Nektar++
MappingExtrapolate.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: MappingExtrapolate.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Abstract base class for MappingExtrapolate.
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38namespace Nektar
39{
40/**
41 * Registers the class with the Factory.
42 */
45 "Mapping", MappingExtrapolate::create, "Mapping");
46
51 const SolverUtils::AdvectionSharedPtr advObject)
52 : StandardExtrapolate(pSession, pFields, pPressure, pVel, advObject)
53{
55
56 // Load solve parameters related to the mapping
57 // Flags determining if pressure/viscous terms should be treated implicitly
58 m_session->MatchSolverInfo("MappingImplicitPressure", "True",
59 m_implicitPressure, false);
60 m_session->MatchSolverInfo("MappingImplicitViscous", "True",
61 m_implicitViscous, false);
62
63 // Relaxation parameter for pressure system
64 m_session->LoadParameter("MappingPressureRelaxation", m_pressureRelaxation,
65 1.0);
66}
67
69{
70}
71
72/**
73 *
74 */
77{
78 if (m_HBCnumber > 0)
79 {
80 size_t cnt, n;
81 size_t physTot = m_fields[0]->GetTotPoints();
82 size_t nvel = m_fields.size() - 1;
83
85 // Remove previous correction
86 for (cnt = n = 0; n < m_PBndConds.size(); ++n)
87 {
88 if (m_PBndConds[n]->GetUserDefined() == "H")
89 {
90 size_t nq = m_PBndExp[n]->GetNcoeffs();
91 Vmath::Vsub(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1,
92 &(m_bcCorrection[cnt]), 1,
93 &(m_PBndExp[n]->UpdateCoeffs()[0]), 1);
94 cnt += nq;
95 }
96 }
97
98 // Calculate new correction
99 Array<OneD, NekDouble> Jac(physTot, 0.0);
100 m_mapping->GetJacobian(Jac);
101
102 Array<OneD, Array<OneD, NekDouble>> correction(nvel);
106 for (size_t i = 0; i < nvel; i++)
107 {
108 wk[i] = Array<OneD, NekDouble>(physTot, 0.0);
109 gradP[i] = Array<OneD, NekDouble>(physTot, 0.0);
110 correction[i] = Array<OneD, NekDouble>(physTot, 0.0);
111 }
112
113 // Calculate G(p)
114 for (size_t i = 0; i < nvel; ++i)
115 {
117 gradP[i]);
118 if (m_fields[0]->GetWaveSpace())
119 {
120 m_fields[0]->HomogeneousBwdTrans(physTot, gradP[i], wk[i]);
121 }
122 else
123 {
124 Vmath::Vcopy(physTot, gradP[i], 1, wk[i], 1);
125 }
126 }
127 m_mapping->RaiseIndex(wk, correction); // G(p)
128
129 // alpha*J*(G(p))
130 if (!m_mapping->HasConstantJacobian())
131 {
132 for (size_t i = 0; i < nvel; ++i)
133 {
134 Vmath::Vmul(physTot, correction[i], 1, Jac, 1, correction[i],
135 1);
136 }
137 }
138 for (size_t i = 0; i < nvel; ++i)
139 {
140 Vmath::Smul(physTot, m_pressureRelaxation, correction[i], 1,
141 correction[i], 1);
142 }
143
144 if (m_pressure->GetWaveSpace())
145 {
146 for (size_t i = 0; i < nvel; ++i)
147 {
148 m_pressure->HomogeneousFwdTrans(physTot, correction[i],
149 correction[i]);
150 }
151 }
152 // p_i - alpha*J*div(G(p))
153 for (size_t i = 0; i < nvel; ++i)
154 {
155 Vmath::Vsub(physTot, gradP[i], 1, correction[i], 1, correction[i],
156 1);
157 }
158
159 // Get value at boundary and calculate Inner product
163 for (n = cnt = 0; n < m_PBndConds.size(); ++n)
164 {
165 // High order boundary condition;
166 if (boost::iequals(m_PBndConds[n]->GetUserDefined(), "H"))
167 {
168 m_fields[0]->GetBndElmtExpansion(n, BndElmtExp);
169
170 // Obtaining fields on BndElmtExp
171 for (int i = 0; i < m_bnd_dim; i++)
172 {
173 m_fields[0]->ExtractPhysToBndElmt(n, correction[i],
174 correctionElmt[i]);
175 }
176
177 Vals = m_bcCorrection + cnt;
178 // Getting values on the edge and filling the correction
179 for (int i = 0; i < m_bnd_dim; i++)
180 {
181 m_fields[0]->ExtractElmtToBndPhys(n, correctionElmt[i],
182 BndValues[i]);
183 }
184 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Vals);
185
186 // Get offset for next terms
187 cnt += m_PBndExp[n]->GetNcoeffs();
188 }
189 }
190
191 // Apply new correction
192 for (size_t cnt = n = 0; n < m_PBndConds.size(); ++n)
193 {
194 if (m_PBndConds[n]->GetUserDefined() == "H")
195 {
196 size_t nq = m_PBndExp[n]->GetNcoeffs();
197 Vmath::Vadd(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1,
198 &(m_bcCorrection[cnt]), 1,
199 &(m_PBndExp[n]->UpdateCoeffs()[0]), 1);
200 cnt += nq;
201 }
202 }
203 }
204}
205
207 const Array<OneD, const Array<OneD, NekDouble>> &fields,
208 const Array<OneD, const Array<OneD, NekDouble>> &N, NekDouble kinvis)
209{
210 if (m_mapping->HasConstantJacobian() && !m_implicitViscous)
211 {
212 Extrapolate::v_CalcNeumannPressureBCs(fields, N, kinvis);
213 }
214 else
215 {
216 size_t physTot = m_fields[0]->GetTotPoints();
217 size_t nvel = m_fields.size() - 1;
218 size_t i, n, cnt;
219
222
225 // Get transformation Jacobian
226 Array<OneD, NekDouble> Jac(physTot, 0.0);
227 m_mapping->GetJacobian(Jac);
228 // Declare variables
232 Array<OneD, Array<OneD, NekDouble>> fields_new(nvel);
234 // Temporary variables
235 Array<OneD, NekDouble> tmp(physTot, 0.0);
236 Array<OneD, NekDouble> tmp2(physTot, 0.0);
237 for (int i = 0; i < m_bnd_dim; i++)
238 {
239 N_new[i] = Array<OneD, NekDouble>(physTot, 0.0);
240 }
241 for (i = 0; i < nvel; i++)
242 {
243 Q_field[i] = Array<OneD, NekDouble>(physTot, 0.0);
244 fields_new[i] = Array<OneD, NekDouble>(physTot, 0.0);
245 }
246
247 // Multiply convective terms by Jacobian
248 for (int i = 0; i < m_bnd_dim; i++)
249 {
250 if (m_fields[0]->GetWaveSpace())
251 {
252 m_fields[0]->HomogeneousBwdTrans(physTot, N[i], N_new[i]);
253 }
254 else
255 {
256 Vmath::Vcopy(physTot, N[i], 1, N_new[i], 1);
257 }
258 Vmath::Vmul(physTot, Jac, 1, N_new[i], 1, N_new[i], 1);
259 if (m_fields[0]->GetWaveSpace())
260 {
261 m_fields[0]->HomogeneousFwdTrans(physTot, N_new[i], N_new[i]);
262 }
263 }
264
265 // Get velocity in physical space
266 for (i = 0; i < nvel; i++)
267 {
268 if (m_fields[0]->GetWaveSpace())
269 {
270 m_fields[0]->HomogeneousBwdTrans(physTot, fields[i],
271 fields_new[i]);
272 }
273 else
274 {
275 Vmath::Vcopy(physTot, fields[i], 1, fields_new[i], 1);
276 }
277 }
278
279 // Calculate appropriate form of the CurlCurl operator
280 m_mapping->CurlCurlField(fields_new, Q_field, m_implicitViscous);
281
282 // If viscous terms are treated explicitly,
283 // add grad(U/J \dot grad J) to CurlCurl
285 {
286 m_mapping->DotGradJacobian(fields_new, tmp);
287 Vmath::Vdiv(physTot, tmp, 1, Jac, 1, tmp, 1);
288
289 bool wavespace = m_fields[0]->GetWaveSpace();
290 m_fields[0]->SetWaveSpace(false);
291 for (int i = 0; i < m_bnd_dim; i++)
292 {
293 m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], tmp,
294 tmp2);
295 Vmath::Vadd(physTot, Q_field[i], 1, tmp2, 1, Q_field[i], 1);
296 }
297 m_fields[0]->SetWaveSpace(wavespace);
298 }
299
300 // Multiply by Jacobian and convert to wavespace (if necessary)
301 for (int i = 0; i < m_bnd_dim; i++)
302 {
303 Vmath::Vmul(physTot, Jac, 1, fields_new[i], 1, fields_new[i], 1);
304 Vmath::Vmul(physTot, Jac, 1, Q_field[i], 1, Q_field[i], 1);
305 if (m_fields[0]->GetWaveSpace())
306 {
307 m_fields[0]->HomogeneousFwdTrans(physTot, fields_new[i],
308 fields_new[i]);
309 m_fields[0]->HomogeneousFwdTrans(physTot, Q_field[i],
310 Q_field[i]);
311 }
312 }
313
315 for (n = cnt = 0; n < m_PBndConds.size(); ++n)
316 {
317 // High order boundary condition;
318 if (boost::iequals(m_PBndConds[n]->GetUserDefined(), "H"))
319 {
320 m_fields[0]->GetBndElmtExpansion(n, BndElmtExp);
321 size_t nq = BndElmtExp->GetTotPoints();
322
323 // Obtaining fields on BndElmtExp
324 for (int i = 0; i < m_bnd_dim; i++)
325 {
326 m_fields[0]->ExtractPhysToBndElmt(n, fields_new[i],
327 Velocity[i]);
328 m_fields[0]->ExtractPhysToBndElmt(n, N_new[i],
329 Advection[i]);
330 m_fields[0]->ExtractPhysToBndElmt(n, Q_field[i], Q[i]);
331 }
332
333 // Mounting advection component into the high-order condition
334 for (int i = 0; i < m_bnd_dim; i++)
335 {
336 MountHOPBCs(nq, kinvis, Q[i], Advection[i]);
337 }
338
339 Pvals = (m_pressureHBCs[m_intSteps - 1]) + cnt;
340 Uvals = (m_iprodnormvel[m_intSteps]) + cnt;
341
342 // Getting values on the edge and filling the pressure boundary
343 // expansion and the acceleration term. Multiplication by the
344 // normal is required
345 for (int i = 0; i < m_bnd_dim; i++)
346 {
347 m_fields[0]->ExtractElmtToBndPhys(n, Q[i], BndValues[i]);
348 }
349 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Pvals);
350
351 for (int i = 0; i < m_bnd_dim; i++)
352 {
353 m_fields[0]->ExtractElmtToBndPhys(n, Velocity[i],
354 BndValues[i]);
355 }
356 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Uvals);
357
358 // Get offset for next terms
359 cnt += m_PBndExp[n]->GetNcoeffs();
360 }
361 }
362 }
363 // If pressure terms are treated implicitly, we need to multiply
364 // by the relaxation parameter, and zero the correction term
366 {
369 m_pressureHBCs[m_intSteps - 1], 1);
370 }
372}
373} // namespace Nektar
Array< OneD, Array< OneD, NekDouble > > m_pressureHBCs
Storage for current and previous levels of high order pressure boundary conditions.
Definition: Extrapolate.h:242
int m_bnd_dim
bounday dimensionality
Definition: Extrapolate.h:218
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
Definition: Extrapolate.h:202
virtual void v_CalcNeumannPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &fields, const Array< OneD, const Array< OneD, NekDouble > > &N, NekDouble kinvis)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Velocity fields.
Definition: Extrapolate.h:199
Array< OneD, Array< OneD, NekDouble > > m_iprodnormvel
Storage for current and previous levels of the inner product of normal velocity.
Definition: Extrapolate.h:246
int m_intSteps
Maximum points used in pressure BC evaluation.
Definition: Extrapolate.h:236
Array< OneD, MultiRegions::ExpListSharedPtr > m_PBndExp
pressure boundary conditions expansion container
Definition: Extrapolate.h:224
void MountHOPBCs(int HBCdata, NekDouble kinvis, Array< OneD, NekDouble > &Q, Array< OneD, const NekDouble > &Advection)
Definition: Extrapolate.h:378
Array< OneD, const SpatialDomains::BoundaryConditionShPtr > m_PBndConds
pressure boundary conditions container
Definition: Extrapolate.h:221
LibUtilities::SessionReaderSharedPtr m_session
Definition: Extrapolate.h:191
static GLOBAL_MAPPING_EXPORT MappingSharedPtr Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Return a pointer to the mapping, creating it on first call.
Definition: Mapping.cpp:272
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
MappingExtrapolate(const LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields, MultiRegions::ExpListSharedPtr pPressure, const Array< OneD, int > pVel, const SolverUtils::AdvectionSharedPtr advObject)
virtual void v_CalcNeumannPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &fields, const Array< OneD, const Array< OneD, NekDouble > > &N, NekDouble kinvis)
Array< OneD, NekDouble > m_bcCorrection
static std::string className
Name of class.
GlobalMapping::MappingSharedPtr m_mapping
static ExtrapolateSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, MultiRegions::ExpListSharedPtr &pPressure, const Array< OneD, int > &pVel, const SolverUtils::AdvectionSharedPtr &advObject)
Creates an instance of this class.
virtual void v_CorrectPressureBCs(const Array< OneD, NekDouble > &pressure)
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:83
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
std::shared_ptr< Advection > AdvectionSharedPtr
A shared pointer to an Advection object.
Definition: Advection.h:56
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:48
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414