Nektar++
ProcessGrad.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessGrad.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Computes gradient of fields.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37using namespace std;
38
39#include <boost/core/ignore_unused.hpp>
40
44
45#include "ProcessGrad.h"
46#include "ProcessMapping.h"
47
48namespace Nektar
49{
50namespace FieldUtils
51{
52
55 "Computes gradient of fields.");
56
58{
59 m_config["vars"] = ConfigOption(false, "NotSet", "Select variables");
60 m_config["dirs"] = ConfigOption(false, "NotSet", "Select directions");
61}
62
64{
65}
66
67void ProcessGrad::ParserOptions(std::set<int> &variables,
68 std::set<int> &directions)
69{
70 if (m_config["vars"].as<string>().compare("NotSet"))
71 {
72 ParseUtils::GenerateVariableSet(m_config["vars"].as<string>(),
73 m_f->m_variables, variables);
74 }
75 else
76 {
77 for (int v = 0; v < m_f->m_variables.size(); ++v)
78 {
79 variables.insert(v);
80 }
81 }
82 vector<string> coords = {"x", "y", "z"};
83 int spacedim = m_f->m_numHomogeneousDir + m_f->m_graph->GetMeshDimension();
84 coords.resize(spacedim);
85 if (m_config["dirs"].as<string>().compare("NotSet"))
86 {
87 ParseUtils::GenerateVariableSet(m_config["dirs"].as<string>(), coords,
88 directions);
89 }
90 else
91 {
92 for (int d = 0; d < spacedim; ++d)
93 {
94 directions.insert(d);
95 }
96 }
97}
98
100{
101 // Calculate Gradient
102 int n = 0;
103 for (int i : m_selectedVars)
104 {
105 for (int j : m_directions)
106 {
107 m_f->m_exp[i]->PhysDeriv(MultiRegions::DirCartesianMap[j],
108 m_f->m_exp[i]->GetPhys(), grad[n]);
109 ++n;
110 }
111 }
112}
113
115{
116 int expdim = m_f->m_graph->GetMeshDimension();
117 int spacedim = m_f->m_numHomogeneousDir + expdim;
118 int nfields = m_f->m_variables.size();
119 bool hasvel = m_selectedVars.size() && (*m_selectedVars.begin() < spacedim);
120
121 int npoints = m_f->m_exp[0]->GetNpoints();
122
124 for (int i = 0; i < spacedim; i++)
125 {
126 tmp[i] = Array<OneD, NekDouble>(npoints);
127 }
128
129 // Get mapping
131
132 // Get velocity and convert to Cartesian system,
133 // if it is still in transformed system
135 if (hasvel && m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
136 {
137 if (m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
138 {
139 // Initialize arrays and copy velocity
140 for (int i = 0; i < spacedim; ++i)
141 {
142 vel[i] = Array<OneD, NekDouble>(npoints);
143 if (m_f->m_exp[0]->GetWaveSpace())
144 {
145 m_f->m_exp[0]->HomogeneousBwdTrans(
146 npoints, m_f->m_exp[i]->GetPhys(), vel[i]);
147 }
148 else
149 {
150 Vmath::Vcopy(npoints, m_f->m_exp[i]->GetPhys(), 1, vel[i],
151 1);
152 }
153 }
154 // Convert velocity to cartesian system
155 mapping->ContravarToCartesian(vel, vel);
156 // Convert back to wavespace if necessary
157 if (m_f->m_exp[0]->GetWaveSpace())
158 {
159 for (int i = 0; i < spacedim; ++i)
160 {
161 m_f->m_exp[0]->HomogeneousFwdTrans(npoints, vel[i], vel[i]);
162 }
163 }
164 }
165 else
166 {
167 for (int i = 0; i < spacedim; ++i)
168 {
169 vel[i] = Array<OneD, NekDouble>(npoints);
170 Vmath::Vcopy(npoints, m_f->m_exp[i]->GetPhys(), 1, vel[i], 1);
171 }
172 }
173 }
174 else if (hasvel)
175 {
176 for (int i = 0; i < spacedim && i < nfields; ++i)
177 {
178 vel[i] = Array<OneD, NekDouble>(npoints);
179 Vmath::Vcopy(npoints, m_f->m_exp[i]->GetPhys(), 1, vel[i], 1);
180 }
181 }
182
183 // Calculate Gradient
184 int n = 0;
185 for (int i : m_selectedVars)
186 {
187 for (int j = 0; j < spacedim; ++j)
188 {
189 if (i < spacedim)
190 {
191 m_f->m_exp[i]->PhysDeriv(MultiRegions::DirCartesianMap[j],
192 vel[i], tmp[j]);
193 }
194 else
195 {
196 m_f->m_exp[i]->PhysDeriv(MultiRegions::DirCartesianMap[j],
197 m_f->m_exp[i]->GetPhys(), tmp[j]);
198 }
199 }
200 mapping->CovarToCartesian(tmp, tmp);
201 for (int j : m_directions)
202 {
203 Vmath::Vcopy(npoints, tmp[j], 1, grad[n], 1);
204 ++n;
205 }
206 }
207}
208
209void ProcessGrad::v_Process(po::variables_map &vm)
210{
211 m_f->SetUpExp(vm);
213
214 int nfields = m_f->m_variables.size();
215 int addfields = m_selectedVars.size() * m_directions.size();
216 m_f->m_exp.resize(nfields + addfields);
217
218 vector<string> coords = {"x", "y", "z"};
219 for (int i : m_selectedVars)
220 {
221 for (int j : m_directions)
222 {
223 m_f->m_variables.push_back(m_f->m_variables[i] + "_" + coords[j]);
224 }
225 }
226
227 // Skip in case of empty partition
228 if (m_f->m_exp[0]->GetNumElmts() == 0)
229 {
230 return;
231 }
232
233 int npoints = m_f->m_exp[0]->GetNpoints();
234 Array<OneD, Array<OneD, NekDouble>> grad(addfields);
235 for (int i = 0; i < addfields; ++i)
236 {
237 grad[i] = Array<OneD, NekDouble>(npoints);
238 }
239
240 if (m_f->m_fieldMetaDataMap.count("MappingType"))
241 {
242 ProcessMappingFld(grad);
243 }
244 else
245 {
247 }
248
249 for (int i = 0; i < addfields; ++i)
250 {
251 m_f->m_exp[nfields + i] = m_f->AppendExpList(m_f->m_numHomogeneousDir);
252
253 Vmath::Vcopy(npoints, grad[i], 1, m_f->m_exp[nfields + i]->UpdatePhys(),
254 1);
255 m_f->m_exp[nfields + i]->FwdTransLocalElmt(
256 grad[i], m_f->m_exp[nfields + i]->UpdateCoeffs());
257 }
258}
259} // namespace FieldUtils
260} // namespace Nektar
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:263
void ProcessMappingFld(Array< OneD, Array< OneD, NekDouble > > &grad)
std::set< int > m_selectedVars
Definition: ProcessGrad.h:85
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessGrad.h:53
void ParserOptions(std::set< int > &variables, std::set< int > &directions)
Definition: ProcessGrad.cpp:67
void ProcessCartesianFld(Array< OneD, Array< OneD, NekDouble > > &grad)
Definition: ProcessGrad.cpp:99
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
Abstract base class for processing modules.
Definition: Module.h:292
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static bool GenerateVariableSet(const std::string &str, const std::vector< std::string > &variables, std::set< int > &out)
Generate a set of variable locations.
Definition: ParseUtils.cpp:166
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:53
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
std::vector< double > d(NPUPPER *NPUPPER)
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
Represents a command-line configuration option.
Definition: Module.h:131