119{
120 int i;
121 int npts = xc.size();
122
123 int nq = streak->GetTotPoints();
124 Array<OneD, NekDouble> derstreak(nq);
125 Array<OneD, NekDouble> x(nq);
126 Array<OneD, NekDouble> y(nq);
127 streak->GetCoords(x, y);
128
129 streak->BwdTrans(streak->GetCoeffs(), streak->UpdatePhys());
131
132
135
136 for (i = 0; i < npts; ++i)
137 {
138 xc[i] = x_min + (x_max - x_min) * i / ((
NekDouble)(npts - 1));
139 yc[i] = 0.0;
140 }
141
142 int elmtid, offset, cnt;
147 int maxiter = 100;
148 Array<OneD, NekDouble> coord(2);
150
151 cerr << "[";
152 for (int e = 0; e < npts; e++)
153 {
154 coord[0] = xc[e];
155 coord[1] = yc[e];
156 cout << e << endl;
157 if (!(e % 10))
158 {
159 cerr << ".";
160 }
161
162 F = 1000;
163 cnt = 0;
164 int its = 0;
165 int attempt = 0;
166
167 while (
abs(F) > 0.000000001)
168 {
169 ytmp = coord[1];
170 elmtid = streak->GetExpIndex(coord, 0.00001);
171 offset = streak->GetPhys_Offset(elmtid);
172 U = streak->GetExp(elmtid)->PhysEvaluate(coord, streak->GetPhys() +
173 offset);
174 dU =
175 streak->GetExp(elmtid)->PhysEvaluate(coord, derstreak + offset);
176 coord[1] = coord[1] - (U - cr) / dU;
177 F = U - cr;
178 ASSERTL0(coord[0] == xc[e],
" x coordinate must remain the same");
179
180
181
182
183 if (
abs(coord[1]) > 1)
184 {
185 coord[1] = ytmp + 0.01;
186 elmtid = streak->GetExpIndex(coord, 0.00001);
187 offset = streak->GetPhys_Offset(elmtid);
188 NekDouble Utmp = streak->GetExp(elmtid)->PhysEvaluate(
189 coord, streak->GetPhys() + offset);
190 NekDouble dUtmp = streak->GetExp(elmtid)->PhysEvaluate(
191 coord, derstreak + offset);
192 coord[1] = coord[1] - (Utmp - cr) / dUtmp;
193
194 if ((
abs(Utmp - cr) >
abs(F)) || (
abs(coord[1]) > 1))
195 {
196 coord[1] = ytmp - 0.01;
197 }
198
199 attempt++;
200 }
201 else
202 {
203 ASSERTL0(
abs(coord[1]) <= 1,
" y value out of bound +/-1");
204 }
205
206 its++;
207 if (its > 1000 &&
abs(F) < 0.0001)
208 {
209 cout << "warning streak position obtained with precision:" << F
210 << endl;
211 break;
212 }
213 else if (its > 1000)
214 {
215 ASSERTL0(
false,
"no convergence after 1000 iterations");
216 }
217 }
218
219 yc[e] = coord[1];
220 }
221 cerr << "]" << endl;
222
223
224 FILE *fp = fopen("interfacedat.geo", "w");
225
228
229 cnt = 1;
230 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, x_min, y_min);
231 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, x_max, y_min);
232 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, x_max, y_max);
233 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, x_min, y_max);
234
235 for (i = 0; i < npts; ++i)
236 {
237 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, xc[i],
238 yc[i]);
239 }
240
241 fclose(fp);
242
243
244
245 fp = fopen("interfacedat_up.geo", "w");
246
248
249 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, xc[0],
250 yc[0] + trans);
251
252 for (i = 1; i < npts - 1; ++i)
253 {
254 norm =
sqrt((xc[i + 1] - xc[i - 1]) * (xc[i + 1] - xc[i - 1]) +
255 (yc[i + 1] - yc[i - 1]) * (yc[i + 1] - yc[i - 1]));
256 nx = (yc[i - 1] - yc[i + 1]) / norm;
257 ny = (xc[i + 1] - xc[i - 1]) / norm;
258
259 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++,
260 xc[i] + nx * trans, yc[i] + ny * trans);
261 }
262
263 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, xc[npts - 1],
264 yc[npts - 1] + trans);
265
266
267
268 fp = fopen("interfacedat_dn.geo", "w");
269
270 trans = -trans;
271
272 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, xc[0],
273 yc[0] + trans);
274
275 for (i = 1; i < npts - 1; ++i)
276 {
277 norm =
sqrt((xc[i + 1] - xc[i - 1]) * (xc[i + 1] - xc[i - 1]) +
278 (yc[i + 1] - yc[i - 1]) * (yc[i + 1] - yc[i - 1]));
279 nx = (yc[i - 1] - yc[i + 1]) / norm;
280 ny = (xc[i + 1] - xc[i - 1]) / norm;
281
282 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++,
283 xc[i] + nx * trans, yc[i] + ny * trans);
284 }
285
286 fprintf(fp, "Point(%d)={%12.10lf,%12.10lf,0,1.0}; \n", cnt++, xc[npts - 1],
287 yc[npts - 1] + trans);
288}
#define ASSERTL0(condition, msg)
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
scalarT< T > abs(scalarT< T > in)
scalarT< T > sqrt(scalarT< T > in)