Nektar++
ProcessInterpPoints.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessInterpPoints.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Interpolate field to a series of specified points.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37
38#include <boost/core/ignore_unused.hpp>
39#include <boost/geometry.hpp>
40#include <boost/lexical_cast.hpp>
41#include <boost/math/special_functions/fpclassify.hpp>
42
49
50#include "ProcessInterpPoints.h"
51
52using namespace std;
53
54namespace bg = boost::geometry;
55namespace bgi = boost::geometry::index;
56
57namespace Nektar
58{
59namespace FieldUtils
60{
61
65 "Interpolates a field to a set of points. Requires fromfld, fromxml "
66 "to be defined, and a topts, line, plane or block of target points ");
67
69{
70 m_config["fromxml"] = ConfigOption(
71 false, "NotSet", "Xml file from which to interpolate field");
72
73 m_config["fromfld"] = ConfigOption(
74 false, "NotSet", "Fld file from which to interpolate field");
75
76 m_config["topts"] =
77 ConfigOption(false, "NotSet", "Pts file to which interpolate field");
78 m_config["line"] = ConfigOption(false, "NotSet",
79 "Specify a line of N points using "
80 "line=N,x0,y0,z0,z1,y1,z1");
81 m_config["plane"] =
82 ConfigOption(false, "NotSet",
83 "Specify a plane of N1 x N2 points using "
84 "plane=N1,N2,x0,y0,z0,z1,y1,z1,x2,y2,z2,x3,y3,z3");
85 m_config["box"] =
86 ConfigOption(false, "NotSet",
87 "Specify a rectangular box of N1 x N2 x N3 points "
88 "using a box of points limited by box="
89 "N1,N2,N3,xmin,xmax,ymin,ymax,zmin,zmax");
90
91 m_config["clamptolowervalue"] =
92 ConfigOption(false, "-10000000", "Lower bound for interpolation value");
93 m_config["clamptouppervalue"] =
94 ConfigOption(false, "10000000", "Upper bound for interpolation value");
95 m_config["defaultvalue"] =
96 ConfigOption(false, "0", "Default value if point is outside domain");
97
98 m_config["cp"] =
99 ConfigOption(false, "NotSet",
100 "Parameters p0 and q to determine pressure coefficients");
101 m_config["realmodetoimag"] =
102 ConfigOption(false, "NotSet", "Take fields as sin mode");
103}
104
106{
107}
108
109void ProcessInterpPoints::v_Process(po::variables_map &vm)
110{
111 m_f->SetUpExp(vm);
112
113 CreateFieldPts(vm);
114
115 FieldSharedPtr fromField = std::shared_ptr<Field>(new Field());
116 std::vector<std::string> files;
117 ParseUtils::GenerateVector(m_config["fromxml"].as<string>(), files);
118
119 // set up session file for from field
120 char *argv[] = {const_cast<char *>("FieldConvert"), nullptr};
121 fromField->m_session = LibUtilities::SessionReader::CreateInstance(
122 1, argv, files,
123 LibUtilities::GetCommFactory().CreateInstance("Serial", 0, 0));
124
125 // Set up range based on min and max of local parallel partition
128
129 int coordim = m_f->m_fieldPts->GetDim();
130 int npts = m_f->m_fieldPts->GetNpoints();
131 std::vector<std::string> fieldNames = m_f->m_fieldPts->GetFieldNames();
132 for (auto &it : fieldNames)
133 {
134 m_f->m_fieldPts->RemoveField(it);
135 }
136
138 m_f->m_fieldPts->GetPts(pts);
139
140 rng->m_checkShape = false;
141 rng->m_zmin = -1;
142 rng->m_zmax = 1;
143 rng->m_ymin = -1;
144 rng->m_ymax = 1;
145 switch (coordim)
146 {
147 case 3:
148 rng->m_doZrange = true;
149 rng->m_zmin = Vmath::Vmin(npts, pts[2], 1);
150 rng->m_zmax = Vmath::Vmax(npts, pts[2], 1);
151 if (rng->m_zmax == rng->m_zmin)
152 {
153 rng->m_zmin -= 1;
154 rng->m_zmax += 1;
155 }
156 /* Falls through. */
157 case 2:
158 rng->m_doYrange = true;
159 rng->m_ymin = Vmath::Vmin(npts, pts[1], 1);
160 rng->m_ymax = Vmath::Vmax(npts, pts[1], 1);
161 /* Falls through. */
162 case 1:
163 rng->m_doXrange = true;
164 rng->m_xmin = Vmath::Vmin(npts, pts[0], 1);
165 rng->m_xmax = Vmath::Vmax(npts, pts[0], 1);
166 break;
167 default:
168 NEKERROR(ErrorUtil::efatal, "Too many values specified in range");
169 }
170
171 // setup rng parameters.
172 fromField->m_graph =
173 SpatialDomains::MeshGraph::Read(fromField->m_session, rng);
174
175 // Read in local from field partitions
176 const SpatialDomains::ExpansionInfoMap &expansions =
177 fromField->m_graph->GetExpansionInfo();
178 Array<OneD, int> ElementGIDs(expansions.size());
179
180 int i = 0;
181 for (auto &expIt : expansions)
182 {
183 ElementGIDs[i++] = expIt.second->m_geomShPtr->GetGlobalID();
184 }
185 // check to see that we do have some element in the domain since
186 // possibly all points could be outside of the domain
187 ASSERTL0(i > 0, "No elements are set. Are the interpolated points "
188 "within the domain given by the xml files?");
189 string fromfld = m_config["fromfld"].as<string>();
190 m_f->FieldIOForFile(fromfld)->Import(
191 fromfld, fromField->m_fielddef, fromField->m_data,
193 int NumHomogeneousDir = fromField->m_fielddef[0]->m_numHomogeneousDir;
194 for (i = 0; i < fromField->m_fielddef.size(); ++i)
195 {
196 int d1 = fromField->m_fielddef[i]->m_basis.size();
197 d1 -= 1;
198 if (d1 >= 0 && (fromField->m_fielddef[i]->m_basis[d1] ==
200 fromField->m_fielddef[i]->m_basis[d1] ==
202 {
203 fromField->m_fielddef[i]->m_homogeneousZIDs[0] += 2;
204 fromField->m_fielddef[i]->m_numModes[d1] = 4;
205 fromField->m_fielddef[i]->m_basis[d1] = LibUtilities::eFourier;
206 }
207 }
208
209 //----------------------------------------------
210 // Set up Expansion information to use mode order from field
211 fromField->m_graph->SetExpansionInfo(fromField->m_fielddef);
212 int nfields = fromField->m_fielddef[0]->m_fields.size();
213 fromField->m_exp.resize(nfields);
214 fromField->m_exp[0] = fromField->SetUpFirstExpList(NumHomogeneousDir, true);
215 m_f->m_exp.resize(nfields);
216
217 // declare auxiliary fields.
218 for (i = 1; i < nfields; ++i)
219 {
220 fromField->m_exp[i] = fromField->AppendExpList(NumHomogeneousDir);
221 }
222
223 // load field into expansion in fromfield.
224 set<int> sinmode;
225 if (m_config["realmodetoimag"].as<string>().compare("NotSet"))
226 {
227 ParseUtils::GenerateVariableSet(m_config["realmodetoimag"].as<string>(),
228 m_f->m_variables, sinmode);
229 }
230 for (int j = 0; j < nfields; ++j)
231 {
232 for (i = 0; i < fromField->m_fielddef.size(); i++)
233 {
234 fromField->m_exp[j]->ExtractDataToCoeffs(
235 fromField->m_fielddef[i], fromField->m_data[i],
236 fromField->m_fielddef[0]->m_fields[j],
237 fromField->m_exp[j]->UpdateCoeffs());
238 }
239 if (NumHomogeneousDir == 1)
240 {
241 fromField->m_exp[j]->SetWaveSpace(true);
242 if (sinmode.count(j))
243 {
244 int Ncoeff = fromField->m_exp[j]->GetPlane(2)->GetNcoeffs();
246 Ncoeff, -1., fromField->m_exp[j]->GetPlane(2)->GetCoeffs(),
247 1, fromField->m_exp[j]->GetPlane(3)->UpdateCoeffs(), 1);
248 Vmath::Zero(Ncoeff,
249 fromField->m_exp[j]->GetPlane(2)->UpdateCoeffs(),
250 1);
251 }
252 }
253 fromField->m_exp[j]->BwdTrans(fromField->m_exp[j]->GetCoeffs(),
254 fromField->m_exp[j]->UpdatePhys());
255
256 Array<OneD, NekDouble> newPts(m_f->m_fieldPts->GetNpoints());
257 m_f->m_fieldPts->AddField(newPts,
258 fromField->m_fielddef[0]->m_fields[j]);
259 m_f->m_variables.push_back(fromField->m_fielddef[0]->m_fields[j]);
260 }
261
262 NekDouble clamp_low = m_config["clamptolowervalue"].as<NekDouble>();
263 NekDouble clamp_up = m_config["clamptouppervalue"].as<NekDouble>();
264 NekDouble def_value = m_config["defaultvalue"].as<NekDouble>();
265
266 InterpolateFieldToPts(fromField->m_exp, m_f->m_fieldPts, clamp_low,
267 clamp_up, def_value);
268
269 if (!boost::iequals(m_config["cp"].as<string>(), "NotSet"))
270 {
271 calcCp0();
272 }
273}
274
275void ProcessInterpPoints::CreateFieldPts(po::variables_map &vm)
276{
277 boost::ignore_unused(vm);
278
279 int rank = m_f->m_comm->GetSpaceComm()->GetRank();
280 int nprocs = m_f->m_comm->GetSpaceComm()->GetSize();
281 // Check for command line point specification
282
283 if (m_config["topts"].as<string>().compare("NotSet") != 0)
284 {
285 string inFile = m_config["topts"].as<string>();
286
287 if (boost::filesystem::path(inFile).extension() == ".pts")
288 {
291 m_f->m_comm);
292
293 ptsIO->Import(inFile, m_f->m_fieldPts);
294 }
295 else if (boost::filesystem::path(inFile).extension() == ".csv")
296 {
299 m_f->m_comm);
300
301 csvIO->Import(inFile, m_f->m_fieldPts);
302 }
303 else
304 {
305 ASSERTL0(false, "unknown topts file type");
306 }
307 }
308 else if (m_config["line"].as<string>().compare("NotSet") != 0)
309 {
310 vector<NekDouble> values;
311 ASSERTL0(
312 ParseUtils::GenerateVector(m_config["line"].as<string>(), values),
313 "Failed to interpret line string");
314
315 ASSERTL0(values.size() > 2, "line string should contain 2*Dim+1 values "
316 "N,x0,y0,z0,x1,y1,z1");
317
318 double tmp;
319 ASSERTL0(std::modf(values[0], &tmp) == 0.0, "N is not an integer");
320 ASSERTL0(values[0] > 1, "N is not a valid number");
321
322 int dim = (values.size() - 1) / 2;
323 int npts = values[0];
324
325 // Information for partitioning
326 int ptsPerProc = npts / nprocs;
327 int extraPts = (rank < nprocs - 1) ? 0 : npts % nprocs;
328 int locPts = ptsPerProc + extraPts;
329 int start = rank * ptsPerProc;
330 int end = start + locPts;
331
333 Array<OneD, NekDouble> delta(dim);
334 for (int i = 0; i < dim; ++i)
335 {
336 pts[i] = Array<OneD, NekDouble>(locPts);
337 delta[i] = (values[dim + i + 1] - values[i + 1]) / (npts - 1);
338 }
339
340 for (int i = 0, cntLoc = 0; i < npts; ++i)
341 {
342 if (i >= start && i < end)
343 {
344 for (int n = 0; n < dim; ++n)
345 {
346 pts[n][cntLoc] = values[n + 1] + i * delta[n];
347 }
348 ++cntLoc;
349 }
350 }
351
352 vector<size_t> ppe;
353 ppe.push_back(npts);
354 m_f->m_fieldPts =
356 m_f->m_fieldPts->SetPtsType(LibUtilities::ePtsLine);
357 m_f->m_fieldPts->SetPointsPerEdge(ppe);
358 }
359 else if (m_config["plane"].as<string>().compare("NotSet") != 0)
360 {
361 vector<NekDouble> values;
362 ASSERTL0(
363 ParseUtils::GenerateVector(m_config["plane"].as<string>(), values),
364 "Failed to interpret plane string");
365
366 ASSERTL0(values.size() > 9,
367 "plane string should contain 4 Dim+2 values "
368 "N1,N2,x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3");
369
370 double tmp;
371 ASSERTL0(std::modf(values[0], &tmp) == 0.0, "N1 is not an integer");
372 ASSERTL0(std::modf(values[1], &tmp) == 0.0, "N2 is not an integer");
373
374 ASSERTL0(values[0] > 1, "N1 is not a valid number");
375 ASSERTL0(values[1] > 1, "N2 is not a valid number");
376
377 int dim = (values.size() - 2) / 4;
378
379 Array<OneD, int> npts(2);
380 npts[0] = values[0];
381 npts[1] = values[1];
382
383 int totpts = npts[0] * npts[1];
384
385 // Information for partitioning
386 int ptsPerProc = totpts / nprocs;
387 int extraPts = (rank < nprocs - 1) ? 0 : totpts % nprocs;
388 int locPts = ptsPerProc + extraPts;
389 int start = rank * ptsPerProc;
390 int end = start + locPts;
391
393 Array<OneD, NekDouble> delta1(dim);
394 Array<OneD, NekDouble> delta2(dim);
395 for (int i = 0; i < dim; ++i)
396 {
397 pts[i] = Array<OneD, NekDouble>(locPts);
398 delta1[i] = (values[2 + 1 * dim + i] - values[2 + 0 * dim + i]) /
399 (npts[0] - 1);
400 delta2[i] = (values[2 + 2 * dim + i] - values[2 + 3 * dim + i]) /
401 (npts[0] - 1);
402 }
403
404 for (int j = 0, cnt = 0, cntLoc = 0; j < npts[1]; ++j)
405 {
406 for (int i = 0; i < npts[0]; ++i, ++cnt)
407 {
408 if (cnt >= start && cnt < end)
409 {
410 for (int n = 0; n < dim; ++n)
411 {
412 pts[n][cntLoc] =
413 (values[2 + n] + i * delta1[n]) *
414 (1.0 - j / ((NekDouble)(npts[1] - 1))) +
415 (values[2 + 3 * dim + n] + i * delta2[n]) *
416 (j / ((NekDouble)(npts[1] - 1)));
417 }
418 ++cntLoc;
419 }
420 }
421 }
422
423 vector<size_t> ppe;
424 ppe.push_back(npts[0]);
425 ppe.push_back(npts[1]);
426 m_f->m_fieldPts =
428 m_f->m_fieldPts->SetPtsType(LibUtilities::ePtsPlane);
429 m_f->m_fieldPts->SetPointsPerEdge(ppe);
430 }
431 else if (m_config["box"].as<string>().compare("NotSet") != 0)
432 {
433 vector<NekDouble> values;
434 ASSERTL0(
435 ParseUtils::GenerateVector(m_config["box"].as<string>(), values),
436 "Failed to interpret box string");
437
438 ASSERTL0(values.size() == 9, "box string should contain 9 values "
439 "N1,N2,N3,xmin,xmax,ymin,ymax,zmin,zmax");
440
441 int dim = 3;
442 Array<OneD, int> npts(3);
443 npts[0] = values[0];
444 npts[1] = values[1];
445 npts[2] = values[2];
446
447 int totpts = npts[0] * npts[1] * npts[2];
448
450 Array<OneD, NekDouble> delta(dim);
451
452 // Information for partitioning
453 int ptsPerProc = totpts / nprocs;
454 int extraPts = (rank < nprocs - 1) ? 0 : totpts % nprocs;
455 int locPts = ptsPerProc + extraPts;
456 int start = rank * ptsPerProc;
457 int end = start + locPts;
458
459 for (int i = 0; i < dim; ++i)
460 {
461 pts[i] = Array<OneD, NekDouble>(locPts);
462 delta[i] = (values[4 + 2 * i] - values[3 + 2 * i]) / (npts[i] - 1);
463 }
464
465 for (int k = 0, cnt = 0, cntLoc = 0; k < npts[2]; ++k)
466 {
467 for (int j = 0; j < npts[1]; ++j)
468 {
469 for (int i = 0; i < npts[0]; ++i, ++cnt)
470 {
471 if (cnt >= start && cnt < end)
472 {
473 pts[0][cntLoc] = values[3] + i * delta[0];
474 pts[1][cntLoc] = values[5] + j * delta[1];
475 pts[2][cntLoc] = values[7] + k * delta[2];
476 ++cntLoc;
477 }
478 }
479 }
480 }
481
482 vector<size_t> ppe;
483 ppe.push_back(npts[0]);
484 ppe.push_back(npts[1]);
485 ppe.push_back(npts[2]);
486 m_f->m_fieldPts =
488 m_f->m_fieldPts->SetPtsType(LibUtilities::ePtsBox);
489 m_f->m_fieldPts->SetPointsPerEdge(ppe);
490 vector<NekDouble> boxdim;
491 boxdim.assign(&values[3], &values[3] + 6);
492 m_f->m_fieldPts->SetBoxSize(boxdim);
493 }
494 else
495 {
496 ASSERTL0(false, "Missing target points for ProcessInterpPoints.");
497 }
498}
499
501 vector<MultiRegions::ExpListSharedPtr> &field0,
503 NekDouble clamp_up, NekDouble def_value)
504{
505 boost::ignore_unused(def_value);
506
507 ASSERTL0(pts->GetNFields() == field0.size(), "ptField has too few fields");
508
509 int nfields = field0.size();
510
512 if (m_f->m_comm->GetRank() == 0)
513 {
515 this);
516 }
517 interp.Interpolate(field0, pts);
518
519 if (m_f->m_comm->GetRank() == 0)
520 {
521 cout << endl;
522 }
523
524 for (int f = 0; f < nfields; ++f)
525 {
526 for (int i = 0; i < pts->GetNpoints(); ++i)
527 {
528 if (pts->GetPointVal(f, i) > clamp_up)
529 {
530 pts->SetPointVal(f, i, clamp_up);
531 }
532 else if (pts->GetPointVal(f, i) < clamp_low)
533 {
534 pts->SetPointVal(f, i, clamp_low);
535 }
536 }
537 }
538}
539
541{
542 LibUtilities::PtsFieldSharedPtr pts = m_f->m_fieldPts;
543 int dim = pts->GetDim();
544 int nq1 = pts->GetNpoints();
545 int r, f;
546 int pfield = -1;
547 NekDouble p0, qinv;
548 vector<int> velid;
549
550 vector<NekDouble> values;
551 ASSERTL0(ParseUtils::GenerateVector(m_config["cp"].as<string>(), values),
552 "Failed to interpret cp string");
553
554 ASSERTL0(values.size() == 2, "cp string should contain 2 values "
555 "p0 and q (=1/2 rho u^2)");
556
557 p0 = values[0];
558 qinv = 1.0 / values[1];
559
560 for (int i = 0; i < pts->GetNFields(); ++i)
561 {
562 if (boost::iequals(pts->GetFieldName(i), "p"))
563 {
564 pfield = i;
565 }
566
567 if (boost::iequals(pts->GetFieldName(i), "u") ||
568 boost::iequals(pts->GetFieldName(i), "v") ||
569 boost::iequals(pts->GetFieldName(i), "w"))
570 {
571 velid.push_back(i);
572 }
573 }
574
575 if (pfield != -1)
576 {
577 if (!velid.size())
578 {
579 WARNINGL0(false, "Did not find velocity components for Cp0");
580 }
581 }
582 else
583 {
584 WARNINGL0(false, "Failed to find 'p' field to determine cp0");
585 }
586
587 // Allocate data storage
589
590 for (f = 0; f < 2; ++f)
591 {
592 data[f] = Array<OneD, NekDouble>(nq1, 0.0);
593 }
594
595 for (r = 0; r < nq1; r++)
596 {
597 if (pfield != -1) // calculate cp
598 {
599 data[0][r] = qinv * (pts->GetPointVal(dim + pfield, r) - p0);
600
601 if (velid.size()) // calculate cp0
602 {
603 NekDouble q = 0;
604 for (int i = 0; i < velid.size(); ++i)
605 {
606 q += 0.5 * pts->GetPointVal(dim + velid[i], r) *
607 pts->GetPointVal(dim + velid[i], r);
608 }
609 data[1][r] =
610 qinv * (pts->GetPointVal(dim + pfield, r) + q - p0);
611 }
612 }
613 }
614
615 if (pfield != -1)
616 {
617 pts->AddField(data[0], "Cp");
618 m_f->m_variables.push_back("Cp");
619 if (velid.size())
620 {
621 pts->AddField(data[1], "Cp0");
622 m_f->m_variables.push_back("Cp0");
623 }
624 }
625}
626
628 const int goal) const
629{
630 LibUtilities::PrintProgressbar(position, goal, "Interpolating");
631}
632} // namespace FieldUtils
633} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define WARNINGL0(condition, msg)
Definition: ErrorUtil.hpp:222
A class that contains algorithms for interpolation between pts fields, expansions and different meshe...
FIELD_UTILS_EXPORT void Interpolate(const T expInField, T &expOutField, NekDouble def_value=0.0)
Interpolate from an expansion to an expansion.
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:263
void InterpolateFieldToPts(std::vector< MultiRegions::ExpListSharedPtr > &field0, LibUtilities::PtsFieldSharedPtr &pts, NekDouble clamp_low, NekDouble clamp_up, NekDouble def_value)
void PrintProgressbar(const int position, const int goal) const
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Abstract base class for processing modules.
Definition: Module.h:292
void SetProgressCallback(FuncPointerT func, ObjectPointerT obj)
sets a callback funtion which gets called every time the interpolation progresses
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SessionReaderSharedPtr CreateInstance(int argc, char *argv[])
Creates an instance of the SessionReader class.
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
static bool GenerateVariableSet(const std::string &str, const std::vector< std::string > &variables, std::set< int > &out)
Generate a set of variable locations.
Definition: ParseUtils.cpp:166
static bool GenerateVector(const std::string &str, std::vector< T > &out)
Takes a comma-separated string and converts it to entries in a vector.
Definition: ParseUtils.cpp:131
static MeshGraphSharedPtr Read(const LibUtilities::SessionReaderSharedPtr pSession, LibUtilities::DomainRangeShPtr rng=LibUtilities::NullDomainRangeShPtr, bool fillGraph=true, SpatialDomains::MeshGraphSharedPtr partitionedGraph=nullptr)
Definition: MeshGraph.cpp:116
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
int PrintProgressbar(const int position, const int goal, const std::string message, int lastprogress=-1)
Prints a progressbar.
Definition: Progressbar.hpp:67
static FieldMetaDataMap NullFieldMetaDataMap
Definition: FieldIO.h:53
std::shared_ptr< PtsField > PtsFieldSharedPtr
Definition: PtsField.h:190
std::shared_ptr< DomainRange > DomainRangeShPtr
Definition: DomainRange.h:66
std::shared_ptr< CsvIO > CsvIOSharedPtr
Definition: CsvIO.h:80
std::shared_ptr< PtsIO > PtsIOSharedPtr
Definition: PtsIO.h:96
CommFactory & GetCommFactory()
@ eFourierHalfModeIm
Fourier Modified expansions with just the imaginary part of the first mode .
Definition: BasisType.h:70
@ eFourierHalfModeRe
Fourier Modified expansions with just the real part of the first mode .
Definition: BasisType.h:68
@ eFourier
Fourier Expansion .
Definition: BasisType.h:57
std::map< int, ExpansionInfoShPtr > ExpansionInfoMap
Definition: MeshGraph.h:143
std::vector< double > q(NPUPPER *NPUPPER)
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:1045
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:940
Represents a command-line configuration option.
Definition: Module.h:131