Nektar++
MappingXofXZ.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: MappingXofXZ.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Mapping of the type X = X(x,z)
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38namespace Nektar
39{
40namespace GlobalMapping
41{
42
43std::string MappingXofXZ::className =
45 "X = X(x,z)");
46
47/**
48 * @class MappingXofXZ
49 * This class implements a mapping defined by a transformation of the type
50 * \f[ \bar{x} = \bar{x}(x,z) \f]
51 * \f[ \bar{y} = y \f]
52 * \f[ \bar{z} = z \f]
53 * where \f$(\bar{x},\bar{y},\bar{z})\f$ are the Cartesian (physical)
54 * coordinates and \f$(x,y,z)\f$ are the transformed (computational)
55 * coordinates.
56 */
60 : Mapping(pSession, pFields)
61{
62}
63
64/**
65 *
66 */
69 const TiXmlElement *pMapping)
70{
71 Mapping::v_InitObject(pFields, pMapping);
72
73 m_constantJacobian = false;
74
76 "Mapping X = X(x,z) needs 3 velocity components.");
77}
78
80 const Array<OneD, Array<OneD, NekDouble>> &inarray,
82{
83 int physTot = m_fields[0]->GetTotPoints();
84
85 // U1 = fx*u1 + fz*u3
86 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[0], 1);
87 Vmath::Vvtvp(physTot, m_GeometricInfo[1], 1, inarray[2], 1, outarray[0], 1,
88 outarray[0], 1);
89
90 // U2 = u2
91 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
92
93 // U3 = u3
94 Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
95}
96
98 const Array<OneD, Array<OneD, NekDouble>> &inarray,
100{
101 int physTot = m_fields[0]->GetTotPoints();
102 Array<OneD, NekDouble> wk(physTot, 0.0);
103
104 // U1 = u1/fx
105 Vmath::Vdiv(physTot, inarray[0], 1, m_GeometricInfo[0], 1, outarray[0], 1);
106
107 // U2 = u2
108 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
109
110 // U3 = u3 - fz/fx*u1
111 Vmath::Vdiv(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[0], 1, wk, 1);
112 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, wk, 1);
113 Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
114}
115
117 const Array<OneD, Array<OneD, NekDouble>> &inarray,
119{
120 int physTot = m_fields[0]->GetTotPoints();
121 Array<OneD, NekDouble> wk(physTot, 0.0);
122
123 // U1 = u1/fx - fz/fx * u3
124 Vmath::Vdiv(physTot, inarray[0], 1, m_GeometricInfo[0], 1, outarray[0], 1);
125 Vmath::Vdiv(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[0], 1, wk, 1);
126 Vmath::Vmul(physTot, wk, 1, inarray[2], 1, wk, 1);
127 Vmath::Vsub(physTot, outarray[0], 1, wk, 1, outarray[0], 1);
128
129 // U2 = u2
130 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
131
132 // U3 = u3
133 Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
134}
135
137 const Array<OneD, Array<OneD, NekDouble>> &inarray,
139{
140 int physTot = m_fields[0]->GetTotPoints();
141
142 // U1 = u1*fx
143 Vmath::Vmul(physTot, inarray[0], 1, m_GeometricInfo[0], 1, outarray[0], 1);
144
145 // U2 = u2
146 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
147
148 // U3 = u3 + fz*u1
149 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[0], 1, outarray[2], 1);
150 Vmath::Vadd(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
151}
152
154{
155 int physTot = m_fields[0]->GetTotPoints();
156 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray, 1);
157}
158
160 const Array<OneD, Array<OneD, NekDouble>> &inarray,
161 Array<OneD, NekDouble> &outarray)
162{
163 int physTot = m_fields[0]->GetTotPoints();
164
165 Vmath::Vmul(physTot, m_GeometricInfo[2], 1, inarray[0], 1, outarray, 1);
166 Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[2], 1, outarray, 1,
167 outarray, 1);
168}
169
172{
173 int physTot = m_fields[0]->GetTotPoints();
174 int nvel = m_nConvectiveFields;
175 Array<OneD, NekDouble> wk(physTot, 0.0);
176
177 for (int i = 0; i < nvel * nvel; i++)
178 {
179 outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
180 }
181 // Fill G^{22} and G^{33} with 1.0
182 for (int i = 1; i < nvel; i++)
183 {
184 Vmath::Sadd(physTot, 1.0, outarray[i + nvel * i], 1,
185 outarray[i + nvel * i], 1);
186 }
187
188 // G_{13} and G_{31} = fz*fx
189 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[0], 1, wk,
190 1); // fz*fx
191 Vmath::Vcopy(physTot, wk, 1, outarray[0 * nvel + 2], 1);
192 Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 0], 1);
193
194 // G^{11} = (fx^2)
195 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1,
196 outarray[0 * nvel + 0], 1);
197
198 // G^{33} = (1+fz^2)
199 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[1], 1, wk,
200 1); // fz^2
201 Vmath::Vadd(physTot, wk, 1, outarray[2 * nvel + 2], 1,
202 outarray[2 * nvel + 2], 1);
203}
204
207{
208 int physTot = m_fields[0]->GetTotPoints();
209 int nvel = m_nConvectiveFields;
210 Array<OneD, NekDouble> wk(physTot, 0.0);
211
212 for (int i = 0; i < nvel * nvel; i++)
213 {
214 outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
215 }
216 // Fill diagonal with 1.0
217 for (int i = 0; i < nvel; i++)
218 {
219 Vmath::Sadd(physTot, 1.0, outarray[i + nvel * i], 1,
220 outarray[i + nvel * i], 1);
221 }
222
223 // G^{13} and G^{31} = -fz/fx
224 Vmath::Vdiv(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[0], 1, wk,
225 1); // fz/fx
226 Vmath::Neg(physTot, wk, 1);
227 Vmath::Vcopy(physTot, wk, 1, outarray[0 * nvel + 2], 1);
228 Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 0], 1);
229
230 // G^{11} = (1+fz^2)/(fx^2)
231 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[1], 1, wk,
232 1); // fz^2
233 Vmath::Vadd(physTot, wk, 1, outarray[0 * nvel + 0], 1,
234 outarray[0 * nvel + 0], 1);
235
236 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1, wk,
237 1); // fx^2
238 Vmath::Vdiv(physTot, outarray[0 * nvel + 0], 1, wk, 1,
239 outarray[0 * nvel + 0], 1);
240}
241
243 const Array<OneD, Array<OneD, NekDouble>> &inarray,
245{
246 int physTot = m_fields[0]->GetTotPoints();
247 Array<OneD, NekDouble> wk(physTot, 0.0);
248
249 // out[0] = in[0]*fx^2 + in[2] * fz*fx
250 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[0], 1, wk,
251 1); // fz*fx
252 Vmath::Vmul(physTot, wk, 1, inarray[2], 1, outarray[0], 1); // in[2]*fz*fx
253 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[2], 1); // in[0]*fz*fx
254
255 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1, wk,
256 1); // fx^2
257 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, wk, 1); // in[0]*fx^2
258
259 Vmath::Vadd(physTot, outarray[0], 1, wk, 1, outarray[0], 1);
260
261 // out[1] = in[1]
262 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
263
264 // out[2] = fx*fz*in[0] + (1+fz^2)*in[2]
265 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[1], 1, wk,
266 1); // fz^2
267 Vmath::Sadd(physTot, 1.0, wk, 1, wk, 1); // 1+fz^2
268 Vmath::Vmul(physTot, wk, 1, inarray[2], 1, wk, 1); // (1+fz^2)*in[2]
269
270 Vmath::Vadd(physTot, wk, 1, outarray[2], 1, outarray[2], 1);
271}
272
274 const Array<OneD, Array<OneD, NekDouble>> &inarray,
276{
277 int physTot = m_fields[0]->GetTotPoints();
278 Array<OneD, NekDouble> wk(physTot, 0.0);
279 Array<OneD, NekDouble> wk_2(physTot, 0.0);
280
281 // out[2] = in[2] - in[0] * fz/fx
282 Vmath::Vdiv(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[0], 1, wk, 1);
283 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[2], 1);
284 Vmath::Vsub(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
285
286 // out[0] = in[0]*(1+fz^2)/(fx^2) - in[2] * fz/fx
287 Vmath::Vmul(physTot, wk, 1, inarray[2], 1, outarray[0], 1);
288 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[1], 1, wk, 1);
289 Vmath::Sadd(physTot, 1.0, wk, 1, wk, 1);
290 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1, wk_2, 1);
291 Vmath::Vdiv(physTot, wk, 1, wk_2, 1, wk, 1);
292 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, wk, 1);
293 Vmath::Vsub(physTot, wk, 1, outarray[0], 1, outarray[0], 1);
294
295 // out[1] = in[1]
296 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
297}
298
300 const Array<OneD, Array<OneD, NekDouble>> &inarray,
302{
303 int physTot = m_fields[0]->GetTotPoints();
304 int nvel = m_nConvectiveFields;
305 Array<OneD, NekDouble> wk(physTot, 0.0);
306
307 for (int i = 0; i < nvel; i++)
308 {
309 for (int j = 0; j < nvel; j++)
310 {
311 outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
312 }
313 }
314
315 // Calculate non-zero terms
316
317 // outarray(0,0) = U1 * fxx/fx + U3 * fxz/fx
318 Vmath::Vdiv(physTot, m_GeometricInfo[2], 1, m_GeometricInfo[0], 1, wk, 1);
319 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[0 * nvel + 0], 1);
320 Vmath::Vdiv(physTot, m_GeometricInfo[3], 1, m_GeometricInfo[0], 1, wk, 1);
321 Vmath::Vvtvp(physTot, wk, 1, inarray[2], 1, outarray[0 * nvel + 0], 1,
322 outarray[0 * nvel + 0], 1);
323
324 // outarray(0,2) = U1 * fxz/fx + U3 * fzz/fx
325 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[0 * nvel + 2], 1);
326 Vmath::Vdiv(physTot, m_GeometricInfo[4], 1, m_GeometricInfo[0], 1, wk, 1);
327 Vmath::Vvtvp(physTot, wk, 1, inarray[2], 1, outarray[0 * nvel + 2], 1,
328 outarray[0 * nvel + 2], 1);
329}
330
332 const Array<OneD, Array<OneD, NekDouble>> &inarray,
334{
335 int physTot = m_fields[0]->GetTotPoints();
336 int nvel = m_nConvectiveFields;
337 Array<OneD, NekDouble> wk(physTot, 0.0);
338
339 for (int i = 0; i < nvel; i++)
340 {
341 for (int j = 0; j < nvel; j++)
342 {
343 outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
344 }
345 }
346
347 // Calculate non-zero terms
348
349 // outarray(0,0) = U1 * fxx/fx
350 Vmath::Vdiv(physTot, m_GeometricInfo[2], 1, m_GeometricInfo[0], 1, wk, 1);
351 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[0 * nvel + 0], 1);
352
353 // outarray(0,2) = outarray(2,0) = U1 * fxz/fx
354 Vmath::Vdiv(physTot, m_GeometricInfo[3], 1, m_GeometricInfo[0], 1, wk, 1);
355 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[0 * nvel + 2], 1);
356 Vmath::Vcopy(physTot, outarray[0 * nvel + 2], 1, outarray[2 * nvel + 0], 1);
357
358 // outarray(2,2) = U1 * fzz/fx
359 Vmath::Vdiv(physTot, m_GeometricInfo[4], 1, m_GeometricInfo[0], 1, wk, 1);
360 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, outarray[2 * nvel + 2], 1);
361}
362
364{
365 int phystot = m_fields[0]->GetTotPoints();
366 // Allocation of geometry memory
368 for (int i = 0; i < m_GeometricInfo.size(); i++)
369 {
370 m_GeometricInfo[i] = Array<OneD, NekDouble>(phystot, 0.0);
371 }
372
373 bool waveSpace = m_fields[0]->GetWaveSpace();
374 m_fields[0]->SetWaveSpace(false);
375
376 // Calculate derivatives of transformation
378 m_GeometricInfo[0]); // f_x
380 m_GeometricInfo[1]); // f_z
381
383 m_GeometricInfo[2]); // f_xx
385 m_GeometricInfo[3]); // f_xz
387 m_GeometricInfo[4]); // f_zz
388
389 m_fields[0]->SetWaveSpace(waveSpace);
390}
391
392} // namespace GlobalMapping
393} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
Base class for mapping to be applied to the coordinate system.
Definition: Mapping.h:69
int m_nConvectiveFields
Number of velocity components.
Definition: Mapping.h:414
Array< OneD, Array< OneD, NekDouble > > m_GeometricInfo
Array with metric terms of the mapping.
Definition: Mapping.h:412
Array< OneD, Array< OneD, NekDouble > > m_coords
Array with the Cartesian coordinates.
Definition: Mapping.h:408
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Definition: Mapping.h:406
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Definition: Mapping.cpp:101
bool m_constantJacobian
Flag defining if the Jacobian is constant.
Definition: Mapping.h:423
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelCovar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_UpdateGeomInfo() override
virtual GLOBAL_MAPPING_EXPORT void v_RaiseIndex(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetJacobian(Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
static std::string className
Name of the class.
Definition: MappingXofXZ.h:70
virtual GLOBAL_MAPPING_EXPORT void v_DotGradJacobian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_LowerIndex(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelContravar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
MappingXofXZ(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
static GLOBAL_MAPPING_EXPORT MappingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Creates an instance of this class.
Definition: MappingXofXZ.h:58
virtual GLOBAL_MAPPING_EXPORT void v_GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping) override
virtual GLOBAL_MAPPING_EXPORT void v_GetMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray) override
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
MappingFactory & GetMappingFactory()
Declaration of the mapping factory singleton.
Definition: Mapping.cpp:53
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:379
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414