Nektar++
GlobalLinSysPETScFull.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: GlobalLinSysPETScFull.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: GlobalLinSysPETScFull definition
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38#include "petscao.h"
39#include "petscis.h"
40
41using namespace std;
42
43namespace Nektar
44{
45namespace MultiRegions
46{
47/**
48 * @class GlobalLinSysPETScFull
49 */
50
51/**
52 * Registers the class with the Factory.
53 */
56 "PETScFull", GlobalLinSysPETScFull::create, "PETSc Full Matrix.");
57
58/// Constructor for full direct matrix solve.
60 const GlobalLinSysKey &pLinSysKey, const std::weak_ptr<ExpList> &pExp,
61 const std::shared_ptr<AssemblyMap> &pLocToGloMap)
62 : GlobalLinSys(pLinSysKey, pExp, pLocToGloMap),
63 GlobalLinSysPETSc(pLinSysKey, pExp, pLocToGloMap)
64{
65 const int nDirDofs = pLocToGloMap->GetNumGlobalDirBndCoeffs();
66
67 int i, j, n, cnt, gid1, gid2, loc_lda;
68 NekDouble sign1, sign2, value;
70
71 // CALCULATE REORDERING MAPPING
72 CalculateReordering(pLocToGloMap->GetGlobalToUniversalMap(),
73 pLocToGloMap->GetGlobalToUniversalMapUnique(),
74 pLocToGloMap);
75
76 // SET UP VECTORS AND MATRIX
77 SetUpMatVec(pLocToGloMap->GetNumGlobalCoeffs(), nDirDofs);
78
79 // SET UP SCATTER OBJECTS
81
82 // CONSTRUCT KSP OBJECT
83 SetUpSolver(pLocToGloMap->GetIterativeTolerance());
84
85 // POPULATE MATRIX
86 for (n = cnt = 0; n < m_expList.lock()->GetNumElmts(); ++n)
87 {
88 loc_mat = GetBlock(n);
89 loc_lda = loc_mat->GetRows();
90
91 for (i = 0; i < loc_lda; ++i)
92 {
93 gid1 = pLocToGloMap->GetLocalToGlobalMap(cnt + i) - nDirDofs;
94 sign1 = pLocToGloMap->GetLocalToGlobalSign(cnt + i);
95 if (gid1 >= 0)
96 {
97 int gid1ro = m_reorderedMap[gid1];
98 for (j = 0; j < loc_lda; ++j)
99 {
100 gid2 =
101 pLocToGloMap->GetLocalToGlobalMap(cnt + j) - nDirDofs;
102 sign2 = pLocToGloMap->GetLocalToGlobalSign(cnt + j);
103 if (gid2 >= 0)
104 {
105 int gid2ro = m_reorderedMap[gid2];
106 value = sign1 * sign2 * (*loc_mat)(i, j);
107 MatSetValue(m_matrix, gid1ro, gid2ro, value,
108 ADD_VALUES);
109 }
110 }
111 }
112 }
113 cnt += loc_lda;
114 }
115
116 // ASSEMBLE MATRIX
117 MatAssemblyBegin(m_matrix, MAT_FINAL_ASSEMBLY);
118 MatAssemblyEnd(m_matrix, MAT_FINAL_ASSEMBLY);
119}
120
122{
123}
124
125/**
126 * Solve the linear system using a full global matrix system.
127 */
129 const Array<OneD, const NekDouble> &pLocInput,
130 Array<OneD, NekDouble> &pLocOutput,
131 const AssemblyMapSharedPtr &pLocToGloMap,
132 const Array<OneD, const NekDouble> &pDirForcing)
133{
134 std::shared_ptr<MultiRegions::ExpList> expList = m_expList.lock();
135 bool dirForcCalculated = (bool)pDirForcing.size();
136 int nDirDofs = pLocToGloMap->GetNumGlobalDirBndCoeffs();
137 int nGlobDofs = pLocToGloMap->GetNumGlobalCoeffs();
138 int nLocDofs = pLocToGloMap->GetNumLocalCoeffs();
139
140 m_locToGloMap = pLocToGloMap; // required for DoMatrixMultiply
141
142 Array<OneD, NekDouble> tmp(nLocDofs);
143 Array<OneD, NekDouble> tmp1(nLocDofs);
144 Array<OneD, NekDouble> global(nGlobDofs, 0.0);
145
146 int nDirTotal = nDirDofs;
147 expList->GetComm()->GetRowComm()->AllReduce(nDirTotal,
149
150 if (nDirTotal)
151 {
152 // calculate the dirichlet forcing
153 if (dirForcCalculated)
154 {
155 // assume pDirForcing is in local space
156 ASSERTL0(
157 pDirForcing.size() >= nLocDofs,
158 "DirForcing is not of sufficient size. Is it in local space?");
159 Vmath::Vsub(nLocDofs, pLocInput, 1, pDirForcing, 1, tmp1, 1);
160 }
161 else
162 {
163 // Calculate the dirichlet forcing and substract it
164 // from the rhs
165 expList->GeneralMatrixOp(m_linSysKey, pLocOutput, tmp);
166
167 // Apply robin boundary conditions to the solution.
168 for (auto &r : m_robinBCInfo) // add robin mass matrix
169 {
172
173 int n = r.first;
174
175 int offset = expList->GetCoeff_Offset(n);
176 LocalRegions::ExpansionSharedPtr vExp = expList->GetExp(n);
177
178 // add local matrix contribution
179 for (rBC = r.second; rBC; rBC = rBC->next)
180 {
181 vExp->AddRobinTraceContribution(
182 rBC->m_robinID, rBC->m_robinPrimitiveCoeffs,
183 pLocOutput + offset, tmploc = tmp + offset);
184 }
185 }
186
187 Vmath::Vsub(nLocDofs, pLocInput, 1, tmp, 1, tmp1, 1);
188 }
189
190 SolveLinearSystem(nGlobDofs, tmp1, tmp, pLocToGloMap, nDirDofs);
191
192 // Add back initial and boundary condition
193 Vmath::Vadd(nLocDofs, tmp, 1, pLocOutput, 1, pLocOutput, 1);
194 }
195 else
196 {
197 SolveLinearSystem(nGlobDofs, pLocInput, pLocOutput, pLocToGloMap);
198 }
199}
200
201/**
202 * @brief Apply matrix-vector multiplication using local approach and
203 * the assembly map.
204 *
205 * @param input Vector input.
206 * @param output Result of multiplication.
207 */
210{
211 std::shared_ptr<MultiRegions::ExpList> expList = m_expList.lock();
212
213 int nLocDofs = m_locToGloMap->GetNumLocalCoeffs();
214
215 Array<OneD, NekDouble> tmp(nLocDofs);
216 Array<OneD, NekDouble> tmp1(nLocDofs);
217
218 m_locToGloMap->GlobalToLocal(input, tmp);
219
220 // Perform matrix-vector operation A*d_i
221 expList->GeneralMatrixOp(m_linSysKey, tmp, tmp1);
222
223 m_locToGloMap->Assemble(tmp1, output);
224}
225
226} // namespace MultiRegions
227} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
A global linear system.
Definition: GlobalLinSys.h:72
const std::weak_ptr< ExpList > m_expList
Local Matrix System.
Definition: GlobalLinSys.h:124
const std::map< int, RobinBCInfoSharedPtr > m_robinBCInfo
Robin boundary info.
Definition: GlobalLinSys.h:126
void SolveLinearSystem(const int pNumRows, const Array< OneD, const NekDouble > &pInput, Array< OneD, NekDouble > &pOutput, const AssemblyMapSharedPtr &locToGloMap, const int pNumDir=0)
Solve the linear system for given input and output vectors.
Definition: GlobalLinSys.h:192
const GlobalLinSysKey m_linSysKey
Key associated with this linear system.
Definition: GlobalLinSys.h:122
DNekScalMatSharedPtr GetBlock(unsigned int n)
Definition: GlobalLinSys.h:211
GlobalLinSysPETScFull(const GlobalLinSysKey &pLinSysKey, const std::weak_ptr< ExpList > &pExpList, const std::shared_ptr< AssemblyMap > &pLocToGloMap)
Constructor for full direct matrix solve.
static std::string className
Name of class.
static GlobalLinSysSharedPtr create(const GlobalLinSysKey &pLinSysKey, const std::weak_ptr< ExpList > &pExpList, const std::shared_ptr< AssemblyMap > &pLocToGloMap)
Creates an instance of this class.
virtual void v_Solve(const Array< OneD, const NekDouble > &in, Array< OneD, NekDouble > &out, const AssemblyMapSharedPtr &locToGloMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) override
Solve the linear system for given input and output vectors using a specified local to global map.
std::shared_ptr< AssemblyMap > m_locToGloMap
virtual void v_DoMatrixMultiply(const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output) override
Apply matrix-vector multiplication using local approach and the assembly map.
A PETSc global linear system.
std::vector< int > m_reorderedMap
Reordering that takes universal IDs to a unique row in the PETSc matrix.
void SetUpScatter()
Set up PETSc local (equivalent to Nektar++ global) and global (equivalent to universal) scatter maps.
void SetUpSolver(NekDouble tolerance)
Set up KSP solver object.
void SetUpMatVec(int nGlobal, int nDir)
Construct PETSc matrix and vector handles.
void CalculateReordering(const Array< OneD, const int > &glo2uniMap, const Array< OneD, const int > &glo2unique, const AssemblyMapSharedPtr &pLocToGloMap)
Calculate a reordering of universal IDs for PETSc.
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
std::shared_ptr< RobinBCInfo > RobinBCInfoSharedPtr
GlobalLinSysFactory & GetGlobalLinSysFactory()
std::shared_ptr< AssemblyMap > AssemblyMapSharedPtr
Definition: AssemblyMap.h:52
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
double NekDouble
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414