Nektar++
ExpList2DHomogeneous2D.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: ExpList2DHomogeneous2D.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: An ExpList1D which is homogeneous in 2 directions and so
32// uses much of the functionality from a ExpList2D and its daughters
33//
34///////////////////////////////////////////////////////////////////////////////
35
36#include <boost/core/ignore_unused.hpp>
37
39
40using namespace std;
41
42namespace Nektar
43{
44namespace MultiRegions
45{
46// Forward declaration for typedefs
48{
49}
50
51// Constructor for ExpList2DHomogeneous2D to act as a Explist1D field
54 const LibUtilities::BasisKey &HomoBasis_y,
55 const LibUtilities::BasisKey &HomoBasis_z, const NekDouble lhom_y,
56 const NekDouble lhom_z, const bool useFFT, const bool dealiasing,
58 : ExpListHomogeneous2D(eNoType, pSession, HomoBasis_y, HomoBasis_z, lhom_y,
59 lhom_z, useFFT, dealiasing)
60{
61 int n;
62
63 ASSERTL1(m_ny * m_nz == points.size(),
64 "Size of basis number of points and number of lines are "
65 "not the same");
66
67 for (n = 0; n < points.size(); ++n)
68 {
69 m_lines[n] = points[n];
70 (*m_exp).push_back(points[n]->GetExp(0));
71 }
72
74}
75
76/**
77 * @param In ExpList2DHomogeneous2D object to copy.
78 */
81{
82 for (int n = 0; n < m_lines.size(); ++n)
83 {
84 m_lines[n] = In.m_lines[n];
85 }
86
88}
89
90/**
91 * Destructor
92 */
94{
95}
96
98{
99 int i, n, cnt;
100 int ncoeffs_per_line = m_lines[0]->GetNcoeffs();
101 int npoints_per_line = m_lines[0]->GetTotPoints();
102
103 int nyzlines = m_lines.size();
104
105 // Set total coefficients and points
106 m_ncoeffs = ncoeffs_per_line * nyzlines;
107 m_npoints = npoints_per_line * nyzlines;
108
111
112 int nel = m_lines[0]->GetExpSize();
113 m_coeff_offset = Array<OneD, int>(nel * nyzlines);
114 m_phys_offset = Array<OneD, int>(nel * nyzlines);
115 Array<OneD, NekDouble> tmparray;
116
117 for (cnt = n = 0; n < nyzlines; ++n)
118 {
119 m_lines[n]->SetCoeffsArray(tmparray = m_coeffs + ncoeffs_per_line * n);
120 m_lines[n]->SetPhysArray(tmparray = m_phys + npoints_per_line * n);
121
122 for (i = 0; i < nel; ++i)
123 {
124 m_coeff_offset[cnt] =
125 m_lines[n]->GetCoeff_Offset(i) + n * ncoeffs_per_line;
126 m_phys_offset[cnt++] =
127 m_lines[n]->GetPhys_Offset(i) + n * npoints_per_line;
128 }
129 }
130}
131
136{
137 boost::ignore_unused(eid);
138
139 int n, m, j;
141 int nylines = m_homogeneousBasis_y->GetNumPoints();
142 int nzlines = m_homogeneousBasis_z->GetNumPoints();
143 int npoints = 1;
144
145 // Fill x-y-z-direction
148
149 Array<OneD, NekDouble> x(npoints);
150 Array<OneD, NekDouble> y(nylines);
151 Array<OneD, NekDouble> z(nzlines);
152
153 Vmath::Smul(nylines, m_lhom_y / 2.0, pts_y, 1, y, 1);
154 Vmath::Sadd(nylines, m_lhom_y / 2.0, y, 1, y, 1);
155
156 Vmath::Smul(nzlines, m_lhom_z / 2.0, pts_z, 1, z, 1);
157 Vmath::Sadd(nzlines, m_lhom_z / 2.0, z, 1, z, 1);
158
159 m_lines[0]->GetCoords(x);
160
161 for (m = 0; m < nzlines; ++m)
162 {
163 for (j = 0; j < nylines; ++j)
164 {
165 for (n = 0; n < npoints; ++n)
166 {
167 Vmath::Fill(1, x[n],
168 tmp_xc = xc0 + n + (j * npoints) +
169 (m * npoints * nylines),
170 1);
171 Vmath::Fill(1, y[j],
172 tmp_xc = xc1 + n + (j * npoints) +
173 (m * npoints * nylines),
174 1);
175 Vmath::Fill(1, z[m],
176 tmp_xc = xc2 + n + (j * npoints) +
177 (m * npoints * nylines),
178 1);
179 }
180 }
181 }
182}
183
185 const Array<OneD, const NekDouble> &inarray,
186 Array<OneD, NekDouble> &outarray)
187{
188 // just have a point expansion so copy inarray to outarray
189 Vmath::Vcopy(m_npoints, inarray, 1, outarray, 1);
190
191 if (!m_WaveSpace)
192 {
193 HomogeneousFwdTrans(m_npoints, outarray, outarray);
194 }
195}
196
198 const Array<OneD, const NekDouble> &inarray,
199 Array<OneD, NekDouble> &outarray)
200{
201 v_FwdTrans(inarray, outarray);
202}
203
205 const Array<OneD, const NekDouble> &inarray,
206 Array<OneD, NekDouble> &outarray)
207{
208 v_FwdTrans(inarray, outarray);
209}
210
211/**
212 * The operation calls the 2D plane coordinates through the
213 * function ExpList#GetCoords and then evaluated the third
214 * coordinate using the member \a m_lhom
215 *
216 * @param coord_0 After calculation, the \f$x_1\f$ coordinate
217 * will be stored in this array.
218 *
219 * @param coord_1 After calculation, the \f$x_2\f$ coordinate
220 * will be stored in this array. This
221 * coordinate might be evaluated using the
222 * predefined value \a m_lhom
223 *
224 * @param coord_2 After calculation, the \f$x_3\f$ coordinate
225 * will be stored in this array. This
226 * coordinate is evaluated using the
227 * predefined value \a m_lhom
228 */
232{
233 int n, m, j;
235 int npoints = 1;
236
237 int nylines = m_homogeneousBasis_y->GetNumPoints();
238 int nzlines = m_homogeneousBasis_z->GetNumPoints();
239
240 // Fill z-direction
243
244 Array<OneD, NekDouble> x(npoints);
245 Array<OneD, NekDouble> y(nylines);
246 Array<OneD, NekDouble> z(nzlines);
247
248 m_lines[0]->GetCoords(x);
249
250 Vmath::Smul(nylines, m_lhom_y / 2.0, pts_y, 1, y, 1);
251 Vmath::Sadd(nylines, m_lhom_y / 2.0, y, 1, y, 1);
252
253 Vmath::Smul(nzlines, m_lhom_z / 2.0, pts_z, 1, z, 1);
254 Vmath::Sadd(nzlines, m_lhom_z / 2.0, z, 1, z, 1);
255
256 for (m = 0; m < nzlines; ++m)
257 {
258 for (j = 0; j < nylines; ++j)
259 {
260 for (n = 0; n < npoints; ++n)
261 {
262 Vmath::Fill(1, x[n],
263 tmp_xc = xc0 + n + (j * npoints) +
264 (m * npoints * nylines),
265 1);
266 Vmath::Fill(1, y[j],
267 tmp_xc = xc1 + n + (j * npoints) +
268 (m * npoints * nylines),
269 1);
270 Vmath::Fill(1, z[m],
271 tmp_xc = xc2 + n + (j * npoints) +
272 (m * npoints * nylines),
273 1);
274 }
275 }
276 }
277}
278
279/**
280 * Write Tecplot Files Zone
281 * @param outfile Output file name.
282 * @param expansion Expansion that is considered
283 */
285 int expansion)
286{
287 int i, j;
288
289 int nquad0 = 1;
290 int nquad1 = m_homogeneousBasis_y->GetNumPoints();
291 int nquad2 = m_homogeneousBasis_z->GetNumPoints();
292
293 Array<OneD, NekDouble> coords[3];
294
295 coords[0] = Array<OneD, NekDouble>(3 * nquad0 * nquad1 * nquad2);
296 coords[1] = coords[0] + nquad0 * nquad1 * nquad2;
297 coords[2] = coords[1] + nquad0 * nquad1 * nquad2;
298
299 GetCoords(expansion, coords[0], coords[1], coords[2]);
300
301 outfile << "Zone, I=" << nquad1 << ", J=" << nquad0 * nquad2 << ", F=Block"
302 << std::endl;
303
304 for (j = 0; j < nquad1; ++j)
305 {
306 for (i = 0; i < nquad2 * GetCoordim(0) + 1; ++i)
307 {
308 outfile << coords[j][i] << " ";
309 }
310 outfile << std::endl;
311 }
312}
313
315 int expansion, int istrip)
316{
317 boost::ignore_unused(istrip);
318
319 int i, j;
320
321 int nquad0 = 1;
322 int nquad1 = m_homogeneousBasis_y->GetNumPoints();
323 int nquad2 = m_homogeneousBasis_z->GetNumPoints();
324
325 int ntot = nquad0 * nquad1 * nquad2;
326 int ntotminus = (nquad0) * (nquad1 - 1) * (nquad2 - 1);
327
328 Array<OneD, NekDouble> coords[3];
329 coords[0] = Array<OneD, NekDouble>(ntot);
330 coords[1] = Array<OneD, NekDouble>(ntot);
331 coords[2] = Array<OneD, NekDouble>(ntot);
332 GetCoords(expansion, coords[0], coords[1], coords[2]);
333
334 outfile << " <Piece NumberOfPoints=\"" << ntot << "\" NumberOfCells=\""
335 << ntotminus << "\">" << endl;
336 outfile << " <Points>" << endl;
337 outfile << " <DataArray type=\"Float32\" "
338 << "NumberOfComponents=\"3\" format=\"ascii\">" << endl;
339 outfile << " ";
340 for (i = 0; i < ntot; ++i)
341 {
342 for (j = 0; j < 3; ++j)
343 {
344 outfile << coords[j][i] << " ";
345 }
346 outfile << endl;
347 }
348 outfile << endl;
349 outfile << " </DataArray>" << endl;
350 outfile << " </Points>" << endl;
351 outfile << " <Cells>" << endl;
352 outfile << " <DataArray type=\"Int32\" "
353 << "Name=\"connectivity\" format=\"ascii\">" << endl;
354 for (i = 0; i < nquad0; ++i)
355 {
356 for (j = 0; j < nquad1 - 1; ++j)
357 {
358 outfile << j * nquad0 + i << " " << j * nquad0 + i + 1 << " "
359 << (j + 1) * nquad0 + i + 1 << " " << (j + 1) * nquad0 + i
360 << endl;
361 }
362 }
363 outfile << endl;
364 outfile << " </DataArray>" << endl;
365 outfile << " <DataArray type=\"Int32\" "
366 << "Name=\"offsets\" format=\"ascii\">" << endl;
367 for (i = 0; i < ntotminus; ++i)
368 {
369 outfile << i * 4 + 4 << " ";
370 }
371 outfile << endl;
372 outfile << " </DataArray>" << endl;
373 outfile << " <DataArray type=\"UInt8\" "
374 << "Name=\"types\" format=\"ascii\">" << endl;
375 for (i = 0; i < ntotminus; ++i)
376 {
377 outfile << "9 ";
378 }
379 outfile << endl;
380 outfile << " </DataArray>" << endl;
381 outfile << " </Cells>" << endl;
382 outfile << " <PointData>" << endl;
383}
384
385} // namespace MultiRegions
386} // namespace Nektar
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Describes the specification for a Basis.
Definition: Basis.h:47
Abstraction of a one-dimensional multi-elemental expansion which is merely a collection of local expa...
void SetCoeffPhys(void)
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
virtual void v_FwdTransBndConstrained(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
virtual void v_WriteTecplotZone(std::ostream &outfile, int expansion) override
virtual void v_FwdTransLocalElmt(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
virtual void v_GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2) override
virtual void v_WriteVtkPieceHeader(std::ostream &outfile, int expansion, int istrip) override
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expa...
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
NekDouble m_lhom_z
Width of homogeneous direction z.
int m_ny
Number of modes = number of poitns in y direction.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1092
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:1136
void GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
This function calculates the coordinates of all the elemental quadrature points .
Definition: ExpList.h:1785
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1072
const std::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2094
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1138
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1108
void HomogeneousFwdTrans(const int npts, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true)
Definition: ExpList.h:1863
int GetCoordim(int eid)
This function returns the dimension of the coordinates of the element eid.
Definition: ExpList.h:1926
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::vector< double > z(NPUPPER)
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:379
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191