Nektar++
AdjointAdvection.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: AdjointAdvection.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Evaluation of the adjoint advective term
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar
40{
41
44 "Adjoint", AdjointAdvection::create);
45
46/**
47 *
48 */
50{
51}
52
54{
55}
56
58 const int nConvectiveFields,
60 const Array<OneD, Array<OneD, NekDouble>> &advVel,
61 const Array<OneD, Array<OneD, NekDouble>> &inarray,
62 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble &time,
63 const Array<OneD, Array<OneD, NekDouble>> &pFwd,
64 const Array<OneD, Array<OneD, NekDouble>> &pBwd)
65{
66 boost::ignore_unused(pFwd, pBwd);
67 ASSERTL1(nConvectiveFields == inarray.size(),
68 "Number of convective fields and Inarray are not compatible");
69
70 int nPointsTot = fields[0]->GetNpoints();
71 int ndim = advVel.size();
72 int nBaseDerivs = (m_halfMode || m_singleMode) ? 2 : m_spacedim;
73 int nDerivs = (m_halfMode) ? 2 : m_spacedim;
74
76 int nScalar = nConvectiveFields - ndim;
78
79 for (int i = 0; i < ndim; ++i)
80 {
81 if (fields[i]->GetWaveSpace() && !m_singleMode && !m_halfMode)
82 {
83 velocity[i] = Array<OneD, NekDouble>(nPointsTot, 0.0);
84 fields[i]->HomogeneousBwdTrans(nPointsTot, advVel[i], velocity[i]);
85 }
86 else
87 {
88 velocity[i] = advVel[i];
89 }
90 }
91 if (nScalar > 0) // add for temperature field
92 {
93 for (int jj = ndim; jj < nConvectiveFields; ++jj)
94 {
95 scalar[jj - ndim] = inarray[jj];
96 }
97 }
98
100 for (int i = 0; i < nDerivs; ++i)
101 {
102 grad[i] = Array<OneD, NekDouble>(nPointsTot);
103 }
104
105 // Evaluation of the base flow for periodic cases
106 if (m_slices > 1)
107 {
108 for (int i = 0; i < ndim; ++i)
109 {
110 UpdateBase(m_interp[i], m_baseflow[i], m_period - time);
111 UpdateGradBase(i, fields[i]);
112 }
113 }
114
115 // Evaluate the linearised advection term
116 for (int i = 0; i < nConvectiveFields; ++i)
117 {
118 // Calculate gradient
119 switch (nDerivs)
120 {
121 case 1:
122 {
123 fields[i]->PhysDeriv(inarray[i], grad[0]);
124 }
125 break;
126 case 2:
127 {
128 fields[i]->PhysDeriv(inarray[i], grad[0], grad[1]);
129 }
130 break;
131 case 3:
132 {
133 fields[i]->PhysDeriv(inarray[i], grad[0], grad[1], grad[2]);
134 if (m_multipleModes)
135 {
136 // transform gradients into physical Fourier space
137 fields[i]->HomogeneousBwdTrans(nPointsTot, grad[0],
138 grad[0]);
139 fields[i]->HomogeneousBwdTrans(nPointsTot, grad[1],
140 grad[1]);
141 fields[i]->HomogeneousBwdTrans(nPointsTot, grad[2],
142 grad[2]);
143 }
144 }
145 break;
146 }
147
148 // Momentum field advection
149 if (i < ndim)
150 {
151 // Calculate -U_j du'_i/dx_j
152 Vmath::Vmul(nPointsTot, grad[0], 1, m_baseflow[0], 1, outarray[i],
153 1);
154 for (int j = 1; j < nDerivs; ++j)
155 {
156 Vmath::Vvtvp(nPointsTot, grad[j], 1, m_baseflow[j], 1,
157 outarray[i], 1, outarray[i], 1);
158 }
159 Vmath::Neg(nPointsTot, outarray[i], 1);
160
161 // Add u'_j U_j/ dx_i
162 int lim = (m_halfMode) ? 2 : ndim;
163 if ((m_halfMode || m_singleMode) && i == 2)
164 {
165 lim = 0;
166 }
167 for (int j = 0; j < lim; ++j)
168 {
169 Vmath::Vvtvp(nPointsTot, m_gradBase[j * nBaseDerivs + i], 1,
170 velocity[j], 1, outarray[i], 1, outarray[i], 1);
171 }
172 // Add Tprime*Grad_Tbase in u, v equations
173 if (nScalar > 0 && i < ndim)
174 {
175 for (int s = 0; s < nScalar; ++s)
176 {
177 Vmath::Vvtvp(nPointsTot,
178 m_gradBase[(ndim + s) * nBaseDerivs + i], 1,
179 scalar[s], 1, outarray[i], 1, outarray[i], 1);
180 }
181 }
182 }
183 // Scalar Field Advection
184 else
185 {
186 // Calculate -U_j du'_i/dx_j
187 Vmath::Vmul(nPointsTot, grad[0], 1, m_baseflow[0], 1, outarray[i],
188 1);
189 for (int j = 1; j < nDerivs; ++j)
190 {
191 Vmath::Vvtvp(nPointsTot, grad[j], 1, m_baseflow[j], 1,
192 outarray[i], 1, outarray[i], 1);
193 }
194 Vmath::Neg(nPointsTot, outarray[i], 1);
195 }
196
197 if (m_multipleModes)
198 {
199 fields[i]->HomogeneousFwdTrans(nPointsTot, outarray[i],
200 outarray[i]);
201 }
202 Vmath::Neg(nPointsTot, outarray[i], 1);
203 }
204}
205
206} // namespace Nektar
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
static std::string className
Name of class.
static SolverUtils::AdvectionSharedPtr create(std::string)
Creates an instance of this class.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
void UpdateBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble time)
NekDouble m_period
period length
void UpdateGradBase(const int var, const MultiRegions::ExpListSharedPtr &field)
bool m_singleMode
flag to determine if use single mode or not
Array< OneD, Array< OneD, NekDouble > > m_baseflow
Storage for base flow.
Array< OneD, Array< OneD, NekDouble > > m_gradBase
bool m_multipleModes
flag to determine if use multiple mode or not
bool m_halfMode
flag to determine if use half mode or not
Array< OneD, Array< OneD, NekDouble > > m_interp
interpolation vector
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569