Nektar++
ProcessQCriterion.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessQCriterion.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Computes Q Criterion field.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37using namespace std;
38
39#include <boost/core/ignore_unused.hpp>
40
42
43#include "ProcessQCriterion.h"
44
45namespace Nektar
46{
47namespace FieldUtils
48{
49
53 "Computes Q-Criterion.");
54
56{
57}
58
60{
61}
62
63void ProcessQCriterion::v_Process(po::variables_map &vm)
64{
65 m_f->SetUpExp(vm);
66
67 int nfields = m_f->m_variables.size();
68 m_f->m_variables.push_back("Q");
69 // Skip in case of empty partition
70 if (m_f->m_exp[0]->GetNumElmts() == 0)
71 {
72 return;
73 }
74
75 int i, s;
76 int expdim = m_f->m_graph->GetMeshDimension();
77 int spacedim = expdim + (m_f->m_numHomogeneousDir);
78
80 spacedim == 3 || spacedim == 2,
81 "ProcessQCriterion must be computed for a 2D, quasi-3D, or 3D case.");
82
83 int npoints = m_f->m_exp[0]->GetNpoints();
84
85 Array<OneD, Array<OneD, NekDouble>> grad(spacedim * spacedim);
86
87 Array<OneD, NekDouble> omega(npoints, 0.);
88 Array<OneD, NekDouble> S(npoints, 0.);
89
90 // Will store the Q-Criterion
91 Array<OneD, NekDouble> outfield(npoints);
92
93 int nstrips;
94
95 m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
96
97 for (i = 0; i < spacedim * spacedim; ++i)
98 {
99 grad[i] = Array<OneD, NekDouble>(npoints);
100 }
101
103
104 for (s = 0; s < nstrips; ++s) // homogeneous strip varient
105 {
106 Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
107 auto it = m_f->m_exp.begin() + s * (nfields + 1) + nfields;
108 m_f->m_exp.insert(it, Exp);
109 }
110
111 NekDouble fac = 0.5;
112 if (spacedim == 2)
113 {
114 for (s = 0; s < nstrips; ++s) // homogeneous strip varient
115 {
116 for (i = 0; i < spacedim; ++i)
117 {
118 m_f->m_exp[s * nfields + i]->PhysDeriv(
119 m_f->m_exp[s * nfields + i]->GetPhys(), grad[i * spacedim],
120 grad[i * spacedim + 1]);
121 }
122
123 // W_z = Vx - Uy
124 Vmath::Vsub(npoints, grad[1 * spacedim + 0], 1,
125 grad[0 * spacedim + 1], 1, outfield, 1);
126 // W_z^2
127 Vmath::Vmul(npoints, outfield, 1, outfield, 1, omega, 1);
128
129 // Ux^2
130 Vmath::Vmul(npoints, grad[0 * spacedim + 0], 1,
131 grad[0 * spacedim + 0], 1, S, 1);
132 // Vy^2
133 Vmath::Vvtvp(npoints, grad[1 * spacedim + 1], 1,
134 grad[1 * spacedim + 1], 1, S, 1, S, 1);
135
136 // Vx + Uy
137 Vmath::Vadd(npoints, grad[1 * spacedim + 0], 1,
138 grad[0 * spacedim + 1], 1, outfield, 1);
139 Vmath::Vmul(npoints, outfield, 1, outfield, 1, outfield, 1);
140 Vmath::Svtvp(npoints, fac, outfield, 1, S, 1, S, 1);
141
142 Vmath::Svtvm(npoints, fac, omega, 1, S, 1, outfield, 1);
143 Vmath::Smul(npoints, fac, outfield, 1, outfield, 1);
144
145 int fid = s * (nfields + 1) + nfields;
146 Vmath::Vcopy(npoints, outfield, 1, m_f->m_exp[fid]->UpdatePhys(),
147 1);
148 Exp->FwdTransLocalElmt(outfield, m_f->m_exp[fid]->UpdateCoeffs());
149 }
150 }
151 else if (spacedim == 3)
152 {
153 Array<OneD, NekDouble> outfield1(npoints);
154 Array<OneD, NekDouble> outfield2(npoints);
155 Array<OneD, NekDouble> outfield3(npoints);
156 for (s = 0; s < nstrips; ++s) // homogeneous strip varient
157 {
158 for (i = 0; i < spacedim; ++i)
159 {
160 m_f->m_exp[s * nfields + i]->PhysDeriv(
161 m_f->m_exp[s * nfields + i]->GetPhys(), grad[i * spacedim],
162 grad[i * spacedim + 1], grad[i * spacedim + 2]);
163 }
164
165 // W_x = Wy - Vz
166 Vmath::Vsub(npoints, grad[2 * spacedim + 1], 1,
167 grad[1 * spacedim + 2], 1, outfield1, 1);
168 // W_x^2
169 Vmath::Vmul(npoints, outfield1, 1, outfield1, 1, outfield1, 1);
170
171 // W_y = Uz - Wx
172 Vmath::Vsub(npoints, grad[0 * spacedim + 2], 1,
173 grad[2 * spacedim + 0], 1, outfield2, 1);
174 // W_y^2
175 Vmath::Vmul(npoints, outfield2, 1, outfield2, 1, outfield2, 1);
176
177 // W_z = Vx - Uy
178 Vmath::Vsub(npoints, grad[1 * spacedim + 0], 1,
179 grad[0 * spacedim + 1], 1, outfield3, 1);
180 // W_z^2
181 Vmath::Vmul(npoints, outfield3, 1, outfield3, 1, outfield3, 1);
182
183 // Omega = 0.5*(W_x^2 + W_y^2 + W_z^2)
184 Vmath::Vadd(npoints, outfield1, 1, outfield2, 1, omega, 1);
185 Vmath::Vadd(npoints, omega, 1, outfield3, 1, omega, 1);
186 Vmath::Smul(npoints, fac, omega, 1, omega, 1);
187
188 // Ux^2
189 Vmath::Vmul(npoints, grad[0 * spacedim + 0], 1,
190 grad[0 * spacedim + 0], 1, outfield1, 1);
191 // Vy^2
192 Vmath::Vmul(npoints, grad[1 * spacedim + 1], 1,
193 grad[1 * spacedim + 1], 1, outfield2, 1);
194 // Wz^2
195 Vmath::Vmul(npoints, grad[2 * spacedim + 2], 1,
196 grad[2 * spacedim + 2], 1, outfield3, 1);
197
198 //
199 Vmath::Vadd(npoints, outfield1, 1, outfield2, 1, S, 1);
200 Vmath::Vadd(npoints, S, 1, outfield3, 1, S, 1);
201
202 // Wy + Vz
203 Vmath::Vadd(npoints, grad[2 * spacedim + 1], 1,
204 grad[1 * spacedim + 2], 1, outfield1, 1);
205 Vmath::Vmul(npoints, outfield1, 1, outfield1, 1, outfield1, 1);
206
207 // Uz + Wx
208 Vmath::Vadd(npoints, grad[0 * spacedim + 2], 1,
209 grad[2 * spacedim + 0], 1, outfield2, 1);
210 Vmath::Vmul(npoints, outfield2, 1, outfield2, 1, outfield2, 1);
211
212 // Vx + Uy
213 Vmath::Vadd(npoints, grad[1 * spacedim + 0], 1,
214 grad[0 * spacedim + 1], 1, outfield3, 1);
215 Vmath::Vmul(npoints, outfield3, 1, outfield3, 1, outfield3, 1);
216
217 Vmath::Vadd(npoints, outfield1, 1, outfield2, 1, outfield2, 1);
218 Vmath::Vadd(npoints, outfield2, 1, outfield3, 1, outfield3, 1);
219
220 Vmath::Smul(npoints, fac, outfield3, 1, outfield3, 1);
221
222 Vmath::Vadd(npoints, outfield3, 1, S, 1, S, 1);
223 Vmath::Vsub(npoints, omega, 1, S, 1, outfield, 1);
224
225 Vmath::Smul(npoints, fac, outfield, 1, outfield, 1);
226
227 int fid = s * (nfields + 1) + nfields;
228 Vmath::Vcopy(npoints, outfield, 1, m_f->m_exp[fid]->UpdatePhys(),
229 1);
230 Exp->FwdTransLocalElmt(outfield, m_f->m_exp[fid]->UpdateCoeffs());
231 }
232 }
233}
234
235} // namespace FieldUtils
236} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
Abstract base class for processing modules.
Definition: Module.h:292
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Svtvm(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvm (scalar times vector minus vector): z = alpha*x - y
Definition: Vmath.cpp:659
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414