Nektar++
PressureOutflowNonReflectiveBC.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: PressureOutflowNonReflectiveBC.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Pressure outflow non-reflective boundary condition
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <boost/core/ignore_unused.hpp>
36
38
39using namespace std;
40
41namespace Nektar
42{
43
46 "PressureOutflowNonReflective", PressureOutflowNonReflectiveBC::create,
47 "Pressure outflow non-reflective boundary condition.");
48
52 const Array<OneD, Array<OneD, NekDouble>> &pTraceNormals,
53 const int pSpaceDim, const int bcRegion, const int cnt)
54 : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
55{
56 int numBCPts =
57 m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetNpoints();
59
60 // Get Pressure
62 numBCPts,
63 m_fields[m_spacedim + 1]->GetBndCondExpansions()[m_bcRegion]->GetPhys(),
64 1, m_pressureStorage, 1);
65}
66
69 Array<OneD, Array<OneD, NekDouble>> &physarray, const NekDouble &time)
70{
71 boost::ignore_unused(time);
72
73 int i, j;
74 int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
75 int nVariables = physarray.size();
76 int nDimensions = m_spacedim;
77
78 const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
79
80 // Computing the normal velocity for characteristics coming
81 // from inside the computational domain
82 Array<OneD, NekDouble> Vn(nTracePts, 0.0);
83 Array<OneD, NekDouble> Vel(nTracePts, 0.0);
84 for (i = 0; i < nDimensions; ++i)
85 {
86 Vmath::Vdiv(nTracePts, Fwd[i + 1], 1, Fwd[0], 1, Vel, 1);
87 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
88 }
89
90 // Computing the absolute value of the velocity in order to compute the
91 // Mach number to decide whether supersonic or subsonic
92 Array<OneD, NekDouble> absVel(nTracePts, 0.0);
93 m_varConv->GetAbsoluteVelocity(Fwd, absVel);
94
95 // Get speed of sound
96 Array<OneD, NekDouble> soundSpeed(nTracePts);
97 m_varConv->GetSoundSpeed(Fwd, soundSpeed);
98
99 // Get Mach
100 Array<OneD, NekDouble> Mach(nTracePts, 0.0);
101 Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
102 Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
103
104 // Auxiliary variables
105 int e, id1, id2, npts, pnt;
106 NekDouble rhoeb;
107
108 // Loop on the m_bcRegions
109 for (e = 0;
110 e < m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize(); ++e)
111 {
112 npts = m_fields[0]
113 ->GetBndCondExpansions()[m_bcRegion]
114 ->GetExp(e)
115 ->GetTotPoints();
116 id1 =
117 m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetPhys_Offset(e);
118 id2 =
119 m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset + e]);
120
121 // Get internal energy
123 Array<OneD, NekDouble> rho(npts, Fwd[0] + id2);
124 Array<OneD, NekDouble> Ei(npts);
125 m_varConv->GetEFromRhoP(rho, pressure, Ei);
126
127 // Loop on points of m_bcRegion 'e'
128 for (i = 0; i < npts; i++)
129 {
130 pnt = id2 + i;
131
132 // Subsonic flows
133 if (Mach[pnt] < 0.99)
134 {
135 // Kinetic energy calculation
136 NekDouble Ek = 0.0;
137 for (j = 1; j < nVariables - 1; ++j)
138 {
139 Ek += 0.5 * (Fwd[j][pnt] * Fwd[j][pnt]) / Fwd[0][pnt];
140 }
141
142 rhoeb = Fwd[0][pnt] * Ei[i] + Ek;
143
144 // Partial extrapolation for subsonic cases
145 for (j = 0; j < nVariables - 1; ++j)
146 {
147 (m_fields[j]
148 ->GetBndCondExpansions()[m_bcRegion]
149 ->UpdatePhys())[id1 + i] = Fwd[j][pnt];
150 }
151
152 (m_fields[nVariables - 1]
153 ->GetBndCondExpansions()[m_bcRegion]
154 ->UpdatePhys())[id1 + i] =
155 2.0 * rhoeb - Fwd[nVariables - 1][pnt];
156 }
157 // Supersonic flows
158 else
159 {
160 for (j = 0; j < nVariables; ++j)
161 {
162 // Extrapolation for supersonic cases
163 (m_fields[j]
164 ->GetBndCondExpansions()[m_bcRegion]
165 ->UpdatePhys())[id1 + i] = Fwd[j][pnt];
166 }
167 }
168 }
169 }
170}
171
172} // namespace Nektar
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:70
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:95
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:93
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:109
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:97
int m_offset
Offset.
Definition: CFSBndCond.h:111
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:91
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
PressureOutflowNonReflectiveBC(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
virtual void v_Apply(Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time) override
static std::string className
Name of the class.
static CFSBndCondSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
Creates an instance of this class.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
double NekDouble
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:548
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191