Nektar++
ProcessSurfDistance.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessSurfDistance.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Computes height of elements connected to a surface.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37using namespace std;
38
39#include "ProcessSurfDistance.h"
40
41namespace Nektar
42{
43namespace FieldUtils
44{
45
49 "Computes height of element connected to a surface.");
50
53{
54}
55
57{
58}
59
60void ProcessSurfDistance::v_Process(po::variables_map &vm)
61{
63 ASSERTL0(!boost::iequals(m_config["bnd"].as<string>(), "All"),
64 "ProcessSurfDistance needs bnd parameter with a single id.");
65
66 int i, j, k, cnt;
67 int surf = m_config["bnd"].as<int>();
68 int expdim = m_f->m_graph->GetMeshDimension();
69
70 ASSERTL0(surf >= 0, "Invalid surface " + boost::lexical_cast<string>(surf));
71
72 int nfields = m_f->m_variables.size();
73 m_f->m_variables.push_back("dist");
74
75 if (m_f->m_exp[0]->GetNumElmts() == 0)
76 {
77 return;
78 }
79
80 int NumHomogeneousDir = m_f->m_numHomogeneousDir;
82 if (nfields)
83 {
84 m_f->m_exp.resize(nfields + 1);
85 exp = m_f->AppendExpList(NumHomogeneousDir);
86
87 m_f->m_exp[nfields] = exp;
88 }
89 else
90 {
91 exp = m_f->m_exp[0];
92 }
93
94 // Grab boundary expansions.
96 exp->GetBndCondExpansions();
97
98 // Get map that takes us from boundary element to element.
99 Array<OneD, int> BoundarytoElmtID, BoundarytoTraceID;
100 exp->GetBoundaryToElmtMap(BoundarytoElmtID, BoundarytoTraceID);
101
102 ASSERTL0(!(m_f->m_numHomogeneousDir),
103 "Homogeneous expansions not supported");
104
105 for (i = cnt = 0; i < BndExp.size(); ++i)
106 {
107 if (i != surf)
108 {
109 cnt += BndExp[i]->GetExpSize();
110 continue;
111 }
112
113 for (j = 0; j < BndExp[i]->GetExpSize(); ++j, ++cnt)
114 {
115 int elmtNum = BoundarytoElmtID[cnt];
116 int facetNum = BoundarytoTraceID[cnt];
117 int oppositeNum = 0;
118
119 // Get boundary and element expansions.
120 LocalRegions::ExpansionSharedPtr bndElmt = BndExp[i]->GetExp(j);
121 LocalRegions::ExpansionSharedPtr elmt = exp->GetExp(elmtNum);
122
123 // Determine which face is opposite to the surface
124 switch (elmt->DetShapeType())
125 {
127 {
128 oppositeNum = (facetNum + 2) % 4;
129 }
130 break;
131
133 {
134 switch (facetNum)
135 {
136 case 1:
137 oppositeNum = 3;
138 break;
139 case 3:
140 oppositeNum = 1;
141 break;
142 default:
143 ASSERTL0(false, "Surface must be on a triangular "
144 "face of the prism.");
145 }
146 }
147 break;
148
150 {
151 switch (facetNum)
152 {
153 case 0:
154 oppositeNum = 5;
155 break;
156 case 1:
157 oppositeNum = 3;
158 break;
159 case 2:
160 oppositeNum = 4;
161 break;
162 case 3:
163 oppositeNum = 1;
164 break;
165 case 4:
166 oppositeNum = 2;
167 break;
168 case 5:
169 oppositeNum = 0;
170 break;
171 default:
172 ASSERTL0(false, "Face out of bound.");
173 }
174 }
175 break;
176
177 default:
178 ASSERTL0(false, "Element not supported");
179 }
180
181 int nq = elmt->GetTotPoints();
182 int nqBnd = bndElmt->GetTotPoints();
183
185 x[0] = Array<OneD, NekDouble>(nq);
186 x[1] = Array<OneD, NekDouble>(nq);
187 x[2] = Array<OneD, NekDouble>(nq);
188 elmt->GetCoords(x[0], x[1], x[2]);
189
190 Array<OneD, NekDouble> face1(nqBnd), face2(nqBnd);
192 BndExp[i]->UpdatePhys() + BndExp[i]->GetPhys_Offset(j);
193
194 // Zero existing value.
195 Vmath::Zero(nqBnd, dist, 1);
196
197 // Calculate distance between two faces of the element
198 for (k = 0; k < expdim; ++k)
199 {
200 switch (expdim)
201 {
202 case 2:
203 {
204 elmt->GetTracePhysVals(facetNum, bndElmt, x[k], face1);
205 elmt->GetTracePhysVals(oppositeNum, bndElmt, x[k],
206 face2);
207 // Consider edge orientation
208 if (elmt->GetTraceOrient(facetNum) !=
209 elmt->GetTraceOrient(oppositeNum))
210 {
211 Vmath::Reverse(nqBnd, face2, 1, face2, 1);
212 }
213 }
214 break;
215 case 3:
216 {
217 // Use orientation from the surface for both faces
218 StdRegions::Orientation orientation =
219 elmt->GetTraceOrient(facetNum);
220 elmt->GetTracePhysVals(facetNum, bndElmt, x[k], face1,
221 orientation);
222 elmt->GetTracePhysVals(oppositeNum, bndElmt, x[k],
223 face2, orientation);
224 }
225 break;
226 default:
227 ASSERTL0(false, "Expansion not supported");
228 }
229 Vmath::Vsub(nqBnd, face1, 1, face2, 1, face1, 1);
230 Vmath::Vvtvp(nqBnd, face1, 1, face1, 1, dist, 1, dist, 1);
231 }
232 Vmath::Vsqrt(nqBnd, dist, 1, dist, 1);
233 }
234
235 BndExp[i]->FwdTransLocalElmt(BndExp[i]->GetPhys(),
236 BndExp[i]->UpdateCoeffs());
237 }
238}
239} // namespace FieldUtils
240} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:263
This processing module sets up for the boundary field to be extracted.
virtual void v_Process(po::variables_map &vm) override
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:529
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1222
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414