Nektar++
MappingXofZ.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: MappingXofZ.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Mapping of the type X = x + f(z)
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <boost/core/ignore_unused.hpp>
36
39
40namespace Nektar
41{
42namespace GlobalMapping
43{
44
45std::string MappingXofZ::className =
47 "X = x + f(z)");
48
49/**
50 * @class MappingXofZ
51 * This class implements a constant-Jacobian mapping defined by
52 * a transformation of the type
53 * \f[ \bar{x} = \bar{x}(x,z) = x + f(z) \f]
54 * \f[ \bar{y} = y \f]
55 * \f[ \bar{z} = z \f]
56 * where \f$(\bar{x},\bar{y},\bar{z})\f$ are the Cartesian (physical)
57 * coordinates and \f$(x,y,z)\f$ are the transformed (computational)
58 * coordinates.
59 */
63 : Mapping(pSession, pFields)
64{
65}
66
67/**
68 *
69 */
72 const TiXmlElement *pMapping)
73{
74 Mapping::v_InitObject(pFields, pMapping);
75
76 m_constantJacobian = true;
77
79 "Mapping X = x + f(z) needs 3 velocity components.");
80}
81
83 const Array<OneD, Array<OneD, NekDouble>> &inarray,
85{
86 int physTot = m_fields[0]->GetTotPoints();
87 Array<OneD, NekDouble> wk(physTot, 0.0);
88
89 // U1 = u1 + fz*u3
90 Vmath::Vmul(physTot, inarray[2], 1, m_GeometricInfo[0], 1, wk, 1);
91 Vmath::Vadd(physTot, wk, 1, inarray[0], 1, outarray[0], 1);
92
93 // U2 = u2
94 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
95
96 // U3 = u3
97 Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
98}
99
101 const Array<OneD, Array<OneD, NekDouble>> &inarray,
103{
104 int physTot = m_fields[0]->GetTotPoints();
105 Array<OneD, NekDouble> wk(physTot, 0.0);
106
107 // U1 = u1
108 Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
109
110 // U2 = u2
111 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
112
113 // U3 = u3 - fz*u1
114 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, wk, 1);
115 Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
116}
117
119 const Array<OneD, Array<OneD, NekDouble>> &inarray,
121{
122 int physTot = m_fields[0]->GetTotPoints();
123 Array<OneD, NekDouble> wk(physTot, 0.0);
124
125 // U1 = u1 - fz * u3
126 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[2], 1, wk, 1);
127 Vmath::Vsub(physTot, inarray[0], 1, wk, 1, outarray[0], 1);
128
129 // U2 = u2
130 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
131
132 // U3 = u3
133 Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
134}
135
137 const Array<OneD, Array<OneD, NekDouble>> &inarray,
139{
140 int physTot = m_fields[0]->GetTotPoints();
141
142 // U1 = u1
143 Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
144
145 // U2 = u2
146 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
147
148 // U3 = u3 + fz*u1
149 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[2], 1);
150 Vmath::Vadd(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
151}
152
154{
155 int physTot = m_fields[0]->GetTotPoints();
156 Vmath::Fill(physTot, 1.0, outarray, 1);
157}
158
160 const Array<OneD, Array<OneD, NekDouble>> &inarray,
161 Array<OneD, NekDouble> &outarray)
162{
163 boost::ignore_unused(inarray);
164
165 int physTot = m_fields[0]->GetTotPoints();
166
167 Vmath::Zero(physTot, outarray, 1);
168}
169
172{
173 int physTot = m_fields[0]->GetTotPoints();
174 int nvel = m_nConvectiveFields;
175
176 for (int i = 0; i < nvel * nvel; i++)
177 {
178 outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
179 }
180 // Fill diagonal with 1.0
181 for (int i = 0; i < nvel; i++)
182 {
183 Vmath::Sadd(physTot, 1.0, outarray[i + nvel * i], 1,
184 outarray[i + nvel * i], 1);
185 }
186
187 // G_{13} and G_{31} = fz
188 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[0 * nvel + 2], 1);
189 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[2 * nvel + 0], 1);
190
191 // G^{33} = (1+fz^2)
192 Vmath::Vadd(physTot, m_GeometricInfo[2], 1, outarray[2 * nvel + 2], 1,
193 outarray[2 * nvel + 2], 1);
194}
195
198{
199 int physTot = m_fields[0]->GetTotPoints();
200 int nvel = m_nConvectiveFields;
201 Array<OneD, NekDouble> wk(physTot, 0.0);
202
203 for (int i = 0; i < nvel * nvel; i++)
204 {
205 outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
206 }
207 // Fill diagonal with 1.0
208 for (int i = 0; i < nvel; i++)
209 {
210 Vmath::Sadd(physTot, 1.0, outarray[i + nvel * i], 1,
211 outarray[i + nvel * i], 1);
212 }
213
214 // G^{13} and G^{31} = -fz
215 Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, wk, 1); // fz
216 Vmath::Neg(physTot, wk, 1);
217 Vmath::Vcopy(physTot, wk, 1, outarray[0 * nvel + 2], 1);
218 Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 0], 1);
219
220 // G^{11} = (1+fz^2)
221 Vmath::Vadd(physTot, m_GeometricInfo[2], 1, outarray[0 * nvel + 0], 1,
222 outarray[0 * nvel + 0], 1);
223}
224
226 const Array<OneD, Array<OneD, NekDouble>> &inarray,
228{
229 int physTot = m_fields[0]->GetTotPoints();
230 Array<OneD, NekDouble> wk(physTot, 0.0);
231
232 // out[0] = in[0] + in[2] * fz
233 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[2], 1, outarray[0],
234 1); // in[2]*fz
235 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[2],
236 1); // in[0]*fz
237
238 Vmath::Vadd(physTot, outarray[0], 1, inarray[0], 1, outarray[0], 1);
239
240 // out[1] = in[1]
241 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
242
243 // out[2] = fz*in[0] + (1+fz^2)*in[2]
244 Vmath::Sadd(physTot, 1.0, m_GeometricInfo[2], 1, wk, 1); // 1+fz^2
245 Vmath::Vmul(physTot, wk, 1, inarray[2], 1, wk, 1); // (1+fz^2)*in[2]
246 Vmath::Vadd(physTot, wk, 1, outarray[2], 1, outarray[2], 1);
247}
248
250 const Array<OneD, Array<OneD, NekDouble>> &inarray,
252{
253 int physTot = m_fields[0]->GetTotPoints();
254 Array<OneD, NekDouble> wk(physTot, 0.0);
255
256 // out[2] = in[2] - in[0] * fz
257 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[2], 1, outarray[0],
258 1); // in[2]*fz
259 Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[2],
260 1); // in[0]*fz
261 Vmath::Vsub(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
262
263 // out[1] = in[1]]
264 Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
265
266 // out[0] = in[0]*(1+fz^2)- in[2] * fz
267 Vmath::Sadd(physTot, 1.0, m_GeometricInfo[2], 1, wk, 1); // 1+fz^2
268 Vmath::Vmul(physTot, wk, 1, inarray[0], 1, wk, 1); // in[0]*(1+fz^2)
269 Vmath::Vsub(physTot, wk, 1, outarray[0], 1, outarray[0], 1);
270}
271
273 const Array<OneD, Array<OneD, NekDouble>> &inarray,
275{
276 int physTot = m_fields[0]->GetTotPoints();
277 int nvel = m_nConvectiveFields;
278
279 for (int i = 0; i < nvel; i++)
280 {
281 for (int j = 0; j < nvel; j++)
282 {
283 outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
284 }
285 }
286
287 // Calculate non-zero terms
288
289 // outarray(0,2) = U3 * fzz
290 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[2], 1,
291 outarray[0 * nvel + 2], 1); // U1 * fzz
292}
293
295 const Array<OneD, Array<OneD, NekDouble>> &inarray,
297{
298 int physTot = m_fields[0]->GetTotPoints();
299 int nvel = m_nConvectiveFields;
300
301 for (int i = 0; i < nvel; i++)
302 {
303 for (int j = 0; j < nvel; j++)
304 {
305 outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
306 }
307 }
308
309 // Calculate non-zero terms
310
311 // outarray(2,2) = U1 * fzz
312 Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[0], 1,
313 outarray[2 * nvel + 2], 1); // U1 * fzz
314}
315
317{
318 int phystot = m_fields[0]->GetTotPoints();
319 // Allocation of geometry memory
321 for (int i = 0; i < m_GeometricInfo.size(); i++)
322 {
323 m_GeometricInfo[i] = Array<OneD, NekDouble>(phystot, 0.0);
324 }
325
326 bool waveSpace = m_fields[0]->GetWaveSpace();
327 m_fields[0]->SetWaveSpace(false);
328 // Calculate derivatives of transformation
330 m_GeometricInfo[0]);
332 m_GeometricInfo[1]);
333 // m_GeometricInfo[2] = fz^2
334 Vmath::Vmul(phystot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1,
335 m_GeometricInfo[2], 1);
336
337 m_fields[0]->SetWaveSpace(waveSpace);
338}
339
340} // namespace GlobalMapping
341} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
Base class for mapping to be applied to the coordinate system.
Definition: Mapping.h:69
int m_nConvectiveFields
Number of velocity components.
Definition: Mapping.h:414
Array< OneD, Array< OneD, NekDouble > > m_GeometricInfo
Array with metric terms of the mapping.
Definition: Mapping.h:412
Array< OneD, Array< OneD, NekDouble > > m_coords
Array with the Cartesian coordinates.
Definition: Mapping.h:408
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Definition: Mapping.h:406
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Definition: Mapping.cpp:101
bool m_constantJacobian
Flag defining if the Jacobian is constant.
Definition: Mapping.h:423
virtual GLOBAL_MAPPING_EXPORT void v_GetMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray) override
MappingXofZ(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Definition: MappingXofZ.cpp:60
virtual GLOBAL_MAPPING_EXPORT void v_RaiseIndex(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
static GLOBAL_MAPPING_EXPORT MappingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Creates an instance of this class.
Definition: MappingXofZ.h:58
static std::string className
Name of the class.
Definition: MappingXofZ.h:70
virtual GLOBAL_MAPPING_EXPORT void v_UpdateGeomInfo() override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelCovar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_LowerIndex(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelContravar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping) override
Definition: MappingXofZ.cpp:70
virtual GLOBAL_MAPPING_EXPORT void v_DotGradJacobian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetJacobian(Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: MappingXofZ.cpp:82
virtual GLOBAL_MAPPING_EXPORT void v_CovarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
MappingFactory & GetMappingFactory()
Declaration of the mapping factory singleton.
Definition: Mapping.cpp:53
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:379
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414