPlane = false;
252  if (defined && m_HomogeneousType == eHomogeneous1D)
253  {
254  m_homd1DFlowinPlane = true;
255  }
256 
257  // For 3DH1D simulations, if force isn't defined then assume in
258  // z-direction.
259  if (!defined)
260  {
261  flowrateForce[2] = 1.0;
262  }
263 
264  // Find the boundary condition that is tagged as the flowrate boundary.
265  for (size_t i = 0; i < bcs.size(); ++i)
266  {
267  if (boost::iequals(bcs[i]->GetUserDefined(), "Flowrate"))
268  {
269  m_flowrateBndID = i;
270  break;
271  }
272  }
273 
274  int tmpBr = m_flowrateBndID;
275  m_comm->AllReduce(tmpBr, LibUtilities::ReduceMax);
276  ASSERTL0(tmpBr >= 0 || m_HomogeneousType == eHomogeneous1D,
277  "One boundary region must be marked using the 'Flowrate' "
278  "user-defined type to monitor the volumetric flowrate.");
279 
280  // Extract an appropriate expansion list to represents the boundary.
281  if (m_flowrateBndID >= 0)
282  {
283  // For a boundary, extract the boundary itself.
284  m_flowrateBnd = m_fields[0]->GetBndCondExpansions()[m_flowrateBndID];
285  }
287  {
288  // For 3DH1D simulations with no force specified, find the mean
289  // (0th) plane.
290  Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
291  int tmpId = -1;
292 
293  for (size_t i = 0; i < zIDs.size(); ++i)
294  {
295  if (zIDs[i] == 0)
296  {
297  tmpId = i;
298  break;
299  }
300  }
301 
302  ASSERTL1(tmpId <= 0, "Should be either at location 0 or -1 if not "
303  "found");
304 
305  if (tmpId != -1)
306  {
307  m_flowrateBnd = m_fields[0]->GetPlane(tmpId);
308  }
309  }
310 
311  // At this point, some processors may not have m_flowrateBnd
312  // set if they don't contain the appropriate boundary. To
313  // calculate the area, we integrate 1.0 over the boundary
314  // (which has been set up with the appropriate subcommunicator
315  // to avoid deadlock), and then communicate this to the other
316  // processors with an AllReduce.
317  if (m_flowrateBnd)
318  {
319  Array<OneD, NekDouble> inArea(m_flowrateBnd->GetNpoints(), 1.0);
320  m_flowrateArea = m_flowrateBnd->Integral(inArea);
321  }
323 
324  // In homogeneous case with forcing not aligned to the z-direction,
325  // redefine m_flowrateBnd so it is a 1D expansion
328  {
329  // For 3DH1D simulations with no force specified, find the mean
330  // (0th) plane.
331  Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
332  m_planeID = -1;
333 
334  for (size_t i = 0; i < zIDs.size(); ++i)
335  {
336  if (zIDs[i] == 0)
337  {
338  m_planeID = i;
339  break;
340  }
341  }
342 
343  ASSERTL1(m_planeID <= 0, "Should be either at location 0 or -1 "
344  "if not found");
345 
346  if (m_planeID != -1)
347  {
348  m_flowrateBnd =
349  m_fields[0]->GetBndCondExpansions()[m_flowrateBndID]->GetPlane(
350  m_planeID);
351  }
352  }
353 
354  // Set up some storage for the Stokes solution (to be stored in
355  // m_flowrateStokes) and its initial condition (inTmp), which holds the
356  // unit forcing.
357  int nqTot = m_fields[0]->GetNpoints();
358  Array<OneD, Array<OneD, NekDouble>> inTmp(m_spacedim);
359  m_flowrateStokes = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
360 
361  for (int i = 0; i < m_spacedim; ++i)
362  {
363  inTmp[i] = Array<OneD, NekDouble>(nqTot, flowrateForce[i] * aii_dt);
364  m_flowrateStokes[i] = Array<OneD, NekDouble>(nqTot, 0.0);
365 
367  {
368  Array<OneD, NekDouble> inTmp2(nqTot);
369  m_fields[i]->HomogeneousFwdTrans(nqTot, inTmp[i], inTmp2);
370  m_fields[i]->SetWaveSpace(true);
371  inTmp[i] = inTmp2;
372  }
373 
374  Vmath::Zero(m_fields[i]->GetNcoeffs(), m_fields[i]->UpdateCoeffs(), 1);
375  }
376 
377  // Create temporary extrapolation object to avoid issues with
378  // m_extrapolation for HOPBCs using higher order timestepping schemes.
379  // Zero pressure BCs in Neumann boundaries that may have been
380  // set in the advection step.
381  Array<OneD, const SpatialDomains::BoundaryConditionShPtr> PBndConds =
382  m_pressure->GetBndConditions();
383  Array<OneD, MultiRegions::ExpListSharedPtr> PBndExp =
384  m_pressure->GetBndCondExpansions();
385  for (size_t n = 0; n < PBndConds.size(); ++n)
386  {
387  if (PBndConds[n]->GetBoundaryConditionType() ==
389  {
390  Vmath::Zero(PBndExp[n]->GetNcoeffs(), PBndExp[n]->UpdateCoeffs(),
391  1);
392  }
393  }
394 
395  // Finally, calculate the solution and the flux of the Stokes
396  // solution. We set m_greenFlux to maximum numeric limit, which signals
397  // to SolveUnsteadyStokesSystem that we don't need to apply a flowrate
398  // force.
399  m_greenFlux = numeric_limits<NekDouble>::max();
400  m_flowrateAiidt = aii_dt;
401 
402  // Save the number of convective field in case it is not set
403  // to spacedim. Only need velocity components for stokes forcing
404  int SaveNConvectiveFields = m_nConvectiveFields;
406  SolveUnsteadyStokesSystem(inTmp, m_flowrateStokes, 0.0, aii_dt);
407  m_nConvectiveFields = SaveNConvectiveFields;
409 
410  // If the user specified IO_FlowSteps, open a handle to store output.
411  if (m_comm->GetRank() == 0 && m_flowrateSteps &&
412  !m_flowrateStream.is_open())
413  {
414  std::string filename = m_session->GetSessionName();
415  filename += ".prs";
416  m_flowrateStream.open(filename.c_str());
417  m_flowrateStream.setf(ios::scientific, ios::floatfield);
418  m_flowrateStream << "# step time dP" << endl
419  << "# -------------------------------------------"
420  << endl;
421  }
422 
423  // Replace pressure BCs with those evaluated from advection step
424  m_extrapolation->CopyPressureHBCsToPbndExp();
425 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
int m_nConvectiveFields
Number of fields to be convected;.
SOLVER_UTILS_EXPORT int GetNcoeffs()
NekDouble m_greenFlux
Flux of the Stokes function solution.
NekDouble MeasureFlowrate(const Array< OneD, Array< OneD, NekDouble >> &inarray)
Measure the volumetric flow rate through the volumetric flow rate reference surface.
void SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time, const NekDouble a_iixDt)
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
Stokes solution used to impose flowrate.
int m_flowrateSteps
Interval at which to record flowrate data.
std::ofstream m_flowrateStream
Output stream to record flowrate.
NekDouble m_flowrateAiidt
Value of aii_dt used to compute Stokes flowrate solution.
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:129
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492

References ASSERTL0, ASSERTL1, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SpatialDomains::eNeumann, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_flowrateSteps, m_flowrateStokes, m_flowrateStream, m_greenFlux, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::IncNavierStokes::m_nConvectiveFields, m_planeID, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), Nektar::LibUtilities::ReduceMax, SolveUnsteadyStokesSystem(), and Vmath::Zero().

Referenced by SolveUnsteadyStokesSystem().

◆ SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble >> &  fields,
Array< OneD, Array< OneD, NekDouble >> &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 69 of file VelocityCorrectionScheme.h.

72  {
73  v_SetUpPressureForcing(fields, Forcing, aii_Dt);
74  }
virtual void v_SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble >> &fields, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)

References v_SetUpPressureForcing().

Referenced by SolveUnsteadyStokesSystem().

◆ SetUpSVV()

void Nektar::VelocityCorrectionScheme::SetUpSVV ( void  )
protected

Definition at line 932 of file VelocityCorrectionScheme.cpp.

933 {
934 
935  m_session->MatchSolverInfo("SpectralVanishingViscosity", "PowerKernel",
936  m_useSpecVanVisc, false);
937 
938  if (m_useSpecVanVisc)
939  {
940  m_useHomo1DSpecVanVisc = true;
941  }
942  else
943  {
944  m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
945  "PowerKernel", m_useSpecVanVisc, false);
946  }
947 
948  if (m_useSpecVanVisc)
949  {
950  m_IsSVVPowerKernel = true;
951  }
952  else
953  {
954  m_session->MatchSolverInfo("SpectralVanishingViscosity", "DGKernel",
955  m_useSpecVanVisc, false);
956  if (m_useSpecVanVisc)
957  {
958  m_useHomo1DSpecVanVisc = true;
959  }
960  else
961  {
962  m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
963  "DGKernel", m_useSpecVanVisc, false);
964  }
965 
966  if (m_useSpecVanVisc)
967  {
968  m_IsSVVPowerKernel = false;
969  }
970  }
971 
972  // set up varcoeff kernel if PowerKernel or DG is specified
973  if (m_useSpecVanVisc)
974  {
975  Array<OneD, Array<OneD, NekDouble>> SVVVelFields =
977  if (m_session->DefinesFunction("SVVVelocityMagnitude"))
978  {
979  if (m_comm->GetRank() == 0)
980  {
981  cout << "Seting up SVV velocity from "
982  "SVVVelocityMagnitude section in session file"
983  << endl;
984  }
985  size_t nvel = m_velocity.size();
986  size_t phystot = m_fields[0]->GetTotPoints();
987  SVVVelFields = Array<OneD, Array<OneD, NekDouble>>(nvel);
988  vector<string> vars;
989  for (size_t i = 0; i < nvel; ++i)
990  {
991  SVVVelFields[i] = Array<OneD, NekDouble>(phystot);
992  vars.push_back(m_session->GetVariable(m_velocity[i]));
993  }
994 
995  // Load up files into m_fields;
996  GetFunction("SVVVelocityMagnitude")->Evaluate(vars, SVVVelFields);
997  }
998 
999  m_svvVarDiffCoeff = Array<OneD, NekDouble>(m_fields[0]->GetNumElmts());
1000  SVVVarDiffCoeff(1.0, m_svvVarDiffCoeff, SVVVelFields);
1001  m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 1.0);
1002  }
1003  else
1004  {
1006  m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 0.1);
1007  }
1008 
1009  // Load parameters for Spectral Vanishing Viscosity
1010  if (m_useSpecVanVisc == false)
1011  {
1012  m_session->MatchSolverInfo("SpectralVanishingViscosity", "True",
1013  m_useSpecVanVisc, false);
1014  if (m_useSpecVanVisc == false)
1015  {
1016  m_session->MatchSolverInfo("SpectralVanishingViscosity",
1017  "ExpKernel", m_useSpecVanVisc, false);
1018  }
1020 
1021  if (m_useSpecVanVisc == false)
1022  {
1023  m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
1024  "True", m_useSpecVanVisc, false);
1025  if (m_useSpecVanVisc == false)
1026  {
1027  m_session->MatchSolverInfo(
1028  "SpectralVanishingViscositySpectralHP", "ExpKernel",
1029  m_useSpecVanVisc, false);
1030  }
1031  }
1032  }
1033 
1034  // Case of only Homo1D kernel
1035  if (m_session->DefinesSolverInfo("SpectralVanishingViscosityHomo1D"))
1036  {
1037  m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D", "True",
1038  m_useHomo1DSpecVanVisc, false);
1039  if (m_useHomo1DSpecVanVisc == false)
1040  {
1041  m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D",
1042  "ExpKernel", m_useHomo1DSpecVanVisc,
1043  false);
1044  }
1045  }
1046 
1047  m_session->LoadParameter("SVVCutoffRatio", m_sVVCutoffRatio, 0.75);
1048  m_session->LoadParameter("SVVCutoffRatioHomo1D", m_sVVCutoffRatioHomo1D,
1050  m_session->LoadParameter("SVVDiffCoeffHomo1D", m_sVVDiffCoeffHomo1D,
1051  m_sVVDiffCoeff);
1052 
1054  {
1055  ASSERTL0(
1056  m_nConvectiveFields > 2,
1057  "Expect to have three velocity fields with homogenous expansion");
1058 
1060  {
1061  Array<OneD, unsigned int> planes;
1062  planes = m_fields[0]->GetZIDs();
1063 
1064  size_t num_planes = planes.size();
1065  Array<OneD, NekDouble> SVV(num_planes, 0.0);
1066  NekDouble fac;
1067  size_t kmodes = m_fields[0]->GetHomogeneousBasis()->GetNumModes();
1068  size_t pstart;
1069 
1070  pstart = m_sVVCutoffRatioHomo1D * kmodes;
1071 
1072  for (size_t n = 0; n < num_planes; ++n)
1073  {
1074  if (planes[n] > pstart)
1075  {
1076  fac = (NekDouble)((planes[n] - kmodes) *
1077  (planes[n] - kmodes)) /
1078  ((NekDouble)((planes[n] - pstart) *
1079  (planes[n] - pstart)));
1080  SVV[n] = m_sVVDiffCoeffHomo1D * exp(-fac) / m_kinvis;
1081  }
1082  }
1083 
1084  for (size_t i = 0; i < m_velocity.size(); ++i)
1085  {
1086  m_fields[m_velocity[i]]->SetHomo1DSpecVanVisc(SVV);
1087  }
1088  }
1089  }
1090 }
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
NekDouble m_sVVDiffCoeffHomo1D
Diffusion coefficient of SVV modes in homogeneous 1D Direction.
void SVVVarDiffCoeff(const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble >> &vel=NullNekDoubleArrayOfArray)
bool m_useHomo1DSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray

References ASSERTL0, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::GetFunction(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_session, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::IncNavierStokes::m_velocity, Nektar::NullNekDouble1DArray, Nektar::NullNekDoubleArrayOfArray, and SVVVarDiffCoeff().

Referenced by v_InitObject().

◆ SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 76 of file VelocityCorrectionScheme.h.

79  {
80  v_SetUpViscousForcing(inarray, Forcing, aii_Dt);
81  }
virtual void v_SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)

References v_SetUpViscousForcing().

Referenced by SolveUnsteadyStokesSystem().

◆ SolvePressure()

void Nektar::VelocityCorrectionScheme::SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
inline

Definition at line 83 of file VelocityCorrectionScheme.h.

84  {
85  v_SolvePressure(Forcing);
86  }
virtual void v_SolvePressure(const Array< OneD, NekDouble > &Forcing)

References v_SolvePressure().

Referenced by SolveUnsteadyStokesSystem().

◆ SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time,
const NekDouble  aii_Dt 
)

Implicit part of the method - Poisson + nConv*Helmholtz

Definition at line 727 of file VelocityCorrectionScheme.cpp.

731 {
732  boost::ignore_unused(time);
733 
734  // Set up flowrate if we're starting for the first time or the value of
735  // aii_Dt has changed.
736  if (m_flowrate > 0.0 && (aii_Dt != m_flowrateAiidt))
737  {
738  SetupFlowrate(aii_Dt);
739  }
740 
741  size_t physTot = m_fields[0]->GetTotPoints();
742 
743  // Substep the pressure boundary condition if using substepping
744  m_extrapolation->SubStepSetPressureBCs(inarray, aii_Dt, m_kinvis);
745 
746  // Set up forcing term for pressure Poisson equation
747  LibUtilities::Timer timer;
748  timer.Start();
749  SetUpPressureForcing(inarray, m_F, aii_Dt);
750  timer.Stop();
751  timer.AccumulateRegion("Pressure Forcing");
752 
753  // Solve Pressure System
754  timer.Start();
755  SolvePressure(m_F[0]);
756  timer.Stop();
757  timer.AccumulateRegion("Pressure Solve");
758 
759  // Set up forcing term for Helmholtz problems
760  timer.Start();
761  SetUpViscousForcing(inarray, m_F, aii_Dt);
762  timer.Stop();
763  timer.AccumulateRegion("Viscous Forcing");
764 
765  // Solve velocity system
766  timer.Start();
767  SolveViscous(m_F, inarray, outarray, aii_Dt);
768  timer.Stop();
769  timer.AccumulateRegion("Viscous Solve");
770 
771  // Apply flowrate correction
772  if (m_flowrate > 0.0 && m_greenFlux != numeric_limits<NekDouble>::max())
773  {
774  NekDouble currentFlux = MeasureFlowrate(outarray);
775  m_alpha = (m_flowrate - currentFlux) / m_greenFlux;
776 
777  for (int i = 0; i < m_spacedim; ++i)
778  {
779  Vmath::Svtvp(physTot, m_alpha, m_flowrateStokes[i], 1, outarray[i],
780  1, outarray[i], 1);
781  // Enusre coeff space is updated for next time step
782  m_fields[i]->FwdTransLocalElmt(outarray[i],
783  m_fields[i]->UpdateCoeffs());
784  // Impsoe symmetry of flow on coeff space (good to enfore
785  // periodicity).
786  m_fields[i]->LocalToGlobal();
787  m_fields[i]->GlobalToLocal();
788  }
789  }
790 }
void SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble >> &fields, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)
NekDouble m_flowrate
Desired volumetric flowrate.
NekDouble m_alpha
Current flowrate correction.
void SolveViscous(const Array< OneD, const Array< OneD, NekDouble >> &Forcing, const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble aii_Dt)
void SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &Forcing, const NekDouble aii_Dt)
Array< OneD, Array< OneD, NekDouble > > m_F
void SetupFlowrate(NekDouble aii_dt)
Set up the Stokes solution used to impose constant flowrate through a boundary.
void SolvePressure(const Array< OneD, NekDouble > &Forcing)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622

References Nektar::LibUtilities::Timer::AccumulateRegion(), m_alpha, Nektar::IncNavierStokes::m_extrapolation, m_F, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateAiidt, m_flowrateStokes, m_greenFlux, Nektar::IncNavierStokes::m_kinvis, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), SetupFlowrate(), SetUpPressureForcing(), SetUpViscousForcing(), SolvePressure(), SolveViscous(), Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), and Vmath::Svtvp().

Referenced by SetupFlowrate(), v_InitObject(), and Nektar::SmoothedProfileMethod::v_SolveUnsteadyStokesSystem().

◆ SolveViscous()

void Nektar::VelocityCorrectionScheme::SolveViscous ( const Array< OneD, const Array< OneD, NekDouble >> &  Forcing,
const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  aii_Dt 
)
inline

Definition at line 88 of file VelocityCorrectionScheme.h.

92  {
93  v_SolveViscous(Forcing, inarray, outarray, aii_Dt);
94  }
virtual void v_SolveViscous(const Array< OneD, const Array< OneD, NekDouble >> &Forcing, const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble aii_Dt)

References v_SolveViscous().

Referenced by SolveUnsteadyStokesSystem().

◆ SVVVarDiffCoeff()

void Nektar::VelocityCorrectionScheme::SVVVarDiffCoeff ( const NekDouble  velmag,
Array< OneD, NekDouble > &  diffcoeff,
const Array< OneD, Array< OneD, NekDouble >> &  vel = NullNekDoubleArrayOfArray 
)
protected

Definition at line 1092 of file VelocityCorrectionScheme.cpp.

1095 {
1096  size_t phystot = m_fields[0]->GetTotPoints();
1097  size_t nel = m_fields[0]->GetNumElmts();
1098  size_t nvel, cnt;
1099 
1100  Array<OneD, NekDouble> tmp;
1101 
1102  Vmath::Fill(nel, velmag, diffcoeff, 1);
1103 
1104  if (vel != NullNekDoubleArrayOfArray)
1105  {
1106  Array<OneD, NekDouble> Velmag(phystot);
1107  nvel = vel.size();
1108  // calculate magnitude of v
1109  Vmath::Vmul(phystot, vel[0], 1, vel[0], 1, Velmag, 1);
1110  for (size_t n = 1; n < nvel; ++n)
1111  {
1112  Vmath::Vvtvp(phystot, vel[n], 1, vel[n], 1, Velmag, 1, Velmag, 1);
1113  }
1114  Vmath::Vsqrt(phystot, Velmag, 1, Velmag, 1);
1115 
1116  cnt = 0;
1117  Array<OneD, NekDouble> tmp;
1118  // calculate mean value of vel mag.
1119  for (size_t i = 0; i < nel; ++i)
1120  {
1121  size_t nq = m_fields[0]->GetExp(i)->GetTotPoints();
1122  tmp = Velmag + cnt;
1123  diffcoeff[i] = m_fields[0]->GetExp(i)->Integral(tmp);
1124  Vmath::Fill(nq, 1.0, tmp, 1);
1125  NekDouble area = m_fields[0]->GetExp(i)->Integral(tmp);
1126  diffcoeff[i] = diffcoeff[i] / area;
1127  cnt += nq;
1128  }
1129  }
1130  else
1131  {
1132  nvel = m_expdim;
1133  }
1134 
1135  for (size_t e = 0; e < nel; e++)
1136  {
1137  LocalRegions::ExpansionSharedPtr exp = m_fields[0]->GetExp(e);
1138  NekDouble h = 0;
1139 
1140  // Find maximum length of edge.
1141  size_t nEdge = exp->GetGeom()->GetNumEdges();
1142  for (size_t i = 0; i < nEdge; ++i)
1143  {
1144  h = max(h, exp->GetGeom()->GetEdge(i)->GetVertex(0)->dist(
1145  *(exp->GetGeom()->GetEdge(i)->GetVertex(1))));
1146  }
1147 
1148  int p = 0;
1149  for (int i = 0; i < m_expdim; ++i)
1150  {
1151  p = max(p, exp->GetBasisNumModes(i) - 1);
1152  }
1153 
1154  diffcoeff[e] *= h / p;
1155  }
1156 }
int m_expdim
Expansion dimension.
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:534
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45

References Vmath::Fill(), Nektar::SolverUtils::EquationSystem::m_expdim, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::NullNekDoubleArrayOfArray, CellMLToNektar.cellml_metadata::p, Vmath::Vmul(), Vmath::Vsqrt(), and Vmath::Vvtvp().

Referenced by SetUpSVV().

◆ v_DoInitialise()

void Nektar::VelocityCorrectionScheme::v_DoInitialise ( void  )
overrideprotectedvirtual

Sets up initial conditions.

Sets the initial conditions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSMapping.

Definition at line 607 of file VelocityCorrectionScheme.cpp.

608 {
609  m_F = Array<OneD, Array<OneD, NekDouble>>(m_nConvectiveFields);
610 
611  for (int i = 0; i < m_nConvectiveFields; ++i)
612  {
613  m_F[i] = Array<OneD, NekDouble>(m_fields[0]->GetTotPoints(), 0.0);
614  }
615 
616  m_flowrateAiidt = 0.0;
617 
619 
620  // Set up Field Meta Data for output files
621  m_fieldMetaDataMap["Kinvis"] = boost::lexical_cast<std::string>(m_kinvis);
622  m_fieldMetaDataMap["TimeStep"] =
623  boost::lexical_cast<std::string>(m_timestep);
624 
625  // set boundary conditions here so that any normal component
626  // correction are imposed before they are imposed on initial
627  // field below
629 
630  // Ensure the initial conditions have correct BCs
631  for (size_t i = 0; i < m_fields.size(); ++i)
632  {
633  m_fields[i]->ImposeDirichletConditions(m_fields[i]->UpdateCoeffs());
634  m_fields[i]->LocalToGlobal();
635  m_fields[i]->GlobalToLocal();
636  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
637  m_fields[i]->UpdatePhys());
638  }
639 }
void SetBoundaryConditions(NekDouble time)
time dependent boundary conditions updating
NekDouble m_timestep
Time step size.
NekDouble m_time
Current time of simulation.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
SOLVER_UTILS_EXPORT int GetTotPoints()
virtual SOLVER_UTILS_EXPORT void v_DoInitialise() override
Sets up initial conditions.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_F, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::IncNavierStokes::SetBoundaryConditions(), and Nektar::SolverUtils::UnsteadySystem::v_DoInitialise().

◆ v_EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::v_EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protectedvirtual

Explicit part of the method - Advection, Forcing + HOPBCs

Reimplemented in Nektar::VCSMapping.

Definition at line 692 of file VelocityCorrectionScheme.cpp.

695 {
696  LibUtilities::Timer timer;
697  timer.Start();
698  EvaluateAdvectionTerms(inarray, outarray, time);
699  timer.Stop();
700  timer.AccumulateRegion("Advection Terms");
701 
702  // Smooth advection
703  if (m_SmoothAdvection)
704  {
705  for (int i = 0; i < m_nConvectiveFields; ++i)
706  {
707  m_pressure->SmoothField(outarray[i]);
708  }
709  }
710 
711  // Add forcing terms
712  for (auto &x : m_forcing)
713  {
714  x->Apply(m_fields, inarray, outarray, time);
715  }
716 
717  // Calculate High-Order pressure boundary conditions
718  timer.Start();
719  m_extrapolation->EvaluatePressureBCs(inarray, outarray, m_kinvis);
720  timer.Stop();
721  timer.AccumulateRegion("Pressure BCs");
722 }
bool m_SmoothAdvection
bool to identify if advection term smoothing is requested
void EvaluateAdvectionTerms(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::IncNavierStokes::EvaluateAdvectionTerms(), Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_SmoothAdvection, Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by EvaluateAdvection_SetPressureBCs().

◆ v_GenerateSummary()

void Nektar::VelocityCorrectionScheme::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Prints a summary with some information regards the time-stepping.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSWeakPressure, and Nektar::SmoothedProfileMethod.

Definition at line 520 of file VelocityCorrectionScheme.cpp.

521 {
523  SolverUtils::AddSummaryItem(s, "Splitting Scheme",
524  "Velocity correction (strong press. form)");
525 
526  if (m_extrapolation->GetSubStepName().size())
527  {
528  SolverUtils::AddSummaryItem(s, "Substepping",
529  m_extrapolation->GetSubStepName());
530  }
531 
532  string dealias = m_homogen_dealiasing ? "Homogeneous1D" : "";
534  {
535  dealias += (dealias == "" ? "" : " + ") + string("spectral/hp");
536  }
537  if (dealias != "")
538  {
539  SolverUtils::AddSummaryItem(s, "Dealiasing", dealias);
540  }
541 
542  string smoothing = m_useSpecVanVisc ? "spectral/hp" : "";
543  if (smoothing != "")
544  {
546  {
548  s, "Smoothing-SpecHP",
549  "SVV (" + smoothing + " Exp Kernel(cut-off = " +
550  boost::lexical_cast<string>(m_sVVCutoffRatio) +
551  ", diff coeff = " +
552  boost::lexical_cast<string>(m_sVVDiffCoeff) + "))");
553  }
554  else
555  {
556  if (m_IsSVVPowerKernel)
557  {
559  s, "Smoothing-SpecHP",
560  "SVV (" + smoothing + " Power Kernel (Power ratio =" +
561  boost::lexical_cast<string>(m_sVVCutoffRatio) +
562  ", diff coeff = " +
563  boost::lexical_cast<string>(m_sVVDiffCoeff) +
564  "*Uh/p))");
565  }
566  else
567  {
569  s, "Smoothing-SpecHP",
570  "SVV (" + smoothing + " DG Kernel (diff coeff = " +
571  boost::lexical_cast<string>(m_sVVDiffCoeff) +
572  "*Uh/p))");
573  }
574  }
575  }
576 
578  {
580  s, "Smoothing-Homo1D",
581  "SVV (Homogeneous1D - Exp Kernel(cut-off = " +
582  boost::lexical_cast<string>(m_sVVCutoffRatioHomo1D) +
583  ", diff coeff = " +
584  boost::lexical_cast<string>(m_sVVDiffCoeffHomo1D) + "))");
585  }
586 
588  {
590  s, "GJP Stab. Impl. ",
591  m_session->GetSolverInfo("GJPStabilisation"));
592  SolverUtils::AddSummaryItem(s, "GJP Stab. JumpScale", m_GJPJumpScale);
593 
594  if (boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
595  "Explicit"))
596  {
598  s, "GJP Normal Velocity",
599  m_session->GetSolverInfo("GJPNormalVelocity"));
600  }
601  }
602 }
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
bool m_homogen_dealiasing
Flag to determine if dealiasing is used for homogeneous simulations.
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
bool m_useGJPStabilisation
bool to identify if GJP semi-implicit is active.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:49

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::IncNavierStokes::m_extrapolation, m_GJPJumpScale, Nektar::SolverUtils::EquationSystem::m_homogen_dealiasing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useGJPStabilisation, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::NullNekDouble1DArray, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

Referenced by Nektar::SmoothedProfileMethod::v_GenerateSummary().

◆ v_GetExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetExtrapolateStr ( void  )
inlineprotectedvirtual

Reimplemented in Nektar::VCSWeakPressure.

Definition at line 206 of file VelocityCorrectionScheme.h.

207  {
208  return "Standard";
209  }

Referenced by SetUpExtrapolation().

◆ v_GetForceDimension()

int Nektar::VelocityCorrectionScheme::v_GetForceDimension ( void  )
overrideprotectedvirtual

Implements Nektar::IncNavierStokes.

Definition at line 684 of file VelocityCorrectionScheme.cpp.

685 {
686  return m_session->GetVariables().size() - 1;
687 }

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_GetSubSteppingExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetSubSteppingExtrapolateStr ( const std::string &  instr)
inlineprotectedvirtual

Reimplemented in Nektar::VCSWeakPressure.

Definition at line 211 of file VelocityCorrectionScheme.h.

212  {
213  return instr;
214  }

Referenced by SetUpExtrapolation().

◆ v_GetSystemSingularChecks()

Array< OneD, bool > Nektar::VelocityCorrectionScheme::v_GetSystemSingularChecks ( )
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 673 of file VelocityCorrectionScheme.cpp.

674 {
675  int vVar = m_session->GetVariables().size();
676  Array<OneD, bool> vChecks(vVar, false);
677  vChecks[vVar - 1] = true;
678  return vChecks;
679 }

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_InitObject()

void Nektar::VelocityCorrectionScheme::v_InitObject ( bool  DeclareField = true)
overridevirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::IncNavierStokes.

Reimplemented in Nektar::VCSMapping, and Nektar::SmoothedProfileMethod.

Definition at line 70 of file VelocityCorrectionScheme.cpp.

71 {
72  int n;
73 
74  IncNavierStokes::v_InitObject(DeclareField);
75  m_explicitDiffusion = false;
76 
77  // Set m_pressure to point to last field of m_fields;
78  if (boost::iequals(m_session->GetVariable(m_fields.size() - 1), "p"))
79  {
80  m_nConvectiveFields = m_fields.size() - 1;
82  }
83  else
84  {
85  ASSERTL0(false, "Need to set up pressure field definition");
86  }
87 
88  // Determine diffusion coefficients for each field
89  m_diffCoeff = Array<OneD, NekDouble>(m_nConvectiveFields, m_kinvis);
90  for (n = 0; n < m_nConvectiveFields; ++n)
91  {
92  std::string varName = m_session->GetVariable(n);
93  if (m_session->DefinesFunction("DiffusionCoefficient", varName))
94  {
96  m_session->GetFunction("DiffusionCoefficient", varName);
97  m_diffCoeff[n] = ffunc->Evaluate();
98  }
99  }
100 
101  // Integrate only the convective fields
102  for (n = 0; n < m_nConvectiveFields; ++n)
103  {
104  m_intVariables.push_back(n);
105  }
106 
108  SetUpSVV();
109 
110  // check to see if it is explicity turned off
111  m_session->MatchSolverInfo("GJPStabilisation", "False",
112  m_useGJPStabilisation, true);
113 
114  // if GJPStabilisation set to False bool will be true and
115  // if not false so negate/revese bool
117 
118  m_session->MatchSolverInfo("GJPNormalVelocity", "True", m_useGJPNormalVel,
119  false);
120 
121  if (m_useGJPNormalVel)
122  {
123  ASSERTL0(boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
124  "Explicit"),
125  "Can only specify GJPNormalVelocity with"
126  " GJPStabilisation set to Explicit currently");
127  }
128 
129  m_session->LoadParameter("GJPJumpScale", m_GJPJumpScale, 1.0);
130 
131  m_session->MatchSolverInfo("SmoothAdvection", "True", m_SmoothAdvection,
132  false);
133 
134  // set explicit time-intregration class operators
137 
138  // set implicit time-intregration class operators
141 
142  // Set up bits for flowrate.
143  m_session->LoadParameter("Flowrate", m_flowrate, 0.0);
144  m_session->LoadParameter("IO_FlowSteps", m_flowrateSteps, 0);
145 }
virtual void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
void EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Array< OneD, NekDouble > m_diffCoeff
Diffusion coefficients (will be kinvis for velocities)
bool m_useGJPNormalVel
bool to identify if GJP normal Velocity should be applied in explicit approach

References ASSERTL0, Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), EvaluateAdvection_SetPressureBCs(), m_diffCoeff, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateSteps, m_GJPJumpScale, Nektar::SolverUtils::UnsteadySystem::m_intVariables, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_SmoothAdvection, m_useGJPNormalVel, m_useGJPStabilisation, SetUpExtrapolation(), SetUpSVV(), SolveUnsteadyStokesSystem(), and Nektar::IncNavierStokes::v_InitObject().

Referenced by Nektar::SmoothedProfileMethod::v_InitObject(), and Nektar::VCSMapping::v_InitObject().

◆ v_PostIntegrate()

bool Nektar::VelocityCorrectionScheme::v_PostIntegrate ( int  step)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 496 of file VelocityCorrectionScheme.cpp.

497 {
498  if (m_flowrateSteps > 0)
499  {
500  if (m_comm->GetRank() == 0 && (step + 1) % m_flowrateSteps == 0)
501  {
502  m_flowrateStream << setw(8) << step << setw(16) << m_time
503  << setw(16) << m_alpha << endl;
504  }
505  }
506 
508 }
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step) override

References m_alpha, Nektar::SolverUtils::EquationSystem::m_comm, m_flowrateSteps, m_flowrateStream, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::AdvectionSystem::v_PostIntegrate().

◆ v_RequireFwdTrans()

virtual bool Nektar::VelocityCorrectionScheme::v_RequireFwdTrans ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 201 of file VelocityCorrectionScheme.h.

202  {
203  return false;
204  }

◆ v_SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble >> &  fields,
Array< OneD, Array< OneD, NekDouble >> &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Poisson solver solver

Reimplemented in Nektar::VCSWeakPressure, and Nektar::VCSMapping.

Definition at line 795 of file VelocityCorrectionScheme.cpp.

798 {
799  size_t i;
800  size_t physTot = m_fields[0]->GetTotPoints();
801  size_t nvel = m_velocity.size();
802 
803  m_fields[0]->PhysDeriv(eX, fields[0], Forcing[0]);
804 
805  for (i = 1; i < nvel; ++i)
806  {
807  // Use Forcing[1] as storage since it is not needed for the pressure
808  m_fields[i]->PhysDeriv(DirCartesianMap[i], fields[i], Forcing[1]);
809  Vmath::Vadd(physTot, Forcing[1], 1, Forcing[0], 1, Forcing[0], 1);
810  }
811 
812  Vmath::Smul(physTot, 1.0 / aii_Dt, Forcing[0], 1, Forcing[0], 1);
813 }
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:91
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248

References Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eX, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_velocity, Vmath::Smul(), and Vmath::Vadd().

Referenced by SetUpPressureForcing(), and Nektar::VCSMapping::v_SetUpPressureForcing().

◆ v_SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Helmholtz solver

Reimplemented in Nektar::VCSMapping.

Definition at line 818 of file VelocityCorrectionScheme.cpp.

821 {
822  NekDouble aii_dtinv = 1.0 / aii_Dt;
823  size_t phystot = m_fields[0]->GetTotPoints();
824 
825  // Grad p
826  m_pressure->BwdTrans(m_pressure->GetCoeffs(), m_pressure->UpdatePhys());
827 
828  int nvel = m_velocity.size();
829  if (nvel == 2)
830  {
831  m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
832  Forcing[m_velocity[1]]);
833  }
834  else
835  {
836  m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
837  Forcing[m_velocity[1]], Forcing[m_velocity[2]]);
838  }
839 
840  // zero convective fields.
841  for (int i = nvel; i < m_nConvectiveFields; ++i)
842  {
843  Vmath::Zero(phystot, Forcing[i], 1);
844  }
845 
846  // Subtract inarray/(aii_dt) and divide by kinvis. Kinvis will
847  // need to be updated for the convected fields.
848  for (int i = 0; i < m_nConvectiveFields; ++i)
849  {
850  Blas::Daxpy(phystot, -aii_dtinv, inarray[i], 1, Forcing[i], 1);
851  Blas::Dscal(phystot, 1.0 / m_diffCoeff[i], &(Forcing[i])[0], 1);
852  }
853 }
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:168
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:154

References Blas::Daxpy(), Blas::Dscal(), m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_velocity, and Vmath::Zero().

Referenced by SetUpViscousForcing().

◆ v_SolvePressure()

void Nektar::VelocityCorrectionScheme::v_SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
protectedvirtual

Solve pressure system

Reimplemented in Nektar::VCSWeakPressure, and Nektar::VCSMapping.

Definition at line 858 of file VelocityCorrectionScheme.cpp.

860 {
862  // Setup coefficient for equation
863  factors[StdRegions::eFactorLambda] = 0.0;
864 
865  // Solver Pressure Poisson Equation
866  m_pressure->HelmSolve(Forcing, m_pressure->UpdateCoeffs(), factors);
867 
868  // Add presure to outflow bc if using convective like BCs
869  m_extrapolation->AddPressureToOutflowBCs(m_kinvis);
870 }
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:399

References Nektar::StdRegions::eFactorLambda, Nektar::IncNavierStokes::m_extrapolation, Nektar::IncNavierStokes::m_kinvis, and Nektar::IncNavierStokes::m_pressure.

Referenced by SolvePressure(), and Nektar::VCSMapping::v_SolvePressure().

◆ v_SolveViscous()

void Nektar::VelocityCorrectionScheme::v_SolveViscous ( const Array< OneD, const Array< OneD, NekDouble >> &  Forcing,
const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  aii_Dt 
)
protectedvirtual

Solve velocity system

Reimplemented in Nektar::VCSMapping.

Definition at line 875 of file VelocityCorrectionScheme.cpp.

879 {
883 
884  AppendSVVFactors(factors, varFactorsMap);
885 
886  // Calculate Normal velocity at Trace for GJP explicit stabiliation
887  if (m_useGJPNormalVel)
888  {
890  std::dynamic_pointer_cast<MultiRegions::ContField>(m_fields[0]);
891 
893  cfield->GetGJPForcing();
894 
895  int nTracePts = GJPData->GetNumTracePts();
896  Array<OneD, NekDouble> unorm(nTracePts, 1.0);
897  Array<OneD, NekDouble> Fwd(nTracePts), Bwd(nTracePts);
898  Array<OneD, Array<OneD, NekDouble>> traceNormals =
899  GJPData->GetTraceNormals();
900 
901  m_fields[0]->GetFwdBwdTracePhys(inarray[0], Fwd, Bwd, true, true);
902  Vmath::Vmul(nTracePts, Fwd, 1, traceNormals[0], 1, unorm, 1);
903 
904  // Evaluate u.n on trace
905  for (int f = 1; f < m_fields[0]->GetCoordim(0); ++f)
906  {
907  m_fields[0]->GetFwdBwdTracePhys(inarray[f], Fwd, Bwd, true, true);
908  Vmath::Vvtvp(nTracePts, Fwd, 1, traceNormals[f], 1, unorm, 1, unorm,
909  1);
910  }
911  Vmath::Vabs(nTracePts, unorm, 1, unorm, 1);
912  varCoeffMap[StdRegions::eVarCoeffGJPNormVel] = unorm;
913  }
914 
915  // Solve Helmholtz system and put in Physical space
916  for (int i = 0; i < m_nConvectiveFields; ++i)
917  {
918  // test by adding GJP implicit
920  {
922  }
923 
924  // Setup coefficients for equation
925  factors[StdRegions::eFactorLambda] = 1.0 / aii_Dt / m_diffCoeff[i];
926  m_fields[i]->HelmSolve(Forcing[i], m_fields[i]->UpdateCoeffs(), factors,
927  varCoeffMap, varFactorsMap);
928  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
929  }
930 }
void AppendSVVFactors(StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
static VarFactorsMap NullVarFactorsMap
std::map< StdRegions::ConstFactorType, Array< OneD, NekDouble > > VarFactorsMap
std::shared_ptr< GJPStabilisation > GJPStabilisationSharedPtr
std::shared_ptr< ContField > ContFieldSharedPtr
Definition: ContField.h:289
std::map< StdRegions::VarCoeffType, VarCoeffEntry > VarCoeffMap
Definition: StdRegions.hpp:343
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:553

References AppendSVVFactors(), Nektar::StdRegions::eFactorGJP, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eVarCoeffGJPNormVel, m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, m_GJPJumpScale, Nektar::IncNavierStokes::m_nConvectiveFields, m_useGJPNormalVel, m_useGJPStabilisation, Nektar::StdRegions::NullVarCoeffMap, Nektar::MultiRegions::NullVarFactorsMap, Vmath::Vabs(), Vmath::Vmul(), and Vmath::Vvtvp().

Referenced by SolveViscous(), and Nektar::VCSMapping::v_SolveViscous().

◆ v_TransCoeffToPhys()

void Nektar::VelocityCorrectionScheme::v_TransCoeffToPhys ( void  )
overrideprotectedvirtual

Virtual function for transformation to physical space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 644 of file VelocityCorrectionScheme.cpp.

645 {
646  size_t nfields = m_fields.size() - 1;
647  for (size_t k = 0; k < nfields; ++k)
648  {
649  // Backward Transformation in physical space for time evolution
650  m_fields[k]->BwdTrans(m_fields[k]->GetCoeffs(),
651  m_fields[k]->UpdatePhys());
652  }
653 }

References Nektar::SolverUtils::EquationSystem::m_fields.

◆ v_TransPhysToCoeff()

void Nektar::VelocityCorrectionScheme::v_TransPhysToCoeff ( void  )
overrideprotectedvirtual

Virtual function for transformation to coefficient space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 658 of file VelocityCorrectionScheme.cpp.

659 {
660 
661  size_t nfields = m_fields.size() - 1;
662  for (size_t k = 0; k < nfields; ++k)
663  {
664  // Forward Transformation in physical space for time evolution
665  m_fields[k]->FwdTransLocalElmt(m_fields[k]->GetPhys(),
666  m_fields[k]->UpdateCoeffs());
667  }
668 }

References Nektar::SolverUtils::EquationSystem::m_fields.

Member Data Documentation

◆ className

string Nektar::VelocityCorrectionScheme::className
static
Initial value:
=
"VelocityCorrectionScheme", VelocityCorrectionScheme::create)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 58 of file VelocityCorrectionScheme.h.

◆ m_alpha

NekDouble Nektar::VelocityCorrectionScheme::m_alpha
protected

Current flowrate correction.

Definition at line 147 of file VelocityCorrectionScheme.h.

Referenced by SolveUnsteadyStokesSystem(), and v_PostIntegrate().

◆ m_diffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_diffCoeff
protected

Diffusion coefficients (will be kinvis for velocities)

Definition at line 132 of file VelocityCorrectionScheme.h.

Referenced by v_InitObject(), v_SetUpViscousForcing(), and v_SolveViscous().

◆ m_F

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_F
protected

◆ m_flowrate

NekDouble Nektar::VelocityCorrectionScheme::m_flowrate
protected

Desired volumetric flowrate.

Definition at line 139 of file VelocityCorrectionScheme.h.

Referenced by SolveUnsteadyStokesSystem(), and v_InitObject().

◆ m_flowrateAiidt

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateAiidt
protected

Value of aii_dt used to compute Stokes flowrate solution.

Definition at line 161 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), SolveUnsteadyStokesSystem(), and v_DoInitialise().

◆ m_flowrateArea

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateArea
protected

Area of the boundary through which we are measuring the flowrate.

Definition at line 141 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBnd

MultiRegions::ExpListSharedPtr Nektar::VelocityCorrectionScheme::m_flowrateBnd
protected

Flowrate reference surface.

Definition at line 153 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBndID

int Nektar::VelocityCorrectionScheme::m_flowrateBndID
protected

Boundary ID of the flowrate reference surface.

Definition at line 149 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateSteps

int Nektar::VelocityCorrectionScheme::m_flowrateSteps
protected

Interval at which to record flowrate data.

Definition at line 159 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_InitObject(), and v_PostIntegrate().

◆ m_flowrateStokes

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_flowrateStokes
protected

Stokes solution used to impose flowrate.

Definition at line 155 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and SolveUnsteadyStokesSystem().

◆ m_flowrateStream

std::ofstream Nektar::VelocityCorrectionScheme::m_flowrateStream
protected

Output stream to record flowrate.

Definition at line 157 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_PostIntegrate().

◆ m_GJPJumpScale

NekDouble Nektar::VelocityCorrectionScheme::m_GJPJumpScale
protected

Definition at line 119 of file VelocityCorrectionScheme.h.

Referenced by v_GenerateSummary(), v_InitObject(), and v_SolveViscous().

◆ m_greenFlux

NekDouble Nektar::VelocityCorrectionScheme::m_greenFlux
protected

Flux of the Stokes function solution.

Definition at line 145 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and SolveUnsteadyStokesSystem().

◆ m_homd1DFlowinPlane

bool Nektar::VelocityCorrectionScheme::m_homd1DFlowinPlane
protected

Definition at line 143 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_IsSVVPowerKernel

bool Nektar::VelocityCorrectionScheme::m_IsSVVPowerKernel
protected

Identifier for Power Kernel otherwise DG kernel.

Definition at line 130 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), and v_GenerateSummary().

◆ m_planeID

int Nektar::VelocityCorrectionScheme::m_planeID
protected

Plane ID for cases with homogeneous expansion.

Definition at line 151 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_sVVCutoffRatio

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatio
protected

cutt off ratio from which to start decayhing modes

Definition at line 121 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), Nektar::VCSWeakPressure::v_GenerateSummary(), and Nektar::VCSMapping::v_SolveViscous().

◆ m_sVVCutoffRatioHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatioHomo1D
protected

Definition at line 124 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), and v_GenerateSummary().

◆ m_sVVDiffCoeff

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeff
protected

◆ m_sVVDiffCoeffHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeffHomo1D
protected

Diffusion coefficient of SVV modes in homogeneous 1D Direction.

Definition at line 126 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), and v_GenerateSummary().

◆ m_svvVarDiffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_svvVarDiffCoeff
protected

Array of coefficient if power kernel is used in SVV.

Definition at line 128 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), and v_GenerateSummary().

◆ m_useGJPNormalVel

bool Nektar::VelocityCorrectionScheme::m_useGJPNormalVel
protected

bool to identify if GJP normal Velocity should be applied in explicit approach

Definition at line 117 of file VelocityCorrectionScheme.h.

Referenced by v_InitObject(), and v_SolveViscous().

◆ m_useGJPStabilisation

bool Nektar::VelocityCorrectionScheme::m_useGJPStabilisation
protected

bool to identify if GJP semi-implicit is active.

Definition at line 114 of file VelocityCorrectionScheme.h.

Referenced by v_GenerateSummary(), v_InitObject(), and v_SolveViscous().

◆ m_useHomo1DSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useHomo1DSpecVanVisc
protected

bool to identify if spectral vanishing viscosity is active.

Definition at line 110 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), and Nektar::VCSWeakPressure::v_GenerateSummary().

◆ m_useSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useSpecVanVisc
protected

bool to identify if spectral vanishing viscosity is active.

Definition at line 112 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), Nektar::VCSWeakPressure::v_GenerateSummary(), and Nektar::VCSMapping::v_SolveViscous().

◆ m_varCoeffLap

StdRegions::VarCoeffMap Nektar::VelocityCorrectionScheme::m_varCoeffLap
protected

Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.

Definition at line 136 of file VelocityCorrectionScheme.h.