Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::PhysDeriv_SumFac_Hex Class Referencefinal

Phys deriv operator using sum-factorisation (Hex) More...

Inheritance diagram for Nektar::Collections::PhysDeriv_SumFac_Hex:
[legend]

Public Member Functions

 ~PhysDeriv_SumFac_Hex () final
 
void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp) override final
 Perform operation. More...
 
void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp) override final
 
virtual void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset) override
 Check the validity of the supplied factor map. More...
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp=NullNekDouble1DArray)=0
 Perform operation. More...
 
virtual COLLECTIONS_EXPORT void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp=NullNekDouble1DArray)=0
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
virtual COLLECTIONS_EXPORT void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset)=0
 Check the validity of the supplied factor map. More...
 
unsigned int GetWspSize ()
 Get the size of the required workspace. More...
 
unsigned int GetNumElmt ()
 Get expansion pointer. More...
 
StdRegions::StdExpansionSharedPtr GetExpSharedPtr ()
 Get expansion pointer. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
int m_coordim
 
const int m_nquad0
 
const int m_nquad1
 
const int m_nquad2
 
NekDoublem_Deriv0
 
NekDoublem_Deriv1
 
NekDoublem_Deriv2
 
- Protected Attributes inherited from Nektar::Collections::Operator
bool m_isDeformed
 
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_nqe
 
unsigned int m_wspSize
 

Private Member Functions

 PhysDeriv_SumFac_Hex (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData, StdRegions::FactorMap factors)
 

Detailed Description

Phys deriv operator using sum-factorisation (Hex)

Definition at line 1277 of file PhysDeriv.cpp.

Constructor & Destructor Documentation

◆ ~PhysDeriv_SumFac_Hex()

Nektar::Collections::PhysDeriv_SumFac_Hex::~PhysDeriv_SumFac_Hex ( )
inlinefinal

Definition at line 1282 of file PhysDeriv.cpp.

1283 {
1284 }

◆ PhysDeriv_SumFac_Hex()

Nektar::Collections::PhysDeriv_SumFac_Hex::PhysDeriv_SumFac_Hex ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData,
StdRegions::FactorMap  factors 
)
inlineprivate

Definition at line 1446 of file PhysDeriv.cpp.

1449 : Operator(pCollExp, pGeomData, factors),
1450 m_nquad0(m_stdExp->GetNumPoints(0)),
1451 m_nquad1(m_stdExp->GetNumPoints(1)),
1452 m_nquad2(m_stdExp->GetNumPoints(2))
1453 {
1454 LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
1455
1456 m_coordim = pCollExp[0]->GetCoordim();
1457
1458 m_derivFac = pGeomData->GetDerivFactors(pCollExp);
1459
1460 m_Deriv0 = &((m_stdExp->GetBasis(0)->GetD())->GetPtr())[0];
1461 m_Deriv1 = &((m_stdExp->GetBasis(1)->GetD())->GetPtr())[0];
1462 m_Deriv2 = &((m_stdExp->GetBasis(2)->GetD())->GetPtr())[0];
1463
1465 }
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:165
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
Constructor.
Definition: Operator.cpp:43
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:1436
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
StdRegions::ConstFactorMap factors

References m_coordim, m_Deriv0, m_Deriv1, m_Deriv2, m_derivFac, m_nquad0, m_nquad1, m_nquad2, Nektar::Collections::Operator::m_numElmt, Nektar::Collections::Operator::m_stdExp, and Nektar::Collections::Operator::m_wspSize.

Member Function Documentation

◆ CheckFactors()

virtual void Nektar::Collections::PhysDeriv_SumFac_Hex::CheckFactors ( StdRegions::FactorMap  factors,
int  coll_phys_offset 
)
inlineoverridevirtual

Check the validity of the supplied factor map.

Implements Nektar::Collections::Operator.

Definition at line 1428 of file PhysDeriv.cpp.

1430 {
1431 boost::ignore_unused(factors, coll_phys_offset);
1432 ASSERTL0(false, "Not valid for this operator.");
1433 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215

References ASSERTL0, and Nektar::VarcoeffHashingTest::factors.

◆ operator()() [1/2]

void Nektar::Collections::PhysDeriv_SumFac_Hex::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 1286 of file PhysDeriv.cpp.

1291 {
1292
1293 int nPhys = m_stdExp->GetTotPoints();
1294 int ntot = m_numElmt * nPhys;
1295 Array<OneD, NekDouble> tmp0, tmp1, tmp2;
1296 Array<OneD, Array<OneD, NekDouble>> Diff(3);
1297 Array<OneD, Array<OneD, NekDouble>> out(3);
1298 out[0] = output0;
1299 out[1] = output1;
1300 out[2] = output2;
1301
1302 for (int i = 0; i < 3; ++i)
1303 {
1304 Diff[i] = wsp + i * ntot;
1305 }
1306
1308 m_nquad0, 1.0, m_Deriv0, m_nquad0, &input[0], m_nquad0, 0.0,
1309 &Diff[0][0], m_nquad0);
1310
1311 for (int i = 0; i < m_numElmt; ++i)
1312 {
1313 for (int j = 0; j < m_nquad2; ++j)
1314 {
1315 Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1, 1.0,
1316 &input[i * nPhys + j * m_nquad0 * m_nquad1],
1317 m_nquad0, m_Deriv1, m_nquad1, 0.0,
1318 &Diff[1][i * nPhys + j * m_nquad0 * m_nquad1],
1319 m_nquad0);
1320 }
1321
1322 Blas::Dgemm('N', 'T', m_nquad0 * m_nquad1, m_nquad2, m_nquad2, 1.0,
1323 &input[i * nPhys], m_nquad0 * m_nquad1, m_Deriv2,
1324 m_nquad2, 0.0, &Diff[2][i * nPhys],
1325 m_nquad0 * m_nquad1);
1326 }
1327
1328 // calculate full derivative
1329 if (m_isDeformed)
1330 {
1331 for (int i = 0; i < m_coordim; ++i)
1332 {
1333 Vmath::Vmul(ntot, m_derivFac[i * 3], 1, Diff[0], 1, out[i], 1);
1334 for (int j = 1; j < 3; ++j)
1335 {
1336 Vmath::Vvtvp(ntot, m_derivFac[i * 3 + j], 1, Diff[j], 1,
1337 out[i], 1, out[i], 1);
1338 }
1339 }
1340 }
1341 else
1342 {
1343 Array<OneD, NekDouble> t;
1344 for (int e = 0; e < m_numElmt; ++e)
1345 {
1346 for (int i = 0; i < m_coordim; ++i)
1347 {
1348
1349 Vmath::Smul(m_nqe, m_derivFac[i * 3][e],
1350 Diff[0] + e * m_nqe, 1, t = out[i] + e * m_nqe,
1351 1);
1352
1353 for (int j = 1; j < 3; ++j)
1354 {
1355 Vmath::Svtvp(m_nqe, m_derivFac[i * 3 + j][e],
1356 Diff[j] + e * m_nqe, 1, out[i] + e * m_nqe,
1357 1, t = out[i] + e * m_nqe, 1);
1358 }
1359 }
1360 }
1361 }
1362 }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:385
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245

References Blas::Dgemm(), m_coordim, m_Deriv0, m_Deriv1, m_Deriv2, m_derivFac, Nektar::Collections::Operator::m_isDeformed, Nektar::Collections::Operator::m_nqe, m_nquad0, m_nquad1, m_nquad2, Nektar::Collections::Operator::m_numElmt, Nektar::Collections::Operator::m_stdExp, Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ operator()() [2/2]

void Nektar::Collections::PhysDeriv_SumFac_Hex::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Implements Nektar::Collections::Operator.

Definition at line 1364 of file PhysDeriv.cpp.

1367 {
1368 int nPhys = m_stdExp->GetTotPoints();
1369 int ntot = m_numElmt * nPhys;
1370 Array<OneD, NekDouble> tmp0, tmp1, tmp2;
1371 Array<OneD, Array<OneD, NekDouble>> Diff(3);
1372
1373 for (int i = 0; i < 3; ++i)
1374 {
1375 Diff[i] = wsp + i * ntot;
1376 }
1377
1379 m_nquad0, 1.0, m_Deriv0, m_nquad0, &input[0], m_nquad0, 0.0,
1380 &Diff[0][0], m_nquad0);
1381
1382 for (int i = 0; i < m_numElmt; ++i)
1383 {
1384 for (int j = 0; j < m_nquad2; ++j)
1385 {
1386 Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1, 1.0,
1387 &input[i * nPhys + j * m_nquad0 * m_nquad1],
1388 m_nquad0, m_Deriv1, m_nquad1, 0.0,
1389 &Diff[1][i * nPhys + j * m_nquad0 * m_nquad1],
1390 m_nquad0);
1391 }
1392
1393 Blas::Dgemm('N', 'T', m_nquad0 * m_nquad1, m_nquad2, m_nquad2, 1.0,
1394 &input[i * nPhys], m_nquad0 * m_nquad1, m_Deriv2,
1395 m_nquad2, 0.0, &Diff[2][i * nPhys],
1396 m_nquad0 * m_nquad1);
1397 }
1398
1399 // calculate full derivative
1400 if (m_isDeformed)
1401 {
1402 // calculate full derivative
1403 Vmath::Vmul(ntot, m_derivFac[dir * 3], 1, Diff[0], 1, output, 1);
1404 for (int j = 1; j < 3; ++j)
1405 {
1406 Vmath::Vvtvp(ntot, m_derivFac[dir * 3 + j], 1, Diff[j], 1,
1407 output, 1, output, 1);
1408 }
1409 }
1410 else
1411 {
1412 Array<OneD, NekDouble> t;
1413 for (int e = 0; e < m_numElmt; ++e)
1414 {
1415 Vmath::Smul(m_nqe, m_derivFac[dir * 3][e], Diff[0] + e * m_nqe,
1416 1, t = output + e * m_nqe, 1);
1417
1418 for (int j = 1; j < 3; ++j)
1419 {
1420 Vmath::Svtvp(m_nqe, m_derivFac[dir * 3 + j][e],
1421 Diff[j] + e * m_nqe, 1, output + e * m_nqe, 1,
1422 t = output + e * m_nqe, 1);
1423 }
1424 }
1425 }
1426 }

References Blas::Dgemm(), m_Deriv0, m_Deriv1, m_Deriv2, m_derivFac, Nektar::Collections::Operator::m_isDeformed, Nektar::Collections::Operator::m_nqe, m_nquad0, m_nquad1, m_nquad2, Nektar::Collections::Operator::m_numElmt, Nektar::Collections::Operator::m_stdExp, Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

Member Data Documentation

◆ m_coordim

int Nektar::Collections::PhysDeriv_SumFac_Hex::m_coordim
protected

Definition at line 1437 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_Deriv0

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Hex::m_Deriv0
protected

Definition at line 1441 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_Deriv1

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Hex::m_Deriv1
protected

Definition at line 1442 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_Deriv2

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Hex::m_Deriv2
protected

Definition at line 1443 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::PhysDeriv_SumFac_Hex::m_derivFac
protected

Definition at line 1436 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_nquad0

const int Nektar::Collections::PhysDeriv_SumFac_Hex::m_nquad0
protected

Definition at line 1438 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_nquad1

const int Nektar::Collections::PhysDeriv_SumFac_Hex::m_nquad1
protected

Definition at line 1439 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().

◆ m_nquad2

const int Nektar::Collections::PhysDeriv_SumFac_Hex::m_nquad2
protected

Definition at line 1440 of file PhysDeriv.cpp.

Referenced by operator()(), and PhysDeriv_SumFac_Hex().