Nektar++
FilterEnergy.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: FilterEnergy.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Output kinetic energy and enstrophy.
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <iomanip>
36
37#include <boost/core/ignore_unused.hpp>
38
41
42using namespace std;
43
44namespace Nektar
45{
46namespace SolverUtils
47{
48std::string FilterEnergy::className =
50 "Energy", FilterEnergy::create);
51
53 const std::weak_ptr<EquationSystem> &pEquation,
54 const ParamMap &pParams)
55 : Filter(pSession, pEquation), m_index(-1), m_homogeneous(false), m_planes()
56{
57 std::string outName;
58
59 // OutputFile
60 auto it = pParams.find("OutputFile");
61 if (it == pParams.end())
62 {
63 outName = m_session->GetSessionName();
64 }
65 else
66 {
67 ASSERTL0(it->second.length() > 0, "Missing parameter 'OutputFile'.");
68 outName = it->second;
69 }
70 outName += ".eny";
71
72 m_comm = pSession->GetComm();
73 if (m_comm->GetRank() == 0)
74 {
75 m_outFile.open(outName.c_str());
76 ASSERTL0(m_outFile.good(), "Unable to open: '" + outName + "'");
77 m_outFile.setf(ios::scientific, ios::floatfield);
78 m_outFile << "# Time Kinetic energy "
79 << "Enstrophy" << endl
80 << "# ---------------------------------------------"
81 << "--------------" << endl;
82 }
83 pSession->LoadParameter("LZ", m_homogeneousLength, 0.0);
84
85 // OutputFrequency
86 it = pParams.find("OutputFrequency");
87 ASSERTL0(it != pParams.end(), "Missing parameter 'OutputFrequency'.");
88 LibUtilities::Equation equ(m_session->GetInterpreter(), it->second);
89 m_outputFrequency = round(equ.Evaluate());
90}
91
93{
94}
95
98 const NekDouble &time)
99{
100 m_index = -1;
102
103 ASSERTL0(pFields[0]->GetExpType() != MultiRegions::e1D,
104 "1D expansion not supported for energy filter");
105
106 ASSERTL0(pFields[0]->GetExpType() != MultiRegions::e2D,
107 "2D expansion not supported for energy filter");
108
109 ASSERTL0(pFields[0]->GetExpType() != MultiRegions::e3DH2D,
110 "Homogeneous 2D expansion not supported for energy filter");
111
112 if (pFields[0]->GetExpType() == MultiRegions::e3DH1D)
113 {
114 m_homogeneous = true;
115 }
116
117 // Calculate area/volume of domain.
118 if (m_homogeneous)
119 {
120 m_planes = pFields[0]->GetZIDs();
121 areaField = pFields[0]->GetPlane(0);
122 }
123 else
124 {
125 areaField = pFields[0];
126 }
127
128 Array<OneD, NekDouble> inarray(areaField->GetNpoints(), 1.0);
129 m_area = areaField->Integral(inarray);
130
131 if (m_homogeneous)
132 {
134 }
135
136 // Output values at initial time.
137 v_Update(pFields, time);
138}
139
142 const NekDouble &time)
143{
144 int i, nPoints = pFields[0]->GetNpoints();
145
146 m_index++;
147
148 if (m_index % m_outputFrequency > 0)
149 {
150 return;
151 }
152
153 // Lock equation system pointer
154 auto equ = m_equ.lock();
155 ASSERTL0(equ, "Weak pointer expired");
156
157 auto fluidEqu = std::dynamic_pointer_cast<FluidInterface>(equ);
158 ASSERTL0(fluidEqu, "Energy filter is incompatible with this solver.");
159
160 // Store physical values in an array
161 Array<OneD, Array<OneD, NekDouble>> physfields(pFields.size());
162 for (i = 0; i < pFields.size(); ++i)
163 {
164 physfields[i] = pFields[i]->GetPhys();
165 }
166
167 // Calculate kinetic energy.
168 NekDouble Ek = 0.0;
169 Array<OneD, NekDouble> tmp(nPoints, 0.0);
172 for (i = 0; i < 3; ++i)
173 {
174 u[i] = Array<OneD, NekDouble>(nPoints);
175 }
176 fluidEqu->GetVelocity(physfields, u);
177
178 for (i = 0; i < 3; ++i)
179 {
180 if (m_homogeneous && pFields[i]->GetWaveSpace())
181 {
182 pFields[i]->HomogeneousBwdTrans(nPoints, u[i], u[i]);
183 }
184
185 Vmath::Vvtvp(nPoints, u[i], 1, u[i], 1, tmp, 1, tmp, 1);
186 }
187
188 if (!fluidEqu->HasConstantDensity())
189 {
190 density = Array<OneD, NekDouble>(nPoints);
191 fluidEqu->GetDensity(physfields, density);
192 Vmath::Vmul(nPoints, density, 1, tmp, 1, tmp, 1);
193 }
194
195 if (m_homogeneous)
196 {
197 Array<OneD, NekDouble> tmp2(nPoints, 0.0);
198 pFields[0]->HomogeneousFwdTrans(nPoints, tmp, tmp2);
199 Ek = pFields[0]->GetPlane(0)->Integral(tmp2) * m_homogeneousLength;
200 }
201 else
202 {
203 Ek = pFields[0]->Integral(tmp);
204 }
205
206 Ek /= 2.0 * m_area;
207
208 if (m_comm->GetRank() == 0)
209 {
210 m_outFile << setw(17) << setprecision(8) << time << setw(22)
211 << setprecision(11) << Ek;
212 }
213
214 bool waveSpace[3] = {pFields[0]->GetWaveSpace(), pFields[1]->GetWaveSpace(),
215 pFields[2]->GetWaveSpace()};
216
217 if (m_homogeneous)
218 {
219 for (i = 0; i < 3; ++i)
220 {
221 pFields[i]->SetWaveSpace(false);
222 }
223 }
224
225 // First calculate vorticity field.
226 Array<OneD, NekDouble> tmp2(nPoints), tmp3(nPoints);
227 Vmath::Zero(nPoints, tmp, 1);
228 for (i = 0; i < 3; ++i)
229 {
230 int f1 = (i + 2) % 3, c2 = f1;
231 int c1 = (i + 1) % 3, f2 = c1;
232 pFields[f1]->PhysDeriv(c1, u[f1], tmp2);
233 pFields[f2]->PhysDeriv(c2, u[f2], tmp3);
234 Vmath::Vsub(nPoints, tmp2, 1, tmp3, 1, tmp2, 1);
235 Vmath::Vvtvp(nPoints, tmp2, 1, tmp2, 1, tmp, 1, tmp, 1);
236 }
237
238 if (!fluidEqu->HasConstantDensity())
239 {
240 Vmath::Vmul(nPoints, density, 1, tmp, 1, tmp, 1);
241 }
242
243 if (m_homogeneous)
244 {
245 for (i = 0; i < 3; ++i)
246 {
247 pFields[i]->SetWaveSpace(waveSpace[i]);
248 }
249 pFields[0]->HomogeneousFwdTrans(nPoints, tmp, tmp);
250 Ek = pFields[0]->GetPlane(0)->Integral(tmp) * m_homogeneousLength;
251 }
252 else
253 {
254 Ek = pFields[0]->Integral(tmp);
255 }
256
257 Ek /= 2.0 * m_area;
258
259 if (m_comm->GetRank() == 0)
260 {
261 m_outFile << setw(22) << setprecision(11) << Ek << endl;
262 }
263}
264
267 const NekDouble &time)
268{
269 boost::ignore_unused(pFields, time);
270 m_outFile.close();
271}
272
274{
275 return true;
276}
277
278} // namespace SolverUtils
279} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
virtual SOLVER_UTILS_EXPORT void v_Initialise(const Array< OneD, const MultiRegions::ExpListSharedPtr > &pField, const NekDouble &time) override
virtual SOLVER_UTILS_EXPORT void v_Update(const Array< OneD, const MultiRegions::ExpListSharedPtr > &pField, const NekDouble &time) override
static SolverUtils::FilterSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< SolverUtils::EquationSystem > &pEquation, const ParamMap &pParams)
Creates an instance of this class.
Definition: FilterEnergy.h:48
static std::string className
Name of the class.
Definition: FilterEnergy.h:60
virtual SOLVER_UTILS_EXPORT void v_Finalise(const Array< OneD, const MultiRegions::ExpListSharedPtr > &pField, const NekDouble &time) override
LibUtilities::CommSharedPtr m_comm
Definition: FilterEnergy.h:87
SOLVER_UTILS_EXPORT FilterEnergy(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const ParamMap &pParams)
SOLVER_UTILS_EXPORT ~FilterEnergy()
Array< OneD, unsigned int > m_planes
Definition: FilterEnergy.h:88
virtual SOLVER_UTILS_EXPORT bool v_IsTimeDependent() override
LibUtilities::SessionReaderSharedPtr m_session
Definition: Filter.h:85
const std::weak_ptr< EquationSystem > m_equ
Definition: Filter.h:86
std::map< std::string, std::string > ParamMap
Definition: Filter.h:67
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
FilterFactory & GetFilterFactory()
Definition: Filter.cpp:41
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414