Nektar++
ProcessCFL.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessCFL.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Computes CFL number over the entire domain for the
32// incompressible flow simulaiton. This is helpful in terms of debugging
33// and tracing the evolution of CFL in time over the domain.
34//
35////////////////////////////////////////////////////////////////////////////////
36
37#include <iostream>
38#include <string>
39using namespace std;
40
41#include <boost/core/ignore_unused.hpp>
42
45
46#include "ProcessCFL.h"
47#include "ProcessMapping.h"
48
49namespace Nektar
50{
51namespace FieldUtils
52{
53
56 "Computes CFL number for the entire domain for Incompressible flow.");
57
59{
60}
61
63{
64}
65
66void ProcessCFL::v_Process(po::variables_map &vm)
67{
68 m_f->SetUpExp(vm);
69
70 int expdim = m_f->m_graph->GetMeshDimension();
71 int nelmt = m_f->m_exp[0]->GetExpSize();
72 int nfields = m_f->m_variables.size();
73 m_spacedim = expdim;
74
75 NekDouble timeStep = m_f->m_session->GetParameter("TimeStep");
76 NekDouble cLambda = 0.2; // Spencer's book
77
78 if (m_f->m_numHomogeneousDir == 1)
79 {
80 m_spacedim = 3;
81 }
82 ASSERTL0(m_f->m_numHomogeneousDir != 2,
83 "CFL for 3DH2D simulations is not supported");
84 ASSERTL0(m_spacedim != 1, "Error: CFL for a 1D problem is not supported");
85
86 // Append field names
87 m_f->m_variables.push_back("CFL");
88
89 // Skip in case of empty partition
90 if (m_f->m_exp[0]->GetNumElmts() == 0)
91 {
92 return;
93 }
94 int npoints = m_f->m_exp[0]->GetNpoints();
95 Array<OneD, NekDouble> outfield(npoints);
96
97 int nstrips;
98 m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
99
101 // add in new fields
102 for (int s = 0; s < nstrips; ++s)
103 {
104 Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
105 m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + 1) + nfields,
106 Exp);
107 }
108
109 for (int s = 0; s < nstrips; ++s) // homogeneous strip varient
110 {
111 Array<OneD, Array<OneD, NekDouble>> velocityField(expdim);
112
113 // Get the velocity field
114 GetVelocity(velocityField, s);
115
116 // compute the max velocity in the std regions
117 Array<OneD, NekDouble> stdVel = GetMaxStdVelocity(velocityField);
118
119 // get the maximum expansion order in each element
120 Array<OneD, int> expOrder =
121 m_f->m_exp[s * nfields + 0]->EvalBasisNumModesMaxPerExp();
122
123 // compute the CFL number
124 Array<OneD, NekDouble> cfl(nelmt);
125 for (int el = 0; el < nelmt; ++el)
126 {
127 int order = std::max(expOrder[el] - 1, 1);
128 cfl[el] = timeStep * stdVel[el] * cLambda * order * order;
129 }
130
131 int cnt = 0;
132 for (int el = 0; el < nelmt; ++el)
133 {
134 // using the field[0]==m_exp[s*nfields + 0]
135 int nquad = m_f->m_exp[s * nfields + 0]->GetExp(el)->GetTotPoints();
136 Vmath::Fill(nquad, cfl[el], &outfield[cnt], 1);
137 cnt += nquad;
138 }
139
140 // temporary store the CFL number field for each strip
141 Vmath::Vcopy(npoints, outfield, 1,
142 m_f->m_exp[s * (nfields + 1) + nfields]->UpdatePhys(), 1);
143 m_f->m_exp[0]->FwdTransLocalElmt(
144 outfield, m_f->m_exp[s * (nfields + 1) + nfields]->UpdateCoeffs());
145 }
146}
147
149 int strip)
150{
151 int expdim = m_f->m_graph->GetMeshDimension();
152 int nfields = m_f->m_variables.size();
153 int npoints = m_f->m_exp[0]->GetNpoints();
154 if (boost::iequals(m_f->m_variables[0], "u"))
155 {
156 // IncNavierStokesSolver
157 // Using expdim instead of spacedim
158 // This is because for 3DH1D, only a 2D plane will be considered
159 for (int i = 0; i < expdim; ++i)
160 {
161 vel[i] = Array<OneD, NekDouble>(npoints);
162 Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
163 vel[i], 1);
164 }
165 }
166 else if (boost::iequals(m_f->m_variables[0], "rho") &&
167 boost::iequals(m_f->m_variables[1], "rhou"))
168 {
169 // CompressibleFlowSolver
170 ASSERTL0(false, "CFL calculation is not supported for the compressible "
171 "flow simulations at the moment");
172 }
173 else
174 {
175 // Unknown
176 ASSERTL0(false, "Could not identify velocity for ProcessCFL");
177 }
178}
179
180/**
181 *
182 */
184 const Array<OneD, Array<OneD, NekDouble>> &vel, int strip)
185{
186 int nfields = m_f->m_variables.size();
187 int n_points_0 = m_f->m_exp[0]->GetExp(0)->GetTotPoints();
188 int n_element = m_f->m_exp[0]->GetExpSize();
189 int nvel = vel.size();
190 int cnt;
191
192 NekDouble pntVelocity;
193
194 // Getting the standard velocity vector
195 Array<OneD, Array<OneD, NekDouble>> stdVelocity(nvel);
197 Array<OneD, NekDouble> maxV(n_element, 0.0);
199
200 for (int i = 0; i < nvel; ++i)
201 {
202 stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
203 }
204
205 cnt = 0.0;
206 for (int el = 0; el < n_element; ++el)
207 {
208 int n_points = m_f->m_exp[0]->GetExp(el)->GetTotPoints();
209 ptsKeys = m_f->m_exp[0]->GetExp(el)->GetPointsKeys();
210
211 // reset local space
212 if (n_points != n_points_0)
213 {
214 for (int j = 0; j < nvel; ++j)
215 {
216 stdVelocity[j] = Array<OneD, NekDouble>(n_points, 0.0);
217 }
218 n_points_0 = n_points;
219 }
220 else
221 {
222 for (int j = 0; j < nvel; ++j)
223 {
224 Vmath::Zero(n_points, stdVelocity[j], 1);
225 }
226 }
227
228 Array<TwoD, const NekDouble> gmat = m_f->m_exp[strip * nfields + 0]
229 ->GetExp(el)
230 ->GetGeom()
231 ->GetMetricInfo()
232 ->GetDerivFactors(ptsKeys);
233
234 if (m_f->m_exp[strip * nfields + 0]
235 ->GetExp(el)
236 ->GetGeom()
237 ->GetMetricInfo()
238 ->GetGtype() == SpatialDomains::eDeformed)
239 {
240 for (int j = 0; j < nvel; ++j)
241 {
242 for (int k = 0; k < nvel; ++k)
243 {
244 Vmath::Vvtvp(n_points, gmat[k * nvel + j], 1,
245 tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
246 stdVelocity[j], 1);
247 }
248 }
249 }
250 else
251 {
252 for (int j = 0; j < nvel; ++j)
253 {
254 for (int k = 0; k < nvel; ++k)
255 {
256 Vmath::Svtvp(n_points, gmat[k * nvel + j][0],
257 tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
258 stdVelocity[j], 1);
259 }
260 }
261 }
262 cnt += n_points;
263
264 // Calculate total velocity in stdVelocity[0]
265 Vmath::Vmul(n_points, stdVelocity[0], 1, stdVelocity[0], 1,
266 stdVelocity[0], 1);
267 for (int k = 1; k < nvel; ++k)
268 {
269 Vmath::Vvtvp(n_points, stdVelocity[k], 1, stdVelocity[k], 1,
270 stdVelocity[0], 1, stdVelocity[0], 1);
271 }
272 pntVelocity = Vmath::Vmax(n_points, stdVelocity[0], 1);
273 maxV[el] = sqrt(pntVelocity);
274 }
275
276 return maxV;
277}
278} // namespace FieldUtils
279} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
void GetVelocity(Array< OneD, Array< OneD, NekDouble > > &vel, int strip=0)
Definition: ProcessCFL.cpp:148
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble > > &vel, int strip=0)
Definition: ProcessCFL.cpp:183
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessCFL.h:52
static ModuleKey className
Definition: ProcessCFL.h:56
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Definition: ProcessCFL.cpp:66
ProcessCFL(FieldSharedPtr f)
Definition: ProcessCFL.cpp:58
Abstract base class for processing modules.
Definition: Module.h:292
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
@ eDeformed
Geometry is curved or has non-constant factors.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:940
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294