Nektar++
RiemannInvariantBC.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: RiemannInvariantBC.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Riemann invariant boundary condition
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <boost/core/ignore_unused.hpp>
36
37#include "RiemannInvariantBC.h"
38
39using namespace std;
40
41namespace Nektar
42{
43
46 "RiemannInvariant", RiemannInvariantBC::create,
47 "Riemann invariant boundary condition.");
48
52 const Array<OneD, Array<OneD, NekDouble>> &pTraceNormals,
53 const int pSpaceDim, const int bcRegion, const int cnt)
54 : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
55{
56 // Calculate VnInf
57 int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
58 m_VnInf = Array<OneD, NekDouble>(nTracePts, 0.0);
59
60 // Computing the normal velocity for characteristics coming
61 // from outside the computational domain
62 for (int i = 0; i < m_spacedim; i++)
63 {
64 Vmath::Svtvp(nTracePts, m_velInf[i], m_traceNormals[i], 1, m_VnInf, 1,
65 m_VnInf, 1);
66 }
67}
68
71 const NekDouble &time)
72{
73 boost::ignore_unused(physarray, time);
74
75 int i, j;
76 int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
77 int nDimensions = m_spacedim;
78
79 const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
80
81 NekDouble gammaInv = 1.0 / m_gamma;
82 NekDouble gammaMinusOne = m_gamma - 1.0;
83 NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
84
85 // Computing the normal velocity for characteristics coming
86 // from inside the computational domain
87 Array<OneD, NekDouble> Vn(nTracePts, 0.0);
88 Array<OneD, NekDouble> Vel(nTracePts, 0.0);
89 for (i = 0; i < nDimensions; ++i)
90 {
91 Vmath::Vdiv(nTracePts, Fwd[i + 1], 1, Fwd[0], 1, Vel, 1);
92 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
93 }
94
95 // Computing the absolute value of the velocity in order to compute the
96 // Mach number to decide whether supersonic or subsonic
97 Array<OneD, NekDouble> absVel(nTracePts, 0.0);
98 m_varConv->GetAbsoluteVelocity(Fwd, absVel);
99
100 // Get speed of sound
102 Array<OneD, NekDouble> soundSpeed(nTracePts);
103
104 m_varConv->GetPressure(Fwd, pressure);
105 m_varConv->GetSoundSpeed(Fwd, soundSpeed);
106
107 // Get Mach
108 Array<OneD, NekDouble> Mach(nTracePts, 0.0);
109 Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
110 Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
111
112 // Auxiliary variables
113 int eMax;
114 int e, id1, id2, nBCEdgePts, pnt;
115 NekDouble cPlus, rPlus, cMinus, rMinus, VDBC, VNBC;
116 Array<OneD, NekDouble> velBC(nDimensions, 0.0);
117 Array<OneD, NekDouble> rhoVelBC(nDimensions, 0.0);
118 NekDouble rhoBC, EBC, cBC, sBC, pBC;
119
120 eMax = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize();
121
122 // Loop on m_bcRegions
123 for (e = 0; e < eMax; ++e)
124 {
125 nBCEdgePts = m_fields[0]
126 ->GetBndCondExpansions()[m_bcRegion]
127 ->GetExp(e)
128 ->GetTotPoints();
129
130 id1 =
131 m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetPhys_Offset(e);
132 id2 =
133 m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset + e]);
134
135 // Loop on the points of the m_bcRegion
136 for (i = 0; i < nBCEdgePts; i++)
137 {
138 pnt = id2 + i;
139
140 // Impose inflow Riemann invariant
141 if (Vn[pnt] <= 0.0)
142 {
143 // Subsonic flows
144 if (Mach[pnt] < 1.00)
145 {
146 // + Characteristic from inside
147 cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
148 rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
149
150 // - Characteristic from boundary
151 cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
152 rMinus = m_VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
153 }
154 else
155 {
156 // + Characteristic from inside
157 cPlus = sqrt(m_gamma * m_pInf / m_rhoInf);
158 rPlus = m_VnInf[pnt] + 2.0 * cPlus * gammaMinusOneInv;
159
160 // + Characteristic from inside
161 cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
162 rMinus = m_VnInf[pnt] - 2.0 * cPlus * gammaMinusOneInv;
163 }
164
165 // Riemann boundary variables
166 VNBC = 0.5 * (rPlus + rMinus);
167 cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
168 VDBC = VNBC - m_VnInf[pnt];
169
170 // Thermodynamic boundary variables
171 sBC = m_pInf / (pow(m_rhoInf, m_gamma));
172 rhoBC = pow((cBC * cBC) / (m_gamma * sBC), gammaMinusOneInv);
173 pBC = rhoBC * cBC * cBC * gammaInv;
174
175 // Kinetic energy initialiasation
176 NekDouble EkBC = 0.0;
177
178 // Boundary velocities
179 for (j = 0; j < nDimensions; ++j)
180 {
181 velBC[j] = m_velInf[j] + VDBC * m_traceNormals[j][pnt];
182 rhoVelBC[j] = rhoBC * velBC[j];
183 EkBC += 0.5 * rhoBC * velBC[j] * velBC[j];
184 }
185
186 // Boundary energy
187 EBC = pBC * gammaMinusOneInv + EkBC;
188
189 // Imposing Riemann Invariant boundary conditions
190 (m_fields[0]
191 ->GetBndCondExpansions()[m_bcRegion]
192 ->UpdatePhys())[id1 + i] = rhoBC;
193 for (j = 0; j < nDimensions; ++j)
194 {
195 (m_fields[j + 1]
196 ->GetBndCondExpansions()[m_bcRegion]
197 ->UpdatePhys())[id1 + i] = rhoVelBC[j];
198 }
199 (m_fields[nDimensions + 1]
200 ->GetBndCondExpansions()[m_bcRegion]
201 ->UpdatePhys())[id1 + i] = EBC;
202 }
203 else // Impose outflow Riemann invariant
204 {
205 // Subsonic flows
206 if (Mach[pnt] < 1.00)
207 {
208 // + Characteristic from inside
209 cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
210 rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
211
212 // - Characteristic from boundary
213 cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
214 rMinus = m_VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
215 }
216 else
217 {
218 // + Characteristic from inside
219 cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
220 rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
221
222 // + Characteristic from inside
223 cMinus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
224 rMinus = Vn[pnt] - 2.0 * cPlus * gammaMinusOneInv;
225 }
226
227 // Riemann boundary variables
228 VNBC = 0.5 * (rPlus + rMinus);
229 cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
230 VDBC = VNBC - Vn[pnt];
231
232 // Thermodynamic boundary variables
233 sBC = pressure[pnt] / (pow(Fwd[0][pnt], m_gamma));
234 rhoBC = pow((cBC * cBC) / (m_gamma * sBC), gammaMinusOneInv);
235 pBC = rhoBC * cBC * cBC * gammaInv;
236
237 // Kinetic energy initialiasation
238 NekDouble EkBC = 0.0;
239
240 // Boundary velocities
241 for (j = 0; j < nDimensions; ++j)
242 {
243 velBC[j] = Fwd[j + 1][pnt] / Fwd[0][pnt] +
244 VDBC * m_traceNormals[j][pnt];
245 rhoVelBC[j] = rhoBC * velBC[j];
246 EkBC += 0.5 * rhoBC * velBC[j] * velBC[j];
247 }
248
249 // Boundary energy
250 EBC = pBC * gammaMinusOneInv + EkBC;
251
252 // Imposing Riemann Invariant boundary conditions
253 (m_fields[0]
254 ->GetBndCondExpansions()[m_bcRegion]
255 ->UpdatePhys())[id1 + i] = rhoBC;
256 for (j = 0; j < nDimensions; ++j)
257 {
258 (m_fields[j + 1]
259 ->GetBndCondExpansions()[m_bcRegion]
260 ->UpdatePhys())[id1 + i] = rhoVelBC[j];
261 }
262 (m_fields[nDimensions + 1]
263 ->GetBndCondExpansions()[m_bcRegion]
264 ->UpdatePhys())[id1 + i] = EBC;
265 }
266 }
267 }
268}
269
270} // namespace Nektar
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:70
NekDouble m_rhoInf
Definition: CFSBndCond.h:103
NekDouble m_pInf
Definition: CFSBndCond.h:104
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:95
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:93
Array< OneD, NekDouble > m_velInf
Definition: CFSBndCond.h:106
NekDouble m_gamma
Parameters of the flow.
Definition: CFSBndCond.h:102
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:109
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:97
int m_offset
Offset.
Definition: CFSBndCond.h:111
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:91
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
virtual void v_Apply(Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time) override
static CFSBndCondSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
Creates an instance of this class.
static std::string className
Name of the class.
RiemannInvariantBC(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
Array< OneD, NekDouble > m_VnInf
Reference normal velocity.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
double NekDouble
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:548
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294