Nektar++
ProcessWSS.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessWSS.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Computes wss field.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37
38#include "ProcessWSS.h"
39
42
43using namespace std;
44
45namespace Nektar
46{
47namespace FieldUtils
48{
49
52 "Computes wall shear stress field.");
53
55{
56}
57
59{
60}
61
62void ProcessWSS::v_Process(po::variables_map &vm)
63{
65
66 int i, j;
67 int nfields = m_f->m_variables.size();
68 int expdim = m_f->m_graph->GetSpaceDimension();
69 m_spacedim = expdim + m_f->m_numHomogeneousDir;
70
71 if (m_f->m_exp[0]->GetNumElmts() == 0)
72 {
73 return;
74 }
75
76 if (m_spacedim == 1)
77 {
78 ASSERTL0(false, "Error: wss for a 1D problem cannot "
79 "be computed");
80 }
81
82 // Declare arrays
83 int nshear = m_spacedim + 1;
84 int nstress = m_spacedim * m_spacedim;
85 int ngrad = m_spacedim * m_spacedim;
86
87 Array<OneD, Array<OneD, NekDouble>> velocity(nfields);
89 Array<OneD, Array<OneD, NekDouble>> stress(nstress), fstress(nstress);
91
94 Array<OneD, Array<OneD, NekDouble>> BndElmtPhys(nfields);
95 Array<OneD, Array<OneD, NekDouble>> BndElmtCoeffs(nfields);
96
97 // will resuse nfields expansions to write shear components.
98 if (nshear > nfields)
99 {
100 m_f->m_exp.resize(nshear);
101 for (i = nfields; i < nshear; ++i)
102 {
103 m_f->m_exp[nfields + i] =
104 m_f->AppendExpList(m_f->m_numHomogeneousDir);
105 }
106 }
107
108 // Create map of boundary ids for partitioned domains
110 m_f->m_exp[0]->GetGraph());
112 bcs.GetBoundaryRegions();
113 map<int, int> BndRegionMap;
114 int cnt = 0;
115 for (auto &breg_it : bregions)
116 {
117 BndRegionMap[breg_it.first] = cnt++;
118 }
119
120 // Loop over boundaries to Write
121 for (int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
122 {
123 if (BndRegionMap.count(m_f->m_bndRegionsToWrite[b]) == 1)
124 {
125 int bnd = BndRegionMap[m_f->m_bndRegionsToWrite[b]];
126 // Get expansion list for boundary and for elements containing this
127 // bnd
128 for (i = 0; i < nshear; i++)
129 {
130 BndExp[i] = m_f->m_exp[i]->UpdateBndCondExpansion(bnd);
131 }
132
133 Array<OneD, int> ElmtID, edgeID;
134 Array<OneD, NekDouble> tmp1, tmp2;
135
136 for (i = 0; i < nfields; i++)
137 {
138 m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
139 BndElmtPhys[i] = BndElmtExp[i]->UpdatePhys();
140 }
141
142 // Get number of points in expansions
143 int nqb = BndExp[0]->GetTotPoints();
144 int nqe = BndElmtExp[0]->GetTotPoints();
145
146 // Initialise local arrays for the velocity gradients, and
147 // stress components size of total number of quadrature
148 // points for elements in this bnd
149 for (i = 0; i < ngrad; ++i)
150 {
151 grad[i] = Array<OneD, NekDouble>(nqe);
152 }
153
154 for (i = 0; i < nstress; ++i)
155 {
156 stress[i] = Array<OneD, NekDouble>(nqe);
157 }
158
159 Array<OneD, NekDouble> div(nqe, 0.0);
160
161 // initialise arrays in the boundary
162 for (i = 0; i < nstress; ++i)
163 {
164 fstress[i] = Array<OneD, NekDouble>(nqb);
165 }
166
167 for (i = 0; i < nshear; ++i)
168 {
169 fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
170 }
171
172 // Extract Velocities
173 GetVelocity(BndElmtExp, BndElmtPhys, velocity);
174
175 // Extract viscosity coefficients
176 NekDouble lambda;
177 Array<OneD, NekDouble> mu(nqe, 0.0);
178 GetViscosity(BndElmtExp, BndElmtPhys, mu, lambda);
179
180 // Compute gradients
181 for (i = 0; i < m_spacedim; ++i)
182 {
183 if (m_spacedim == 2)
184 {
185 BndElmtExp[i]->PhysDeriv(velocity[i],
186 grad[i * m_spacedim + 0],
187 grad[i * m_spacedim + 1]);
188 }
189 else
190 {
191 BndElmtExp[i]->PhysDeriv(
192 velocity[i], grad[i * m_spacedim + 0],
193 grad[i * m_spacedim + 1], grad[i * m_spacedim + 2]);
194 }
195 // Add contribution to div(u)
196 Vmath::Vadd(nqe, grad[i * m_spacedim + i], 1, div, 1, div, 1);
197 }
198
199 // Velocity divergence scaled by lambda * mu
200 Vmath::Smul(nqe, lambda, div, 1, div, 1);
201 Vmath::Vmul(nqe, mu, 1, div, 1, div, 1);
202
203 // Compute stress component terms
204 // tau_ij = mu*(u_i,j + u_j,i) + mu*lambda*delta_ij*div(u)
205 for (i = 0; i < m_spacedim; ++i)
206 {
207 for (j = i; j < m_spacedim; ++j)
208 {
209 Vmath::Vadd(nqe, grad[i * m_spacedim + j], 1,
210 grad[j * m_spacedim + i], 1,
211 stress[i * m_spacedim + j], 1);
212
213 Vmath::Vmul(nqe, mu, 1, stress[i * m_spacedim + j], 1,
214 stress[i * m_spacedim + j], 1);
215
216 if (i == j)
217 {
218 // Add divergence term to diagonal
219 Vmath::Vadd(nqe, stress[i * m_spacedim + j], 1, div, 1,
220 stress[i * m_spacedim + j], 1);
221 }
222 else
223 {
224 // Copy to make symmetric
225 Vmath::Vcopy(nqe, stress[i * m_spacedim + j], 1,
226 stress[j * m_spacedim + i], 1);
227 }
228 }
229 }
230
231 // Get boundary stress values.
232 for (j = 0; j < nstress; ++j)
233 {
234 m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j], fstress[j]);
235 }
236
237 // Get normals
239 m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
240 // Reverse normals, to get correct orientation for the body
241 for (i = 0; i < m_spacedim; ++i)
242 {
243 Vmath::Neg(nqb, normals[i], 1);
244 }
245
246 // calculate wss, and update coeffs in the boundary expansion
247 // S = tau_ij * n_j
248 for (i = 0; i < m_spacedim; ++i)
249 {
250 for (j = 0; j < m_spacedim; ++j)
251 {
252 Vmath::Vvtvp(nqb, normals[j], 1,
253 fstress[i * m_spacedim + j], 1, fshear[i], 1,
254 fshear[i], 1);
255 }
256 }
257
258 // T = S - (S.n)n
259 for (i = 0; i < m_spacedim; ++i)
260 {
261 Vmath::Vvtvp(nqb, normals[i], 1, fshear[i], 1,
262 fshear[nshear - 1], 1, fshear[nshear - 1], 1);
263 }
264 Vmath::Smul(nqb, -1.0, fshear[nshear - 1], 1, fshear[nshear - 1],
265 1);
266
267 for (i = 0; i < m_spacedim; i++)
268 {
269 Vmath::Vvtvp(nqb, normals[i], 1, fshear[nshear - 1], 1,
270 fshear[i], 1, fshear[i], 1);
271 BndExp[i]->FwdTransLocalElmt(fshear[i],
272 BndExp[i]->UpdateCoeffs());
273 }
274
275 // Tw
276 Vmath::Zero(nqb, fshear[nshear - 1], 1);
277 for (i = 0; i < m_spacedim; ++i)
278 {
279 Vmath::Vvtvp(nqb, fshear[i], 1, fshear[i], 1,
280 fshear[nshear - 1], 1, fshear[nshear - 1], 1);
281 }
282 Vmath::Vsqrt(nqb, fshear[nshear - 1], 1, fshear[nshear - 1], 1);
283 BndExp[nshear - 1]->FwdTransLocalElmt(
284 fshear[nshear - 1], BndExp[nshear - 1]->UpdateCoeffs());
285 }
286 }
287
288 if (m_spacedim == 2)
289 {
290 m_f->m_variables[0] = "Shear_x";
291 m_f->m_variables[1] = "Shear_y";
292 m_f->m_variables[2] = "Shear_mag";
293 }
294 else
295 {
296 m_f->m_variables[0] = "Shear_x";
297 m_f->m_variables[1] = "Shear_y";
298 m_f->m_variables[2] = "Shear_z";
299 m_f->m_variables[3] = "Shear_mag";
300 }
301}
302
305 const Array<OneD, Array<OneD, NekDouble>> &BndElmtPhys,
307{
309 int npoints = exp[0]->GetNpoints();
310
311 if (boost::iequals(m_f->m_variables[0], "u"))
312 {
313 // IncNavierStokesSolver
314 m_mu = m_f->m_session->GetParameter("Kinvis");
315 Vmath::Fill(npoints, m_mu, mu, 1);
316 lambda = 0;
317 }
318 else if (boost::iequals(m_f->m_variables[0], "rho") &&
319 boost::iequals(m_f->m_variables[1], "rhou"))
320 {
321 // CompressibleFlowSolver
322 std::string m_ViscosityType;
323 m_f->m_session->LoadParameter("mu", m_mu, 1.78e-05);
324 m_f->m_session->LoadParameter("lambda", lambda, -2.0 / 3.0);
325 m_f->m_session->LoadSolverInfo("ViscosityType", m_ViscosityType,
326 "Constant");
327
328 if (m_ViscosityType == "Variable")
329 {
330 // Check equation of state
331 std::string eosType;
332 bool m_idealGas;
333 m_f->m_session->LoadSolverInfo("EquationOfState", eosType,
334 "IdealGas");
335 m_idealGas = boost::iequals(eosType, "IdealGas");
336 ASSERTL0(
337 m_idealGas,
338 "Only IdealGas EOS implemented for Variable ViscosityType");
339
340 // Get relevant parameters
341 NekDouble m_gamma;
342 NekDouble m_pInf;
344 NekDouble m_gasConstant;
345 NekDouble cv_inv;
346 NekDouble m_Tref;
347 NekDouble m_TRatioSutherland;
348 m_f->m_session->LoadParameter("Gamma", m_gamma, 1.4);
349 m_f->m_session->LoadParameter("pInf", m_pInf, 101325);
350 m_f->m_session->LoadParameter("rhoInf", m_rhoInf, 1.225);
351 m_f->m_session->LoadParameter("GasConstant", m_gasConstant,
352 287.058);
353 m_f->m_session->LoadParameter("Tref", m_Tref, 288.15);
354 m_TRatioSutherland = 110.0 / m_Tref;
355
356 // Get temperature from flowfield
357 cv_inv = (m_gamma - 1.0) / m_gasConstant;
358 // e = 1/rho ( E - 1/2 ( rhou^2/rho + ... ) )
359 Array<OneD, NekDouble> tmp(npoints, 0.0);
360 Array<OneD, NekDouble> energy(npoints, 0.0);
361 Array<OneD, NekDouble> temperature(npoints, 0.0);
362
363 Vmath::Vcopy(npoints, BndElmtPhys[m_spacedim + 1], 1, energy, 1);
364 for (int i = 0; i < m_spacedim; i++)
365 {
366 // rhou^2
367 Vmath::Vmul(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[i + 1],
368 1, tmp, 1);
369 // rhou^2/rho
370 Vmath::Vdiv(npoints, tmp, 1, BndElmtPhys[0], 1, tmp, 1);
371
372 // 0.5 rhou^2/rho
373 Vmath::Smul(npoints, 0.5, tmp, 1, tmp, 1);
374 // E - 0.5 rhou^2/rho - ...
375 Vmath::Vsub(npoints, energy, 1, tmp, 1, energy, 1);
376 }
377
378 // rhou^2/rho
379 Vmath::Vdiv(npoints, energy, 1, BndElmtPhys[0], 1, energy, 1);
380
381 // T = e/Cv
382 Vmath::Smul(npoints, cv_inv, energy, 1, temperature, 1);
383
384 // Variable viscosity through the Sutherland's law
385 //
386 // WARNING, if this routine is modified the same must be done in the
387 // CompressibleFlowSolver function in VariableConverter.cpp
388 // (this class should be restructured).
389
390 const NekDouble C = m_TRatioSutherland;
391 NekDouble mu_star = m_mu;
392 NekDouble T_star = m_pInf / (m_rhoInf * m_gasConstant);
393 NekDouble ratio;
394 for (int i = 0; i < npoints; ++i)
395 {
396 ratio = temperature[i] / T_star;
397 mu[i] = mu_star * ratio * sqrt(ratio) * (1 + C) / (ratio + C);
398 }
399 }
400 else
401 {
402 Vmath::Fill(npoints, m_mu, mu, 1);
403 }
404 }
405 else
406 {
407 // Unknown
408 ASSERTL0(false, "Invalid variables for WSS");
409 }
410}
411
414 const Array<OneD, Array<OneD, NekDouble>> &BndElmtPhys,
416{
417 int npoints = exp[0]->GetNpoints();
418 if (boost::iequals(m_f->m_variables[0], "u"))
419 {
420 // IncNavierStokesSolver
421 for (int i = 0; i < m_spacedim; ++i)
422 {
423 vel[i] = Array<OneD, NekDouble>(npoints);
424 Vmath::Vcopy(npoints, BndElmtPhys[i], 1, vel[i], 1);
425 }
426 }
427 else if (boost::iequals(m_f->m_variables[0], "rho") &&
428 boost::iequals(m_f->m_variables[1], "rhou"))
429 {
430 // CompressibleFlowSolver
431 for (int i = 0; i < m_spacedim; ++i)
432 {
433 vel[i] = Array<OneD, NekDouble>(npoints);
434 Vmath::Vdiv(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[0], 1,
435 vel[i], 1);
436 }
437 }
438 else
439 {
440 // Unknown
441 ASSERTL0(false, "Could not identify velocity for WSS");
442 }
443}
444
445} // namespace FieldUtils
446} // namespace Nektar
NekDouble m_mu
NekDouble m_rhoInf
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
This processing module sets up for the boundary field to be extracted.
virtual void v_Process(po::variables_map &vm) override
void GetViscosity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble > > &BndElmtdPhys, Array< OneD, NekDouble > &mu, NekDouble &lambda)
Definition: ProcessWSS.cpp:303
static ModuleKey className
Definition: ProcessWSS.h:57
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessWSS.h:53
void GetVelocity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble > > &BndElmtdPhys, Array< OneD, Array< OneD, NekDouble > > &vel)
Definition: ProcessWSS.cpp:412
ProcessWSS(FieldSharedPtr f)
Definition: ProcessWSS.cpp:54
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Definition: ProcessWSS.cpp:62
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
const BoundaryRegionCollection & GetBoundaryRegions(void) const
Definition: Conditions.h:234
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:210
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:529
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294