Nektar++
MappingXYofZ.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: MappingXYofZ.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Mapping of the type X = x + f(z), Y = y + g(z)
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <boost/core/ignore_unused.hpp>
36
39
40namespace Nektar
41{
42namespace GlobalMapping
43{
44
45std::string MappingXYofZ::className =
47 "X = x + f(z), Y = y +g(z)");
48
49/**
50 * @class MappingXYofZ
51 * This class implements a constant-Jacobian mapping defined by
52 * \f[ \bar{x} = \bar{x}(x,z) = x + f(z) \f]
53 * \f[ \bar{y} = \bar{y}(y,z) = y + g(z) \f]
54 * \f[ \bar{z} = z \f]
55 * where \f$(\bar{x},\bar{y},\bar{z})\f$ are the Cartesian (physical)
56 * coordinates and \f$(x,y,z)\f$ are the transformed (computational)
57 * coordinates.
58 */
62 : Mapping(pSession, pFields)
63{
64}
65
66/**
67 *
68 */
71 const TiXmlElement *pMapping)
72{
73 Mapping::v_InitObject(pFields, pMapping);
74
75 m_constantJacobian = true;
76
78 "Mapping X = x + f(z), Y = y+g(z) needs 3 velocity components.");
79}
80
82 const Array<OneD, Array<OneD, NekDouble>> &inarray,
84{
85 int physTot = m_fields[0]->GetTotPoints();
86
87 // U1 = u1 + fz*u3
88 Vmath::Vvtvp(physTot, m_GeometricInfo[0], 1, inarray[2], 1, inarray[0], 1,
89 outarray[0], 1);
90
91 // U2 = u2 + gz*u3
92 Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[2], 1, inarray[1], 1,
93 outarray[1], 1);
94
95 // U3 = u3
96 Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
97}
98
100 const Array<OneD, Array<OneD, NekDouble>> &inarray,
102{
103 int physTot = m_fields[0]->GetTotPoints();
104 Array<OneD, NekDouble> wk(physTot, 0.0);
105
106 // U1 = u1
107 Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
108
109 // U2 = u2
110 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
111
112 // U3 = u3 - fz*u1 - gz*u2
113 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, wk, 1);
114 Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
115 Vmath::Vmul(physTot, m_GeometricInfo[3], 1, inarray[1], 1, wk, 1);
116 Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
117}
118
120 const Array<OneD, Array<OneD, NekDouble>> &inarray,
122{
123 int physTot = m_fields[0]->GetTotPoints();
124 Array<OneD, NekDouble> wk(physTot, 0.0);
125
126 // U1 = u1 - fz * u3
127 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[2], 1, wk, 1);
128 Vmath::Vsub(physTot, inarray[0], 1, wk, 1, outarray[0], 1);
129
130 // U2 = u2 - gz*u3
131 Vmath::Vmul(physTot, m_GeometricInfo[3], 1, inarray[2], 1, wk, 1);
132 Vmath::Vsub(physTot, inarray[1], 1, wk, 1, outarray[1], 1);
133
134 // U3 = u3
135 Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
136}
137
139 const Array<OneD, Array<OneD, NekDouble>> &inarray,
141{
142 int physTot = m_fields[0]->GetTotPoints();
143
144 // U1 = u1
145 Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
146
147 // U2 = u2
148 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
149
150 // U3 = u3 + fz*u1 + gz*u2
151 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[2], 1);
152 Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[1], 1, outarray[2], 1,
153 outarray[2], 1);
154 Vmath::Vadd(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
155}
156
158{
159 int physTot = m_fields[0]->GetTotPoints();
160 Vmath::Fill(physTot, 1.0, outarray, 1);
161}
162
164 const Array<OneD, Array<OneD, NekDouble>> &inarray,
165 Array<OneD, NekDouble> &outarray)
166{
167 boost::ignore_unused(inarray);
168
169 int physTot = m_fields[0]->GetTotPoints();
170 Vmath::Zero(physTot, outarray, 1);
171}
172
175{
176 int physTot = m_fields[0]->GetTotPoints();
177 int nvel = m_nConvectiveFields;
178
179 for (int i = 0; i < nvel * nvel; i++)
180 {
181 outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
182 }
183 // Fill diagonal with 1.0
184 for (int i = 0; i < nvel; i++)
185 {
186 Vmath::Sadd(physTot, 1.0, outarray[i * nvel + i], 1,
187 outarray[i * nvel + i], 1);
188 }
189
190 // G_{13} and G_{31} = fz
191 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[0 * nvel + 2], 1);
192 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[2 * nvel + 0], 1);
193
194 // G_{23} and G_{32} = gz
195 Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, outarray[1 * nvel + 2], 1);
196 Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, outarray[2 * nvel + 1], 1);
197
198 // G^{33} = (1+fz^2 + gz^2)
199 Vmath::Vadd(physTot, m_GeometricInfo[2], 1, outarray[2 * nvel + 2], 1,
200 outarray[2 * nvel + 2], 1);
201 Vmath::Vadd(physTot, m_GeometricInfo[5], 1, outarray[2 * nvel + 2], 1,
202 outarray[2 * nvel + 2], 1);
203}
204
207{
208 int physTot = m_fields[0]->GetTotPoints();
209 int nvel = m_nConvectiveFields;
210 Array<OneD, NekDouble> wk(physTot, 0.0);
211
212 for (int i = 0; i < nvel * nvel; i++)
213 {
214 outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
215 }
216 // Fill diagonal with 1.0
217 for (int i = 0; i < nvel; i++)
218 {
219 Vmath::Sadd(physTot, 1.0, outarray[i * nvel + i], 1,
220 outarray[i * nvel + i], 1);
221 }
222
223 // G^{11} = 1+fz^2
224 Vmath::Vadd(physTot, outarray[0 * nvel + 0], 1, m_GeometricInfo[2], 1,
225 outarray[0 * nvel + 0], 1);
226
227 // G^{22} = 1+gz^2
228 Vmath::Vadd(physTot, outarray[1 * nvel + 1], 1, m_GeometricInfo[5], 1,
229 outarray[1 * nvel + 1], 1);
230
231 // G^{12} and G^{21} = fz*gz
232 Vmath::Vcopy(physTot, m_GeometricInfo[6], 1, outarray[0 * nvel + 1], 1);
233 Vmath::Vcopy(physTot, outarray[0 * nvel + 1], 1, outarray[1 * nvel + 0], 1);
234
235 // G^{13} and G^{31} = -fz
236 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, wk, 1); // fz
237 Vmath::Neg(physTot, wk, 1);
238 Vmath::Vcopy(physTot, wk, 1, outarray[0 * nvel + 2], 1);
239 Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 0], 1);
240
241 // G^{23} and G^{32} = -gz
242 Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, wk, 1); // fz
243 Vmath::Neg(physTot, wk, 1);
244 Vmath::Vcopy(physTot, wk, 1, outarray[1 * nvel + 2], 1);
245 Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 1], 1);
246}
247
249 const Array<OneD, Array<OneD, NekDouble>> &inarray,
251{
252 int physTot = m_fields[0]->GetTotPoints();
253 int nvel = m_nConvectiveFields;
254
255 for (int i = 0; i < nvel; i++)
256 {
257 for (int j = 0; j < nvel; j++)
258 {
259 outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
260 }
261 }
262
263 // Calculate non-zero terms
264
265 // outarray(0,2) = U3 * fzz
266 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[2], 1,
267 outarray[0 * nvel + 2], 1);
268
269 // outarray(1,2) = U3 * gzz
270 Vmath::Vmul(physTot, m_GeometricInfo[4], 1, inarray[2], 1,
271 outarray[1 * nvel + 2], 1);
272}
273
275 const Array<OneD, Array<OneD, NekDouble>> &inarray,
277{
278 int physTot = m_fields[0]->GetTotPoints();
279 int nvel = m_nConvectiveFields;
280
281 for (int i = 0; i < nvel; i++)
282 {
283 for (int j = 0; j < nvel; j++)
284 {
285 outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
286 }
287 }
288
289 // Calculate non-zero terms
290
291 // outarray(2,2) = U1 * fzz + U^2 * gzz
292 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[0], 1,
293 outarray[2 * nvel + 2], 1);
294 Vmath::Vvtvp(physTot, m_GeometricInfo[4], 1, inarray[1], 1,
295 outarray[2 * nvel + 2], 1, outarray[2 * nvel + 2], 1);
296}
297
299{
300 int phystot = m_fields[0]->GetTotPoints();
301 // Allocation of geometry memory
303 for (int i = 0; i < m_GeometricInfo.size(); i++)
304 {
305 m_GeometricInfo[i] = Array<OneD, NekDouble>(phystot, 0.0);
306 }
307
308 bool waveSpace = m_fields[0]->GetWaveSpace();
309 m_fields[0]->SetWaveSpace(false);
310
311 // Calculate derivatives of x transformation --> m_GeometricInfo 0-1
313 m_GeometricInfo[0]);
315 m_GeometricInfo[1]);
316 // m_GeometricInfo[2] = fz^2
317 Vmath::Vmul(phystot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1,
318 m_GeometricInfo[2], 1);
319
320 // Calculate derivatives of transformation -> m_GeometricInfo 3-4
322 m_GeometricInfo[3]);
324 m_GeometricInfo[4]);
325 // m_GeometricInfo[5] = gz^2
326 Vmath::Vmul(phystot, m_GeometricInfo[3], 1, m_GeometricInfo[3], 1,
327 m_GeometricInfo[5], 1);
328
329 // m_GeometricInfo[6] = gz*fz
330 Vmath::Vmul(phystot, m_GeometricInfo[0], 1, m_GeometricInfo[3], 1,
331 m_GeometricInfo[6], 1);
332
333 m_fields[0]->SetWaveSpace(waveSpace);
334}
335
336} // namespace GlobalMapping
337} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
Base class for mapping to be applied to the coordinate system.
Definition: Mapping.h:69
int m_nConvectiveFields
Number of velocity components.
Definition: Mapping.h:414
Array< OneD, Array< OneD, NekDouble > > m_GeometricInfo
Array with metric terms of the mapping.
Definition: Mapping.h:412
Array< OneD, Array< OneD, NekDouble > > m_coords
Array with the Cartesian coordinates.
Definition: Mapping.h:408
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Definition: Mapping.h:406
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Definition: Mapping.cpp:101
bool m_constantJacobian
Flag defining if the Jacobian is constant.
Definition: Mapping.h:423
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelCovar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_DotGradJacobian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_UpdateGeomInfo() override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
static std::string className
Name of the class.
Definition: MappingXYofZ.h:69
static GLOBAL_MAPPING_EXPORT MappingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Creates an instance of this class.
Definition: MappingXYofZ.h:57
MappingXYofZ(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
virtual GLOBAL_MAPPING_EXPORT void v_GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelContravar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetJacobian(Array< OneD, NekDouble > &outarray) override
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
MappingFactory & GetMappingFactory()
Declaration of the mapping factory singleton.
Definition: Mapping.cpp:53
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:379
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414