Nektar++
ProcessVorticity.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessVorticity.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Computes vorticity field.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37using namespace std;
38
39#include <boost/core/ignore_unused.hpp>
40
43
44#include "ProcessMapping.h"
45#include "ProcessVorticity.h"
46
47namespace Nektar
48{
49namespace FieldUtils
50{
51
55 "Computes vorticity field.");
56
58{
59}
60
62{
63}
64
65void ProcessVorticity::v_Process(po::variables_map &vm)
66{
67 m_f->SetUpExp(vm);
68
69 int i, s;
70 int expdim = m_f->m_graph->GetMeshDimension();
71 m_spacedim = expdim;
72 if ((m_f->m_numHomogeneousDir) == 1 || (m_f->m_numHomogeneousDir) == 2)
73 {
74 m_spacedim = 3;
75 }
76 int nfields = m_f->m_variables.size();
78 "Error: Vorticity for a 1D problem cannot be computed");
79 int addfields = (m_spacedim == 2) ? 1 : 3;
80
81 // Append field names
82 if (addfields == 1)
83 {
84 m_f->m_variables.push_back("W_z");
85 }
86 else
87 {
88 m_f->m_variables.push_back("W_x");
89 m_f->m_variables.push_back("W_y");
90 m_f->m_variables.push_back("W_z");
91 }
92
93 // Skip in case of empty partition
94 if (m_f->m_exp[0]->GetNumElmts() == 0)
95 {
96 return;
97 }
98 int npoints = m_f->m_exp[0]->GetNpoints();
100 Array<OneD, Array<OneD, NekDouble>> outfield(addfields);
101
102 int nstrips;
103
104 m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
105
106 for (i = 0; i < m_spacedim * m_spacedim; ++i)
107 {
108 grad[i] = Array<OneD, NekDouble>(npoints);
109 }
110
111 for (i = 0; i < addfields; ++i)
112 {
113 outfield[i] = Array<OneD, NekDouble>(npoints);
114 }
115
117 for (int i = 0; i < m_spacedim; i++)
118 {
119 tmp[i] = Array<OneD, NekDouble>(npoints);
120 }
121
122 // add in new fields
123 for (s = 0; s < nstrips; ++s)
124 {
125 for (i = 0; i < addfields; ++i)
126 {
128 m_f->AppendExpList(m_f->m_numHomogeneousDir);
129 m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + addfields) +
130 nfields + i,
131 Exp);
132 }
133 }
134
135 // Get mapping
137
138 for (s = 0; s < nstrips; ++s) // homogeneous strip varient
139 {
140 // Get velocity and convert to Cartesian system,
141 // if it is still in transformed system
143 GetVelocity(vel, nfields + addfields, s);
144 if (m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
145 {
146 if (m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
147 {
148 // Initialize arrays and copy velocity
149 if (m_f->m_exp[0]->GetWaveSpace())
150 {
151 for (int i = 0; i < m_spacedim; ++i)
152 {
153 m_f->m_exp[0]->HomogeneousBwdTrans(npoints, vel[i],
154 vel[i]);
155 }
156 }
157 // Convert velocity to cartesian system
158 mapping->ContravarToCartesian(vel, vel);
159 // Convert back to wavespace if necessary
160 if (m_f->m_exp[0]->GetWaveSpace())
161 {
162 for (int i = 0; i < m_spacedim; ++i)
163 {
164 m_f->m_exp[0]->HomogeneousFwdTrans(npoints, vel[i],
165 vel[i]);
166 }
167 }
168 }
169 }
170
171 // Calculate Gradient & Vorticity
172 if (m_spacedim == 2)
173 {
174 for (i = 0; i < m_spacedim; ++i)
175 {
176 m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1]);
177 mapping->CovarToCartesian(tmp, tmp);
178 for (int j = 0; j < m_spacedim; j++)
179 {
180 Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
181 1);
182 }
183 }
184 // W_z = Vx - Uy
185 Vmath::Vsub(npoints, grad[1 * m_spacedim + 0], 1,
186 grad[0 * m_spacedim + 1], 1, outfield[0], 1);
187 }
188 else
189 {
190 for (i = 0; i < m_spacedim; ++i)
191 {
192 m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1],
193 tmp[2]);
194 mapping->CovarToCartesian(tmp, tmp);
195 for (int j = 0; j < m_spacedim; j++)
196 {
197 Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
198 1);
199 }
200 }
201
202 // W_x = Wy - Vz
203 Vmath::Vsub(npoints, grad[2 * m_spacedim + 1], 1,
204 grad[1 * m_spacedim + 2], 1, outfield[0], 1);
205 // W_y = Uz - Wx
206 Vmath::Vsub(npoints, grad[0 * m_spacedim + 2], 1,
207 grad[2 * m_spacedim + 0], 1, outfield[1], 1);
208 // W_z = Vx - Uy
209 Vmath::Vsub(npoints, grad[1 * m_spacedim + 0], 1,
210 grad[0 * m_spacedim + 1], 1, outfield[2], 1);
211 }
212
213 for (i = 0; i < addfields; ++i)
214 {
215 int fid = s * (nfields + addfields) + nfields + i;
216 Vmath::Vcopy(npoints, outfield[i], 1, m_f->m_exp[fid]->UpdatePhys(),
217 1);
218 m_f->m_exp[fid]->FwdTransLocalElmt(outfield[i],
219 m_f->m_exp[fid]->UpdateCoeffs());
220 }
221 }
222}
223
225 int totfields, int strip)
226{
227 int npoints = m_f->m_exp[0]->GetNpoints();
228 if (boost::iequals(m_f->m_variables[0], "u"))
229 {
230 // IncNavierStokesSolver
231 for (int i = 0; i < m_spacedim; ++i)
232 {
233 vel[i] = Array<OneD, NekDouble>(npoints);
234 Vmath::Vcopy(npoints, m_f->m_exp[strip * totfields + i]->GetPhys(),
235 1, vel[i], 1);
236 }
237 }
238 else if (boost::iequals(m_f->m_variables[0], "rho") &&
239 boost::iequals(m_f->m_variables[1], "rhou"))
240 {
241 // CompressibleFlowSolver
242 for (int i = 0; i < m_spacedim; ++i)
243 {
244 vel[i] = Array<OneD, NekDouble>(npoints);
246 npoints, m_f->m_exp[strip * totfields + i + 1]->GetPhys(), 1,
247 m_f->m_exp[strip * totfields + 0]->GetPhys(), 1, vel[i], 1);
248 }
249 }
250 else
251 {
252 // Unknown
253 ASSERTL0(false, "Could not identify velocity for ProcessVorticity");
254 }
255}
256
257} // namespace FieldUtils
258} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
Abstract base class for processing modules.
Definition: Module.h:292
void GetVelocity(Array< OneD, Array< OneD, NekDouble > > &vel, int totfields, int strip=0)
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:53
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414