39#include <boost/algorithm/string/predicate.hpp>
40#include <boost/core/ignore_unused.hpp>
62 std::size_t nDim = pFields[0]->GetCoordim(0);
63 std::size_t nTracePts = pFields[0]->GetTrace()->GetTotPoints();
66 if (pSession->DefinesSolverInfo(
"HOMOGENEOUS"))
84 m_session->LoadSolverInfo(
"EquationOfState", eosType,
"IdealGas");
93 std::size_t nElements = pFields[0]->GetExpSize();
95 for (std::size_t e = 0; e < nElements; e++)
98 std::size_t expDim = pFields[0]->GetShapeDimension();
105 for (std::size_t i = 0; i < exp3D->GetNtraces(); ++i)
108 h, exp3D->GetGeom3D()->GetEdge(i)->GetVertex(0)->dist(*(
109 exp3D->GetGeom3D()->GetEdge(i)->GetVertex(1))));
118 for (std::size_t i = 0; i < exp2D->GetNtraces(); ++i)
121 h, exp2D->GetGeom2D()->GetEdge(i)->GetVertex(0)->dist(*(
122 exp2D->GetGeom2D()->GetEdge(i)->GetVertex(1))));
131 h = std::min(h, exp1D->
GetGeom1D()->GetVertex(0)->dist(
132 *(exp1D->GetGeom1D()->GetVertex(1))));
137 ASSERTL0(
false,
"Dimension out of bound.")
145 std::size_t nPts = pFields[0]->GetTotPoints();
148 for (std::size_t e = 0; e < pFields[0]->GetExpSize(); e++)
150 std::size_t nElmtPoints = pFields[0]->GetExp(e)->GetTotPoints();
151 std::size_t physOffset = pFields[0]->GetPhys_Offset(e);
152 Vmath::Fill(nElmtPoints, hEle[e], tmp = hElePts + physOffset, 1);
157 pFields[0]->GetFwdBwdTracePhys(hElePts, Fwd, Bwd);
160 std::size_t nBndRegions = pFields[0]->GetBndCondExpansions().size();
162 for (std::size_t i = 0; i < nBndRegions; ++i)
165 std::size_t nBndEdges =
166 pFields[0]->GetBndCondExpansions()[i]->GetExpSize();
168 if (pFields[0]->GetBndConditions()[i]->GetBoundaryConditionType() ==
175 for (std::size_t e = 0; e < nBndEdges; ++e)
177 std::size_t nBndEdgePts = pFields[0]
178 ->GetBndCondExpansions()[i]
182 std::size_t id2 = pFields[0]->GetTrace()->GetPhys_Offset(
183 pFields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt++));
211 const std::size_t nConvectiveFields,
218 std::size_t nCoeffs = fields[0]->GetNcoeffs();
220 for (std::size_t i = 0; i < nConvectiveFields; ++i)
225 for (std::size_t i = 0; i < nConvectiveFields; ++i)
227 fields[i]->BwdTrans(tmp2[i], outarray[i]);
232 const std::size_t nConvectiveFields,
239 std::size_t nDim = fields[0]->GetCoordim(0);
240 std::size_t nPts = fields[0]->GetTotPoints();
241 std::size_t nCoeffs = fields[0]->GetNcoeffs();
242 std::size_t nScalars = inarray.size();
243 std::size_t nTracePts = fields[0]->GetTrace()->GetTotPoints();
251 for (std::size_t i = 0; i < nScalars; ++i)
266 for (std::size_t i = 0; i < nScalars + 1; ++i)
272 for (std::size_t i = 0; i < nConvectiveFields; ++i)
288 for (std::size_t i = 0; i < nConvectiveFields; ++i)
292 for (std::size_t j = 0; j < nDim; ++j)
296 fields[i]->IProductWRTDerivBase(tmpIn, tmpOut);
300 fields[i]->AddTraceIntegral(viscousFlux[i], tmpOut);
301 fields[i]->SetPhysState(
false);
302 fields[i]->MultiplyByElmtInvMass(tmpOut, outarray[i]);
313 std::size_t nDim = fields[0]->GetCoordim(0);
314 std::size_t nCoeffs = fields[0]->GetNcoeffs();
315 std::size_t nScalars = inarray.size();
316 std::size_t nTracePts = fields[0]->GetTrace()->GetTotPoints();
317 std::size_t nConvectiveFields = fields.size();
327 for (std::size_t i = 0; i < nScalars; ++i)
335 for (std::size_t j = 0; j < nDim; ++j)
337 for (std::size_t i = 0; i < nScalars; ++i)
339 fields[i]->IProductWRTDerivBase(j, inarray[i], tmp1);
341 fields[i]->AddTraceIntegral(numericalFluxO1[j][i], tmp1);
342 fields[i]->SetPhysState(
false);
343 fields[i]->MultiplyByElmtInvMass(tmp1, tmp1);
344 fields[i]->BwdTrans(tmp1, qfields[j][i]);
350 for (std::size_t i = 0; i < nScalars; ++i)
363 boost::ignore_unused(fields, nonZeroIndex);
376 boost::ignore_unused(inarray, VolumeFlux, nonZeroIndex);
391 std::size_t nTracePts = fields[0]->GetTrace()->GetTotPoints();
392 std::size_t nScalars = inarray.size();
396 for (std::size_t i = 0; i < nScalars; ++i)
398 numflux[i] = {pFwd[i]};
402 if (fields[0]->GetBndCondExpansions().size())
404 ApplyBCsO1(fields, inarray, pFwd, pBwd, numflux);
410 for (std::size_t i = 0; i < nScalars; ++i)
413 numericalFluxO1[j][i], 1);
429 boost::ignore_unused(pBwd);
431 std::size_t nTracePts = fields[0]->GetTrace()->GetTotPoints();
432 std::size_t nScalars = inarray.size();
441 for (std::size_t i = 0; i < nScalars; ++i)
447 for (std::size_t i = 0; i < nScalars - 1; ++i)
452 std::size_t nBndRegions = fields[i + 1]->GetBndCondExpansions().size();
453 for (std::size_t j = 0; j < nBndRegions; ++j)
456 ->GetBndConditions()[j]
462 std::size_t nBndEdges =
463 fields[i + 1]->GetBndCondExpansions()[j]->GetExpSize();
464 for (std::size_t e = 0; e < nBndEdges; ++e)
466 std::size_t nBndEdgePts = fields[i + 1]
467 ->GetBndCondExpansions()[j]
472 fields[i + 1]->GetBndCondExpansions()[j]->GetPhys_Offset(e);
474 std::size_t id2 = fields[0]->GetTrace()->GetPhys_Offset(
475 fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(
479 fields[i]->GetBndConditions()[j]->GetUserDefined(),
482 fields[i]->GetBndConditions()[j]->GetUserDefined(),
486 Vmath::Zero(nBndEdgePts, &scalarVariables[i][id2], 1);
488 else if (boost::iequals(
489 fields[i]->GetBndConditions()[j]->GetUserDefined(),
492 fields[i]->GetBndConditions()[j]->GetUserDefined(),
501 for (std::size_t k = 0; k < nScalars - 1; ++k)
505 ->GetBndCondExpansions()[j]
506 ->UpdatePhys())[id1],
509 ->GetBndCondExpansions()[j]
510 ->UpdatePhys())[id1],
511 1, &scalarVariables[k][id2], 1);
513 1, &scalarVariables[k][id2], 1,
514 &tmp1[0], 1, &tmp1[0], 1);
516 Vmath::Smul(nBndEdgePts, -1.0, &tmp1[0], 1, &tmp1[0],
520 for (std::size_t k = 0; k < nScalars - 1; ++k)
524 &scalarVariables[k][id2], 1,
525 &scalarVariables[k][id2], 1);
530 ->GetBndConditions()[j]
531 ->GetBoundaryConditionType() ==
537 ->GetBndCondExpansions()[j]
538 ->UpdatePhys())[id1],
541 ->GetBndCondExpansions()[j]
542 ->UpdatePhys())[id1],
543 1, &scalarVariables[i][id2], 1);
548 ->GetBndConditions()[j]
549 ->GetBoundaryConditionType() ==
557 else if ((fields[i]->GetBndConditions()[j])
558 ->GetBoundaryConditionType() ==
561 Vmath::Vcopy(nBndEdgePts, &pFwd[i][id2], 1, &fluxO1[i][id2],
566 Vmath::Vmul(nBndEdgePts, &scalarVariables[i][id2], 1,
567 &scalarVariables[i][id2], 1, &tmp1[id2], 1);
569 Vmath::Smul(nBndEdgePts, 0.5, &tmp1[id2], 1, &tmp1[id2], 1);
571 Vmath::Vadd(nBndEdgePts, &tmp2[id2], 1, &tmp1[id2], 1,
579 std::size_t nBndRegions = fields[nScalars]->GetBndCondExpansions().size();
580 for (std::size_t j = 0; j < nBndRegions; ++j)
583 ->GetBndConditions()[j]
589 std::size_t nBndEdges =
590 fields[nScalars]->GetBndCondExpansions()[j]->GetExpSize();
591 for (std::size_t e = 0; e < nBndEdges; ++e)
593 std::size_t nBndEdgePts = fields[nScalars]
594 ->GetBndCondExpansions()[j]
599 fields[nScalars]->GetBndCondExpansions()[j]->GetPhys_Offset(e);
601 std::size_t id2 = fields[0]->GetTrace()->GetPhys_Offset(
602 fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt++));
606 fields[nScalars]->GetBndConditions()[j]->GetUserDefined(),
610 &scalarVariables[nScalars - 1][id2], 1);
614 else if (fields[nScalars]
615 ->GetBndConditions()[j]
616 ->GetBoundaryConditionType() ==
621 for (std::size_t n = 0; n < nBndEdgePts; ++n)
624 ->GetBndCondExpansions()[j]
625 ->GetPhys()[id1 + n];
626 ene = fields[nScalars]
627 ->GetBndCondExpansions()[j]
628 ->GetPhys()[id1 + n] /
631 scalarVariables[nScalars - 1][id2 + n] =
632 m_eos->GetTemperature(rho, ene);
638 ->GetBndConditions()[j]
639 ->GetBoundaryConditionType() ==
642 fields[nScalars]->GetBndConditions()[j]->GetUserDefined(),
645 Vmath::Vcopy(nBndEdgePts, &scalarVariables[nScalars - 1][id2],
646 1, &fluxO1[nScalars - 1][id2], 1);
650 else if (((fields[nScalars]->GetBndConditions()[j])
651 ->GetBoundaryConditionType() ==
653 boost::iequals(fields[nScalars]
654 ->GetBndConditions()[j]
659 &fluxO1[nScalars - 1][id2], 1);
676 std::size_t nTracePts = fields[0]->GetTrace()->GetTotPoints();
677 std::size_t nVariables = fields.size();
681 for (std::size_t i = 0; i < nVariables - 1; ++i)
697 std::size_t nDim = fields[0]->GetCoordim(0);
698 for (std::size_t i = 1; i < nVariables; ++i)
700 for (std::size_t j = 0; j < nDim; ++j)
703 fields[i]->GetFwdBwdTracePhys(qfield[j][i], qFwd, qBwd);
714 qfluxtemp, 1, qfluxtemp, 1);
717 if (fields[0]->GetBndCondExpansions().size())
719 ApplyBCsO2(fields, i, j, qfield[j][i], qFwd, qBwd, qfluxtemp);
723 Vmath::Vadd(nTracePts, qfluxtemp, 1, qflux[i], 1, qflux[i], 1);
734 const std::size_t var,
const std::size_t dir,
740 boost::ignore_unused(qfield, qBwd);
743 std::size_t nBndRegions = fields[var]->GetBndCondExpansions().size();
745 for (std::size_t i = 0; i < nBndRegions; ++i)
748 std::size_t nBndEdges =
749 fields[var]->GetBndCondExpansions()[i]->GetExpSize();
751 if (fields[var]->GetBndConditions()[i]->GetBoundaryConditionType() ==
758 for (std::size_t e = 0; e < nBndEdges; ++e)
760 std::size_t nBndEdgePts = fields[var]
761 ->GetBndCondExpansions()[i]
765 std::size_t id2 = fields[0]->GetTrace()->GetPhys_Offset(
766 fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt++));
771 ->GetBndConditions()[i]
772 ->GetBoundaryConditionType() ==
775 fields[var]->GetBndConditions()[i]->GetUserDefined(),
779 &qFwd[id2], 1, &penaltyflux[id2], 1);
783 else if ((fields[var]->GetBndConditions()[i])
784 ->GetBoundaryConditionType() ==
787 ASSERTL0(
false,
"Neumann bcs not implemented for LDGNS");
789 else if (boost::iequals(
790 fields[var]->GetBndConditions()[i]->GetUserDefined(),
801 &qFwd[id2], 1, &penaltyflux[id2], 1);
#define ASSERTL0(condition, msg)
virtual void v_DiffuseCoeffs(const std::size_t nConvective, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
Array< OneD, Array< OneD, NekDouble > > m_homoDerivs
virtual void v_Diffuse(const std::size_t nConvective, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
Calculate weak DG Diffusion in the LDG form for the Navier-Stokes (NS) equations:
EquationOfStateSharedPtr m_eos
Equation of system for computing temperature.
void NumericalFluxO1(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &numericalFluxO1, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
Builds the numerical flux for the 1st order derivatives.
LibUtilities::SessionReaderSharedPtr m_session
Array< OneD, Array< OneD, NekDouble > > m_traceVel
void NumericalFluxO2(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, TensorOfArray3D< NekDouble > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
Build the numerical flux for the 2nd order derivatives.
NekDouble m_C11
Penalty coefficient for LDGNS.
virtual void v_DiffuseTraceFlux(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfields, TensorOfArray3D< NekDouble > &VolumeFlux, Array< OneD, Array< OneD, NekDouble > > &TraceFlux, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd, Array< OneD, int > &nonZeroIndex) override
Diffusion term Trace Flux.
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
virtual void v_DiffuseCalcDerivative(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfields, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
Diffusion Flux, calculate the physical derivatives.
TensorOfArray3D< NekDouble > m_viscTensor
void ApplyBCsO2(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const std::size_t var, const std::size_t dir, const Array< OneD, const NekDouble > &qfield, const Array< OneD, const NekDouble > &qFwd, const Array< OneD, const NekDouble > &qBwd, Array< OneD, NekDouble > &penaltyflux)
Imposes appropriate bcs for the 2nd order derivatives.
virtual void v_DiffuseVolumeFlux(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfields, TensorOfArray3D< NekDouble > &VolumeFlux, Array< OneD, int > &nonZeroIndex) override
Diffusion Volume Flux.
Array< OneD, NekDouble > m_traceOneOverH
h scaling for penalty term
void ApplyBCsO1(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd, Array< OneD, Array< OneD, NekDouble > > &flux01)
Imposes appropriate bcs for the 1st order derivatives.
static DiffusionSharedPtr create(std::string diffType)
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
SpatialDomains::Geometry1DSharedPtr GetGeom1D() const
SOLVER_UTILS_EXPORT void DiffuseCalcDerivative(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfields, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray)
SOLVER_UTILS_EXPORT void DiffuseVolumeFlux(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfields, TensorOfArray3D< NekDouble > &VolumeFlux, Array< OneD, int > &nonZeroIndex=NullInt1DArray)
Diffusion Volume FLux.
DiffusionFluxVecCBNS m_fluxVectorNS
SOLVER_UTILS_EXPORT void DiffuseTraceFlux(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfields, TensorOfArray3D< NekDouble > &VolumeFlux, Array< OneD, Array< OneD, NekDouble > > &TraceFlux, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray, Array< OneD, int > &nonZeroIndex=NullInt1DArray)
Diffusion term Trace Flux.
DiffusionFluxPenaltyNS m_fluxPenaltyNS
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< Expansion2D > Expansion2DSharedPtr
std::shared_ptr< Expansion1D > Expansion1DSharedPtr
std::shared_ptr< Expansion3D > Expansion3DSharedPtr
DiffusionFactory & GetDiffusionFactory()
The above copyright notice and this permission notice shall be included.
EquationOfStateFactory & GetEquationOfStateFactory()
Declaration of the equation of state factory singleton.
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
svtvvtp (scalar times vector plus scalar times vector):
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Neg(int n, T *x, const int incx)
Negate x = -x.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Zero(int n, T *x, const int incx)
Zero vector.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)