Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::SegExp Class Reference

#include <SegExp.h>

Inheritance diagram for Nektar::LocalRegions::SegExp:
[legend]

Public Member Functions

 SegExp (const LibUtilities::BasisKey &Ba, const SpatialDomains::Geometry1DSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 SegExp (const SegExp &S)
 Copy Constructor. More...
 
virtual ~SegExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdSegExp
 StdSegExp ()
 defult constructor More...
 
 StdSegExp (const LibUtilities::BasisKey &Ba)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 StdSegExp (const StdSegExp &T)
 Copy Constructor. More...
 
virtual ~StdSegExp () override
 Destructor. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion1D
 StdExpansion1D ()
 
 StdExpansion1D (int numcoeffs, const LibUtilities::BasisKey &Ba)
 
 StdExpansion1D (const StdExpansion1D &T)
 
virtual ~StdExpansion1D () override
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray. More...
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion1D
 Expansion1D (SpatialDomains::Geometry1DSharedPtr pGeom)
 
virtual ~Expansion1D () override=default
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddHDGHelmholtzTraceTerms (const NekDouble tau, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
SpatialDomains::Geometry1DSharedPtr GetGeom1D () const
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
void SetTraceExp (const int traceid, ExpansionSharedPtr &f)
 
ExpansionSharedPtr GetTraceExp (const int traceid)
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
void AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
ExpansionSharedPtr GetLeftAdjacentElementExp () const
 
ExpansionSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementTrace () const
 
int GetRightAdjacentElementTrace () const
 
void SetAdjacentElementExp (int traceid, ExpansionSharedPtr &e)
 
StdRegions::Orientation GetTraceOrient (int trace)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights. More...
 
void GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=StdRegions::eNoOrientation)
 
void GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
void ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1)
 
const NormalVectorGetTraceNormal (const int id)
 
void ComputeTraceNormal (const int id)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
void SetUpPhysNormals (const int trace)
 
void AddRobinMassMatrix (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
void AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
const Array< OneD, const NekDouble > & GetElmtBndNormDirElmtLen (const int nbnd) const
 
void StdDerivBaseOnTraceMat (Array< OneD, DNekMatSharedPtr > &DerivMat)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over region and return the value. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
 Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds) override
 Evaluate the derivative along a line: \( d/ds=\frac{spacedim}{||tangent||}d/d{\xi} \). The derivative is calculated performing the product \( du/d{s}=\nabla u \cdot tangent \). More...
 
virtual void v_PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn) override
 Evaluate the derivative normal to a line: \( d/dn=\frac{spacedim}{||normal||}d/d{\xi} \). The derivative is calculated performing the product \( du/d{s}=\nabla u \cdot normal \). More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray. More...
 
virtual void v_FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return in outarray. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check) override
 Inner product of inarray over region with respect to expansion basis base and return in outarray. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray) override
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray) override
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs) override
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual void v_GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray) override
 
virtual void v_GetTracePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
 
virtual void v_GetTracePhysMap (const int vertex, Array< OneD, int > &map) override
 
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const override
 
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const override
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual int v_NumBndryCoeffs () const override
 
virtual int v_NumDGBndryCoeffs () const override
 
virtual void v_ComputeTraceNormal (const int vertex) override
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
 Unpack data from input file assuming it comes from. More...
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals () override
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey) override
 
void v_DropLocMatrix (const MatrixKey &mkey) override
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey) override
 
virtual void v_DropLocStaticCondMatrix (const MatrixKey &mkey) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdSegExp
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over region and return the value. More...
 
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
 Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray. More...
 
void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the derivative of the physical points in a given direction. More...
 
void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
 
void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray. More...
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray. More...
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return in outarray. More...
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check) override
 Inner product of inarray over region with respect to expansion basis base and return in outarray. More...
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
virtual void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final override
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs) override
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
virtual void v_ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff) override
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_0, Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2) override
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
virtual int v_GetNverts () const final override
 
virtual int v_GetNtraces () const final override
 
virtual int v_GetTraceNcoeffs (const int i) const final override
 
virtual int v_GetTraceIntNcoeffs (const int i) const final override
 
virtual int v_GetTraceNumPoints (const int i) const final override
 
virtual int v_NumBndryCoeffs () const override
 
virtual int v_NumDGBndryCoeffs () const override
 
virtual bool v_IsBoundaryInteriorExpansion () const override
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
virtual LibUtilities::ShapeType v_DetShapeType () const override
 Return Shape of region, using ShapeType enum list. i.e. Segment. More...
 
virtual DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true) override
 
void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray) override
 Get the map of the coefficient location to teh local trace coefficients. More...
 
void v_GetElmtTraceToTraceMap (const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q) override
 
void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion1D
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_AddRobinMassMatrix (const int vert, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat) override
 
virtual void v_AddRobinTraceContribution (const int vert, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs) override
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec) override
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors) override
 : This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace. More...
 
virtual void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1) override
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p) override
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
Array< OneD, NekDoubleGetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual int v_GetCoordim () const override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual StdRegions::Orientation v_GetTraceOrient (int trace)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1=-1)
 
virtual void v_ComputeTraceNormal (const int id)
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals ()
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int id)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp)
 

Private Member Functions

void ReverseCoeffsAndSign (const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Reverse the coefficients in a boundary interior expansion this routine is of use when we need the segment coefficients corresponding to a expansion in the reverse coordinate direction. More...
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_indexMapManager
 
std::map< int, ExpansionWeakPtrm_traceExp
 
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 
std::map< int, NormalVectorm_traceNormals
 
ExpansionWeakPtr m_elementLeft
 
ExpansionWeakPtr m_elementRight
 
int m_elementTraceLeft = -1
 
int m_elementTraceRight = -1
 
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
 the element length in each element boundary(Vertex, edge or face) normal direction calculated based on the local m_metricinfo times the standard element length (which is 2.0) More...
 

Detailed Description

Defines a Segment local expansion.

Definition at line 51 of file SegExp.h.

Constructor & Destructor Documentation

◆ SegExp() [1/2]

Nektar::LocalRegions::SegExp::SegExp ( const LibUtilities::BasisKey Ba,
const SpatialDomains::Geometry1DSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key of segment expansion.
geomDescription of geometry.

Definition at line 59 of file SegExp.cpp.

61 : StdExpansion(Ba.GetNumModes(), 1, Ba),
62 StdExpansion1D(Ba.GetNumModes(), Ba), StdRegions::StdSegExp(Ba),
63 Expansion(geom), Expansion1D(geom),
65 std::bind(&SegExp::CreateMatrix, this, std::placeholders::_1),
66 std::string("SegExpMatrix")),
68 this, std::placeholders::_1),
69 std::string("SegExpStaticCondMatrix"))
70{
71}
Expansion1D(SpatialDomains::Geometry1DSharedPtr pGeom)
Definition: Expansion1D.h:60
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: Expansion.cpp:277
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:47
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: SegExp.cpp:1098
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: SegExp.h:238
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:236
StdExpansion()
Default Constructor.

◆ SegExp() [2/2]

Nektar::LocalRegions::SegExp::SegExp ( const SegExp S)

Copy Constructor.

Parameters
SExisting segment to duplicate.

Definition at line 77 of file SegExp.cpp.

78 : StdExpansion(S), StdExpansion1D(S), StdRegions::StdSegExp(S),
79 Expansion(S), Expansion1D(S), m_matrixManager(S.m_matrixManager),
80 m_staticCondMatrixManager(S.m_staticCondMatrixManager)
81{
82}

◆ ~SegExp()

virtual Nektar::LocalRegions::SegExp::~SegExp ( )
overridevirtualdefault

Member Function Documentation

◆ CreateMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::SegExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1098 of file SegExp.cpp.

1099{
1100 DNekScalMatSharedPtr returnval;
1101 NekDouble fac;
1103
1105 "Geometric information is not set up");
1106
1107 switch (mkey.GetMatrixType())
1108 {
1109 case StdRegions::eMass:
1110 {
1111 if ((m_metricinfo->GetGtype() == SpatialDomains::eDeformed) ||
1112 (mkey.GetNVarCoeff()))
1113 {
1114 fac = 1.0;
1115 goto UseLocRegionsMatrix;
1116 }
1117 else
1118 {
1119 fac = (m_metricinfo->GetJac(ptsKeys))[0];
1120 goto UseStdRegionsMatrix;
1121 }
1122 }
1123 break;
1125 {
1126 if ((m_metricinfo->GetGtype() == SpatialDomains::eDeformed) ||
1127 (mkey.GetNVarCoeff()))
1128 {
1129 NekDouble one = 1.0;
1130 StdRegions::StdMatrixKey masskey(StdRegions::eMass,
1131 DetShapeType(), *this);
1132 DNekMatSharedPtr mat = GenMatrix(masskey);
1133 mat->Invert();
1134
1135 returnval =
1137 }
1138 else
1139 {
1140 fac = 1.0 / (m_metricinfo->GetJac(ptsKeys))[0];
1141 goto UseStdRegionsMatrix;
1142 }
1143 }
1144 break;
1148 {
1149 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1150 mkey.GetNVarCoeff())
1151 {
1152 fac = 1.0;
1153 goto UseLocRegionsMatrix;
1154 }
1155 else
1156 {
1157 int dir = 0;
1158 switch (mkey.GetMatrixType())
1159 {
1161 dir = 0;
1162 break;
1164 ASSERTL1(m_geom->GetCoordim() >= 2,
1165 "Cannot call eWeakDeriv2 in a "
1166 "coordinate system which is not at "
1167 "least two-dimensional");
1168 dir = 1;
1169 break;
1171 ASSERTL1(m_geom->GetCoordim() == 3,
1172 "Cannot call eWeakDeriv2 in a "
1173 "coordinate system which is not "
1174 "three-dimensional");
1175 dir = 2;
1176 break;
1177 default:
1178 break;
1179 }
1180
1181 MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1182 mkey.GetShapeType(), *this);
1183
1184 DNekMatSharedPtr WeakDerivStd = GetStdMatrix(deriv0key);
1185 fac = m_metricinfo->GetDerivFactors(ptsKeys)[dir][0] *
1186 m_metricinfo->GetJac(ptsKeys)[0];
1187
1189 fac, WeakDerivStd);
1190 }
1191 }
1192 break;
1194 {
1195 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1196 {
1197 fac = 1.0;
1198 goto UseLocRegionsMatrix;
1199 }
1200 else
1201 {
1202 int coordim = m_geom->GetCoordim();
1203 fac = 0.0;
1204 for (int i = 0; i < coordim; ++i)
1205 {
1206 fac += m_metricinfo->GetDerivFactors(ptsKeys)[i][0] *
1207 m_metricinfo->GetDerivFactors(ptsKeys)[i][0];
1208 }
1209 fac *= m_metricinfo->GetJac(ptsKeys)[0];
1210 goto UseStdRegionsMatrix;
1211 }
1212 }
1213 break;
1215 {
1216 NekDouble factor = mkey.GetConstFactor(StdRegions::eFactorLambda);
1217 MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1218 DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1219 MatrixKey lapkey(StdRegions::eLaplacian, mkey.GetShapeType(), *this,
1220 mkey.GetConstFactors(), mkey.GetVarCoeffs());
1221 DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1222
1223 int rows = LapMat.GetRows();
1224 int cols = LapMat.GetColumns();
1225
1226 DNekMatSharedPtr helm =
1228
1229 NekDouble one = 1.0;
1230 (*helm) = LapMat + factor * MassMat;
1231
1232 returnval =
1234 }
1235 break;
1240 {
1241 NekDouble one = 1.0;
1242
1243 DNekMatSharedPtr mat = GenMatrix(mkey);
1245 }
1246 break;
1248 {
1249 NekDouble one = 1.0;
1250
1251 // StdRegions::StdMatrixKey
1252 // hkey(StdRegions::eHybridDGHelmholtz,
1253 // DetShapeType(),*this,
1254 // mkey.GetConstant(0),
1255 // mkey.GetConstant(1));
1257 *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1258 DNekMatSharedPtr mat = GenMatrix(hkey);
1259
1260 mat->Invert();
1262 }
1263 break;
1265 {
1266 DNekMatSharedPtr m_Ix;
1267 Array<OneD, NekDouble> coords(1, 0.0);
1268 StdRegions::ConstFactorMap factors = mkey.GetConstFactors();
1269 int vertex = (int)factors[StdRegions::eFactorGaussVertex];
1270
1271 coords[0] = (vertex == 0) ? -1.0 : 1.0;
1272
1273 m_Ix = m_base[0]->GetI(coords);
1274 returnval =
1276 }
1277 break;
1278
1279 UseLocRegionsMatrix:
1280 {
1281 DNekMatSharedPtr mat = GenMatrix(mkey);
1283 }
1284 break;
1285 UseStdRegionsMatrix:
1286 {
1287 DNekMatSharedPtr mat = GetStdMatrix(mkey);
1289 }
1290 break;
1291 default:
1292 NEKERROR(ErrorUtil::efatal, "Matrix creation not defined");
1293 break;
1294 }
1295
1296 return returnval;
1297}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:272
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:275
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:276
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:609
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:373
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:850
Array< OneD, LibUtilities::BasisSharedPtr > m_base
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
@ eNoGeomType
No type defined.
@ eDeformed
Geometry is curved or has non-constant factors.
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:408
StdRegions::ConstFactorMap factors
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL1, ASSERTL2, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorGaussVertex, Nektar::StdRegions::eFactorLambda, Nektar::ErrorUtil::efatal, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInterpGauss, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::VarcoeffHashingTest::factors, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and NEKERROR.

◆ MultiplyByElmtInvMass()

void Nektar::LocalRegions::SegExp::MultiplyByElmtInvMass ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
private
Todo:
Same method exists in ExpList and everyone references ExpList::MultiplyByElmtInvMass. Remove this one?

Definition at line 1370 of file SegExp.cpp.

1372{
1373 // get Mass matrix inverse
1374 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
1375 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
1376
1377 NekVector<NekDouble> in(m_ncoeffs, inarray, eCopy);
1378 NekVector<NekDouble> out(m_ncoeffs, outarray, eWrapper);
1379
1380 out = (*matsys) * in;
1381}

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

◆ ReverseCoeffsAndSign()

void Nektar::LocalRegions::SegExp::ReverseCoeffsAndSign ( const Array< OneD, NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
private

Reverse the coefficients in a boundary interior expansion this routine is of use when we need the segment coefficients corresponding to a expansion in the reverse coordinate direction.

Definition at line 1329 of file SegExp.cpp.

1331{
1332
1333 int m;
1334 NekDouble sgn = 1;
1335
1336 ASSERTL1(&inarray[0] != &outarray[0],
1337 "inarray and outarray can not be the same");
1338 switch (GetBasisType(0))
1339 {
1341 // Swap vertices
1342 outarray[0] = inarray[1];
1343 outarray[1] = inarray[0];
1344 // negate odd modes
1345 for (m = 2; m < m_ncoeffs; ++m)
1346 {
1347 outarray[m] = sgn * inarray[m];
1348 sgn = -sgn;
1349 }
1350 break;
1353 for (m = 0; m < m_ncoeffs; ++m)
1354 {
1355 outarray[m_ncoeffs - 1 - m] = inarray[m];
1356 }
1357 break;
1358 default:
1359 ASSERTL0(false, "This basis is not allowed in this method");
1360 break;
1361 }
1362}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162
@ eGauss_Lagrange
Lagrange Polynomials using the Gauss points.
Definition: BasisType.h:59
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:58
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_ncoeffs.

Referenced by v_SetCoeffsToOrientation().

◆ v_ComputeTraceNormal()

void Nektar::LocalRegions::SegExp::v_ComputeTraceNormal ( const int  vertex)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 811 of file SegExp.cpp.

812{
813 int i;
814 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
815 GetGeom()->GetMetricInfo();
816 SpatialDomains::GeomType type = geomFactors->GetGtype();
817 const Array<TwoD, const NekDouble> &gmat =
818 geomFactors->GetDerivFactors(GetPointsKeys());
819 int nqe = 1;
820 int vCoordDim = GetCoordim();
821
822 m_traceNormals[vertex] = Array<OneD, Array<OneD, NekDouble>>(vCoordDim);
823 Array<OneD, Array<OneD, NekDouble>> &normal = m_traceNormals[vertex];
824 for (i = 0; i < vCoordDim; ++i)
825 {
826 normal[i] = Array<OneD, NekDouble>(nqe);
827 }
828
829 size_t nqb = nqe;
830 size_t nbnd = vertex;
831 m_elmtBndNormDirElmtLen[nbnd] = Array<OneD, NekDouble>{nqb, 0.0};
832 Array<OneD, NekDouble> &length = m_elmtBndNormDirElmtLen[nbnd];
833
834 // Regular geometry case
835 if ((type == SpatialDomains::eRegular) ||
837 {
838 NekDouble vert;
839 // Set up normals
840 switch (vertex)
841 {
842 case 0:
843 for (i = 0; i < vCoordDim; ++i)
844 {
845 Vmath::Fill(nqe, -gmat[i][0], normal[i], 1);
846 }
847 break;
848 case 1:
849 for (i = 0; i < vCoordDim; ++i)
850 {
851 Vmath::Fill(nqe, gmat[i][0], normal[i], 1);
852 }
853 break;
854 default:
855 ASSERTL0(false, "point is out of range (point < 2)");
856 }
857
858 // normalise
859 vert = 0.0;
860 for (i = 0; i < vCoordDim; ++i)
861 {
862 vert += normal[i][0] * normal[i][0];
863 }
864 vert = 1.0 / sqrt(vert);
865
866 Vmath::Fill(nqb, vert, length, 1);
867
868 for (i = 0; i < vCoordDim; ++i)
869 {
870 Vmath::Smul(nqe, vert, normal[i], 1, normal[i], 1);
871 }
872 }
873}
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:278
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:288
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:171
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LocalRegions::Expansion::m_elmtBndNormDirElmtLen, Nektar::LocalRegions::Expansion::m_traceNormals, Vmath::Smul(), and tinysimd::sqrt().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::SegExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1089 of file SegExp.cpp.

1090{
1091 LibUtilities::BasisKey bkey = m_base[0]->GetBasisKey();
1094
1095 return tmp->GetStdMatrix(mkey);
1096}
std::shared_ptr< StdSegExp > StdSegExpSharedPtr
Definition: StdSegExp.h:267

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_DropLocMatrix()

void Nektar::LocalRegions::SegExp::v_DropLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1084 of file SegExp.cpp.

1085{
1086 m_matrixManager.DeleteObject(mkey);
1087}

References m_matrixManager.

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::SegExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1074 of file SegExp.cpp.

1075{
1076 m_staticCondMatrixManager.DeleteObject(mkey);
1077}

References m_staticCondMatrixManager.

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::SegExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
overrideprotectedvirtual

Unpack data from input file assuming it comes from.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 767 of file SegExp.cpp.

771{
772 boost::ignore_unused(fromType);
773
774 switch (m_base[0]->GetBasisType())
775 {
777 {
778 int fillorder = min((int)nummodes[mode_offset], m_ncoeffs);
779
780 Vmath::Zero(m_ncoeffs, coeffs, 1);
781 Vmath::Vcopy(fillorder, &data[0], 1, &coeffs[0], 1);
782 }
783 break;
785 {
786 // Assume that input is also Gll_Lagrange
787 // but no way to check;
788 LibUtilities::PointsKey f0(nummodes[mode_offset],
790 LibUtilities::PointsKey t0(m_base[0]->GetNumModes(),
792 LibUtilities::Interp1D(f0, data, t0, coeffs);
793 }
794 break;
796 {
797 // Assume that input is also Gauss_Lagrange
798 // but no way to check;
799 LibUtilities::PointsKey f0(nummodes[mode_offset],
801 LibUtilities::PointsKey t0(m_base[0]->GetNumModes(),
803 LibUtilities::Interp1D(f0, data, t0, coeffs);
804 }
805 break;
806 default:
807 ASSERTL0(false, "basis is either not set up or not hierarchicial");
808 }
809}
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:49
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:53
@ eGaussGaussLegendre
1D Gauss-Gauss-Legendre quadrature points
Definition: PointsType.h:48
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191

References ASSERTL0, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGaussGaussLegendre, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

◆ v_FwdTrans()

void Nektar::LocalRegions::SegExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.

Perform a forward transform using a Galerkin projection by taking the inner product of the physical points and multiplying by the inverse of the mass matrix using the Solve method of the standard matrix container holding the local mass matrix, i.e. \( {\bf \hat{u}} = {\bf M}^{-1} {\bf I} \) where \( {\bf I}[p] = \int^1_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 \)

Inputs:

  • inarray: array of physical quadrature points to be transformed

Outputs:

  • outarray: updated array of expansion coefficients.

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 350 of file SegExp.cpp.

352{
353 if (m_base[0]->Collocation())
354 {
355 Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
356 }
357 else
358 {
359 v_IProductWRTBase(inarray, outarray);
360
361 // get Mass matrix inverse
362 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
363 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
364
365 // copy inarray in case inarray == outarray
366 NekVector<NekDouble> in(m_ncoeffs, outarray, eCopy);
367 NekVector<NekDouble> out(m_ncoeffs, outarray, eWrapper);
368
369 out = (*matsys) * in;
370 }
371}
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:476

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

Referenced by v_FwdTransBndConstrained().

◆ v_FwdTransBndConstrained()

void Nektar::LocalRegions::SegExp::v_FwdTransBndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 373 of file SegExp.cpp.

376{
377 if (m_base[0]->Collocation())
378 {
379 Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
380 }
381 else
382 {
383 int nInteriorDofs = m_ncoeffs - 2;
384 int offset = 0;
385
386 switch (m_base[0]->GetBasisType())
387 {
389 {
390 offset = 1;
391 }
392 break;
394 {
395 nInteriorDofs = m_ncoeffs;
396 offset = 0;
397 }
398 break;
401 {
402 ASSERTL1(
403 m_base[0]->GetPointsType() ==
405 m_base[0]->GetPointsType() ==
407 "Cannot use FwdTrans_BndConstrained with these points.");
408 offset = 2;
409 }
410 break;
411 default:
412 ASSERTL0(false, "This type of FwdTrans is not defined"
413 "for this expansion type");
414 }
415
416 fill(outarray.get(), outarray.get() + m_ncoeffs, 0.0);
417
419 {
420
421 outarray[GetVertexMap(0)] = inarray[0];
422 outarray[GetVertexMap(1)] = inarray[m_base[0]->GetNumPoints() - 1];
423
424 if (m_ncoeffs > 2)
425 {
426 // ideally, we would like to have tmp0 to be replaced
427 // by outarray (currently MassMatrixOp does not allow
428 // aliasing)
429 Array<OneD, NekDouble> tmp0(m_ncoeffs);
430 Array<OneD, NekDouble> tmp1(m_ncoeffs);
431
432 StdRegions::StdMatrixKey stdmasskey(StdRegions::eMass,
433 DetShapeType(), *this);
434 MassMatrixOp(outarray, tmp0, stdmasskey);
435 v_IProductWRTBase(inarray, tmp1);
436
437 Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
438
439 // get Mass matrix inverse (only of interior DOF)
440 MatrixKey masskey(StdRegions::eMass, DetShapeType(), *this);
441 DNekScalMatSharedPtr matsys =
442 (m_staticCondMatrixManager[masskey])->GetBlock(1, 1);
443
444 Blas::Dgemv('N', nInteriorDofs, nInteriorDofs, matsys->Scale(),
445 &((matsys->GetOwnedMatrix())->GetPtr())[0],
446 nInteriorDofs, tmp1.get() + offset, 1, 0.0,
447 outarray.get() + offset, 1);
448 }
449 }
450 else
451 {
452 SegExp::v_FwdTrans(inarray, outarray);
453 }
454 }
455}
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: SegExp.cpp:350
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:758
int GetVertexMap(const int localVertexId, bool useCoeffPacking=false)
Definition: StdExpansion.h:685
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:211
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:213
@ ePolyEvenlySpaced
1D Evenly-spaced points using Lagrange polynomial
Definition: PointsType.h:75
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:51
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414

References ASSERTL0, ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Blas::Dgemv(), Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::eMass, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::ePolyEvenlySpaced, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetVertexMap(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, m_staticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), v_FwdTrans(), v_IProductWRTBase(), Vmath::Vcopy(), and Vmath::Vsub().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::SegExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1299 of file SegExp.cpp.

1300{
1301 DNekMatSharedPtr returnval;
1302
1303 switch (mkey.GetMatrixType())
1304 {
1311 returnval = Expansion1D::v_GenMatrix(mkey);
1312 break;
1313 default:
1314 returnval = StdSegExp::v_GenMatrix(mkey);
1315 break;
1316 }
1317
1318 return returnval;
1319}
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: Expansion1D.cpp:47

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion1D::v_GenMatrix().

◆ v_GetCoord()

void Nektar::LocalRegions::SegExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 630 of file SegExp.cpp.

632{
633 int i;
634
635 ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[0] <= 1.0,
636 "Local coordinates are not in region [-1,1]");
637
638 m_geom->FillGeom();
639 for (i = 0; i < m_geom->GetCoordim(); ++i)
640 {
641 coords[i] = m_geom->GetCoord(i, Lcoords);
642 }
643}

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_GetCoords()

void Nektar::LocalRegions::SegExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 645 of file SegExp.cpp.

648{
649 Expansion::v_GetCoords(coords_0, coords_1, coords_2);
650}
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:535

References Nektar::LocalRegions::Expansion::v_GetCoords().

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::SegExp::v_GetLinStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 741 of file SegExp.cpp.

742{
743 LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(), 2,
744 m_base[0]->GetPointsKey());
745
747}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::SegExp::v_GetLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1079 of file SegExp.cpp.

1080{
1081 return m_matrixManager[mkey];
1082}

References m_matrixManager.

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::SegExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1069 of file SegExp.cpp.

1070{
1071 return m_staticCondMatrixManager[mkey];
1072}

References m_staticCondMatrixManager.

◆ v_GetPhysNormals()

const Array< OneD, const NekDouble > & Nektar::LocalRegions::SegExp::v_GetPhysNormals ( void  )
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 749 of file SegExp.cpp.

750{
751 NEKERROR(ErrorUtil::efatal, "Got to SegExp");
753}
static Array< OneD, NekDouble > NullNekDouble1DArray

References Nektar::ErrorUtil::efatal, NEKERROR, and Nektar::NullNekDouble1DArray.

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::SegExp::v_GetStdExp ( void  ) const
overrideprotectedvirtual

◆ v_GetTracePhysMap()

void Nektar::LocalRegions::SegExp::v_GetTracePhysMap ( const int  vertex,
Array< OneD, int > &  map 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 701 of file SegExp.cpp.

702{
703 int nquad = m_base[0]->GetNumPoints();
704
705 ASSERTL1(vertex == 0 || vertex == 1, "Vertex value should be 0 or 1");
706
707 map = Array<OneD, int>(1);
708
709 map[0] = vertex == 0 ? 0 : nquad - 1;
710}

References ASSERTL1, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePhysVals()

void Nektar::LocalRegions::SegExp::v_GetTracePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 688 of file SegExp.cpp.

692{
693 boost::ignore_unused(EdgeExp, orient);
694
695 NekDouble result;
696 v_GetVertexPhysVals(edge, inarray, result);
697 outarray[0] = result;
698}
virtual void v_GetVertexPhysVals(const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray) override
Definition: SegExp.cpp:653

References v_GetVertexPhysVals().

◆ v_GetVertexPhysVals()

void Nektar::LocalRegions::SegExp::v_GetVertexPhysVals ( const int  vertex,
const Array< OneD, const NekDouble > &  inarray,
NekDouble outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 653 of file SegExp.cpp.

656{
657 int nquad = m_base[0]->GetNumPoints();
658
660 {
661 switch (vertex)
662 {
663 case 0:
664 outarray = inarray[0];
665 break;
666 case 1:
667 outarray = inarray[nquad - 1];
668 break;
669 }
670 }
671 else
672 {
675
676 StdRegions::StdMatrixKey key(StdRegions::eInterpGauss, DetShapeType(),
677 *this, factors);
678
679 DNekScalMatSharedPtr mat_gauss = m_matrixManager[key];
680
681 outarray =
682 Blas::Ddot(nquad, mat_gauss->GetOwnedMatrix()->GetPtr().get(), 1,
683 &inarray[0], 1);
684 }
685}
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:165

References Blas::Ddot(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eFactorGaussVertex, Nektar::LibUtilities::eGaussGaussLegendre, Nektar::StdRegions::eInterpGauss, Nektar::VarcoeffHashingTest::factors, Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::m_base, and m_matrixManager.

Referenced by v_GetTracePhysVals().

◆ v_HelmholtzMatrixOp()

void Nektar::LocalRegions::SegExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 970 of file SegExp.cpp.

973{
974 int nquad = m_base[0]->GetNumPoints();
975 const Array<TwoD, const NekDouble> &gmat =
976 m_metricinfo->GetDerivFactors(GetPointsKeys());
977 const NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
978
979 Array<OneD, NekDouble> physValues(nquad);
980 Array<OneD, NekDouble> dPhysValuesdx(nquad);
981 Array<OneD, NekDouble> wsp(m_ncoeffs);
982
983 BwdTrans(inarray, physValues);
984
985 // mass matrix operation
986 v_IProductWRTBase((m_base[0]->GetBdata()), physValues, wsp, 1);
987
988 // Laplacian matrix operation
989 switch (m_geom->GetCoordim())
990 {
991 case 1:
992 {
993 PhysDeriv(physValues, dPhysValuesdx);
994
995 // multiply with the proper geometric factors
996 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
997 {
998 Vmath::Vmul(nquad, &gmat[0][0], 1, dPhysValuesdx.get(), 1,
999 dPhysValuesdx.get(), 1);
1000 }
1001 else
1002 {
1003 Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1004 }
1005 }
1006 break;
1007 case 2:
1008 {
1009 Array<OneD, NekDouble> dPhysValuesdy(nquad);
1010
1011 PhysDeriv(physValues, dPhysValuesdx, dPhysValuesdy);
1012
1013 // multiply with the proper geometric factors
1014 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1015 {
1016 Vmath::Vmul(nquad, &gmat[0][0], 1, dPhysValuesdx.get(), 1,
1017 dPhysValuesdx.get(), 1);
1018 Vmath::Vvtvp(nquad, &gmat[1][0], 1, dPhysValuesdy.get(), 1,
1019 dPhysValuesdx.get(), 1, dPhysValuesdx.get(), 1);
1020 }
1021 else
1022 {
1023 Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1024 Blas::Daxpy(nquad, gmat[1][0], dPhysValuesdy.get(), 1,
1025 dPhysValuesdx.get(), 1);
1026 }
1027 }
1028 break;
1029 case 3:
1030 {
1031 Array<OneD, NekDouble> dPhysValuesdy(nquad);
1032 Array<OneD, NekDouble> dPhysValuesdz(nquad);
1033
1034 PhysDeriv(physValues, dPhysValuesdx, dPhysValuesdy, dPhysValuesdz);
1035
1036 // multiply with the proper geometric factors
1037 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1038 {
1039 Vmath::Vmul(nquad, &gmat[0][0], 1, dPhysValuesdx.get(), 1,
1040 dPhysValuesdx.get(), 1);
1041 Vmath::Vvtvp(nquad, &gmat[1][0], 1, dPhysValuesdy.get(), 1,
1042 dPhysValuesdx.get(), 1, dPhysValuesdx.get(), 1);
1043 Vmath::Vvtvp(nquad, &gmat[2][0], 1, dPhysValuesdz.get(), 1,
1044 dPhysValuesdx.get(), 1, dPhysValuesdx.get(), 1);
1045 }
1046 else
1047 {
1048 Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1049 Blas::Daxpy(nquad, gmat[1][0], dPhysValuesdy.get(), 1,
1050 dPhysValuesdx.get(), 1);
1051 Blas::Daxpy(nquad, gmat[2][0], dPhysValuesdz.get(), 1,
1052 dPhysValuesdx.get(), 1);
1053 }
1054 }
1055 break;
1056 default:
1057 ASSERTL0(false, "Wrong number of dimensions");
1058 break;
1059 }
1060
1061 v_IProductWRTBase(m_base[0]->GetDbdata(), dPhysValuesdx, outarray, 1);
1062 Blas::Daxpy(m_ncoeffs, lambda, wsp.get(), 1, outarray.get(), 1);
1063}
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space.
Definition: StdExpansion.h:430
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Definition: StdExpansion.h:855
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:151
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:137
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569

References ASSERTL0, Nektar::StdRegions::StdExpansion::BwdTrans(), Blas::Daxpy(), Blas::Dscal(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::PhysDeriv(), v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_Integral()

NekDouble Nektar::LocalRegions::SegExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrate the physical point list inarray over region and return the value.

Inputs:

  • inarray: definition of function to be returned at quadrature point of expansion.

Outputs:

  • returns \(\int^1_{-1} u(\xi_1)d \xi_1 \) where \(inarray[i] = u(\xi_{1i}) \)

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 102 of file SegExp.cpp.

103{
104 int nquad0 = m_base[0]->GetNumPoints();
105 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
106 NekDouble ival;
107 Array<OneD, NekDouble> tmp(nquad0);
108
109 // multiply inarray with Jacobian
110 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
111 {
112 Vmath::Vmul(nquad0, jac, 1, inarray, 1, tmp, 1);
113 }
114 else
115 {
116 Vmath::Smul(nquad0, jac[0], inarray, 1, tmp, 1);
117 }
118
119 // call StdSegExp version;
120 ival = StdSegExp::v_Integral(tmp);
121 // ival = StdSegExp::Integral(tmp);
122 return ival;
123}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase() [1/2]

void Nektar::LocalRegions::SegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  base,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
int  coll_check 
)
overrideprotectedvirtual

Inner product of inarray over region with respect to expansion basis base and return in outarray.

Calculate \( I[p] = \int^{1}_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 = \sum_{i=0}^{nq-1} \phi_p(\xi_{1i}) u(\xi_{1i}) w_i \) where \( outarray[p] = I[p], inarray[i] = u(\xi_{1i}), base[p*nq+i] = \phi_p(\xi_{1i}) \).

Inputs:

  • base: an array definiing the local basis for the inner product usually passed from Basis->get_bdata() or Basis->get_Dbdata()
  • inarray: physical point array of function to be integrated \( u(\xi_1) \)
  • coll_check: Flag to identify when a Basis->collocation() call should be performed to see if this is a GLL_Lagrange basis with a collocation property. (should be set to 0 if taking the inner product with respect to the derivative of basis)

Output:

  • outarray: array of coefficients representing the inner product of function with ever mode in the exapnsion

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 509 of file SegExp.cpp.

512{
513 int nquad0 = m_base[0]->GetNumPoints();
514 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
515 Array<OneD, NekDouble> tmp(nquad0);
516
517 // multiply inarray with Jacobian
518 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
519 {
520 Vmath::Vmul(nquad0, jac, 1, inarray, 1, tmp, 1);
521 }
522 else
523 {
524 Vmath::Smul(nquad0, jac[0], inarray, 1, tmp, 1);
525 }
526 StdSegExp::v_IProductWRTBase(base, tmp, outarray, coll_check);
527}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase() [2/2]

void Nektar::LocalRegions::SegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return in outarray.

Wrapper call to SegExp::IProduct_WRT_B

Input:

  • inarray: array of function evaluated at the physical collocation points

Output:

  • outarray: array of inner product with respect to each basis over region

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 476 of file SegExp.cpp.

478{
479 v_IProductWRTBase(m_base[0]->GetBdata(), inarray, outarray, 1);
480}

References Nektar::StdRegions::StdExpansion::m_base, and v_IProductWRTBase().

Referenced by v_FwdTrans(), v_FwdTransBndConstrained(), v_HelmholtzMatrixOp(), v_IProductWRTBase(), v_IProductWRTDerivBase(), v_LaplacianMatrixOp(), and v_NormVectorIProductWRTBase().

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::SegExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 529 of file SegExp.cpp.

532{
533 ASSERTL1(dir < 3, "input dir is out of range");
534 ASSERTL1((dir == 2) ? m_geom->GetCoordim() == 3 : true,
535 "input dir is out of range");
536
537 int nquad = m_base[0]->GetNumPoints();
538 const Array<TwoD, const NekDouble> &gmat =
539 m_metricinfo->GetDerivFactors(GetPointsKeys());
540
541 Array<OneD, NekDouble> tmp1(nquad);
542
543 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
544 {
545 Vmath::Vmul(nquad, gmat[dir], 1, inarray, 1, tmp1, 1);
546 }
547 else
548 {
549 Vmath::Smul(nquad, gmat[dir][0], inarray, 1, tmp1, 1);
550 }
551
552 v_IProductWRTBase(m_base[0]->GetDbdata(), tmp1, outarray, 1);
553}

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), v_IProductWRTBase(), and Vmath::Vmul().

◆ v_LaplacianMatrixOp()

void Nektar::LocalRegions::SegExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 879 of file SegExp.cpp.

882{
883 boost::ignore_unused(mkey);
884
885 int nquad = m_base[0]->GetNumPoints();
886 const Array<TwoD, const NekDouble> &gmat =
887 m_metricinfo->GetDerivFactors(GetPointsKeys());
888
889 Array<OneD, NekDouble> physValues(nquad);
890 Array<OneD, NekDouble> dPhysValuesdx(nquad);
891
892 BwdTrans(inarray, physValues);
893
894 // Laplacian matrix operation
895 switch (m_geom->GetCoordim())
896 {
897 case 1:
898 {
899 PhysDeriv(physValues, dPhysValuesdx);
900
901 // multiply with the proper geometric factors
902 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
903 {
904 Vmath::Vmul(nquad, &gmat[0][0], 1, dPhysValuesdx.get(), 1,
905 dPhysValuesdx.get(), 1);
906 }
907 else
908 {
909 Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
910 }
911 }
912 break;
913 case 2:
914 {
915 Array<OneD, NekDouble> dPhysValuesdy(nquad);
916
917 PhysDeriv(physValues, dPhysValuesdx, dPhysValuesdy);
918
919 // multiply with the proper geometric factors
920 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
921 {
922 Vmath::Vmul(nquad, &gmat[0][0], 1, dPhysValuesdx.get(), 1,
923 dPhysValuesdx.get(), 1);
924 Vmath::Vvtvp(nquad, &gmat[1][0], 1, dPhysValuesdy.get(), 1,
925 dPhysValuesdx.get(), 1, dPhysValuesdx.get(), 1);
926 }
927 else
928 {
929 Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
930 Blas::Daxpy(nquad, gmat[1][0], dPhysValuesdy.get(), 1,
931 dPhysValuesdx.get(), 1);
932 }
933 }
934 break;
935 case 3:
936 {
937 Array<OneD, NekDouble> dPhysValuesdy(nquad);
938 Array<OneD, NekDouble> dPhysValuesdz(nquad);
939
940 PhysDeriv(physValues, dPhysValuesdx, dPhysValuesdy, dPhysValuesdz);
941
942 // multiply with the proper geometric factors
943 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
944 {
945 Vmath::Vmul(nquad, &gmat[0][0], 1, dPhysValuesdx.get(), 1,
946 dPhysValuesdx.get(), 1);
947 Vmath::Vvtvp(nquad, &gmat[1][0], 1, dPhysValuesdy.get(), 1,
948 dPhysValuesdx.get(), 1, dPhysValuesdx.get(), 1);
949 Vmath::Vvtvp(nquad, &gmat[2][0], 1, dPhysValuesdz.get(), 1,
950 dPhysValuesdx.get(), 1, dPhysValuesdx.get(), 1);
951 }
952 else
953 {
954 Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
955 Blas::Daxpy(nquad, gmat[1][0], dPhysValuesdy.get(), 1,
956 dPhysValuesdx.get(), 1);
957 Blas::Daxpy(nquad, gmat[2][0], dPhysValuesdz.get(), 1,
958 dPhysValuesdx.get(), 1);
959 }
960 }
961 break;
962 default:
963 ASSERTL0(false, "Wrong number of dimensions");
964 break;
965 }
966
967 v_IProductWRTBase(m_base[0]->GetDbdata(), dPhysValuesdx, outarray, 1);
968}

References ASSERTL0, Nektar::StdRegions::StdExpansion::BwdTrans(), Blas::Daxpy(), Blas::Dscal(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::PhysDeriv(), v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_NormVectorIProductWRTBase() [1/2]

void Nektar::LocalRegions::SegExp::v_NormVectorIProductWRTBase ( const Array< OneD, const Array< OneD, NekDouble > > &  Fvec,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 573 of file SegExp.cpp.

576{
577 NormVectorIProductWRTBase(Fvec[0], Fvec[1], outarray);
578}
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:619

References Nektar::StdRegions::StdExpansion::NormVectorIProductWRTBase().

◆ v_NormVectorIProductWRTBase() [2/2]

void Nektar::LocalRegions::SegExp::v_NormVectorIProductWRTBase ( const Array< OneD, const NekDouble > &  Fx,
const Array< OneD, const NekDouble > &  Fy,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 555 of file SegExp.cpp.

558{
559 int nq = m_base[0]->GetNumPoints();
560 Array<OneD, NekDouble> Fn(nq);
561
562 // @TODO: This routine no longer makes sense as a normal is not unique to an
563 // edge
564 const Array<OneD, const Array<OneD, NekDouble>> &normals =
565 GetLeftAdjacentElementExp()->GetTraceNormal(
567 Vmath::Vmul(nq, &Fx[0], 1, &normals[0][0], 1, &Fn[0], 1);
568 Vmath::Vvtvp(nq, &Fy[0], 1, &normals[1][0], 1, &Fn[0], 1, &Fn[0], 1);
569
570 v_IProductWRTBase(Fn, outarray);
571}
ExpansionSharedPtr GetLeftAdjacentElementExp() const
Definition: Expansion.h:443
int GetLeftAdjacentElementTrace() const
Definition: Expansion.h:456

References Nektar::LocalRegions::Expansion::GetLeftAdjacentElementExp(), Nektar::LocalRegions::Expansion::GetLeftAdjacentElementTrace(), Nektar::StdRegions::StdExpansion::m_base, v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_NumBndryCoeffs()

int Nektar::LocalRegions::SegExp::v_NumBndryCoeffs ( ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 755 of file SegExp.cpp.

756{
757 return 2;
758}

◆ v_NumDGBndryCoeffs()

int Nektar::LocalRegions::SegExp::v_NumDGBndryCoeffs ( ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 760 of file SegExp.cpp.

761{
762 return 2;
763}

◆ v_PhysDeriv() [1/2]

void Nektar::LocalRegions::SegExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
overrideprotectedvirtual

Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray.

This is a wrapper around StdExpansion1D::Tensor_Deriv

Input:

  • n: number of derivatives to be evaluated where \( n \leq dim\)
  • inarray: array of function evaluated at the quadrature points

Output:

  • outarray: array of the derivatives \( du/d_{\xi_1}|_{\xi_{1i}} d\xi_1/dx, du/d_{\xi_1}|_{\xi_{1i}} d\xi_1/dy, du/d_{\xi_1}|_{\xi_{1i}} d\xi_1/dz, \) depending on value of dim

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 149 of file SegExp.cpp.

153{
154 int nquad0 = m_base[0]->GetNumPoints();
155 Array<TwoD, const NekDouble> gmat =
156 m_metricinfo->GetDerivFactors(GetPointsKeys());
157 Array<OneD, NekDouble> diff(nquad0);
158
159 // StdExpansion1D::PhysTensorDeriv(inarray,diff);
160 PhysTensorDeriv(inarray, diff);
161 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
162 {
163 if (out_d0.size())
164 {
165 Vmath::Vmul(nquad0, &gmat[0][0], 1, &diff[0], 1, &out_d0[0], 1);
166 }
167
168 if (out_d1.size())
169 {
170 Vmath::Vmul(nquad0, &gmat[1][0], 1, &diff[0], 1, &out_d1[0], 1);
171 }
172
173 if (out_d2.size())
174 {
175 Vmath::Vmul(nquad0, &gmat[2][0], 1, &diff[0], 1, &out_d2[0], 1);
176 }
177 }
178 else
179 {
180 if (out_d0.size())
181 {
182 Vmath::Smul(nquad0, gmat[0][0], diff, 1, out_d0, 1);
183 }
184
185 if (out_d1.size())
186 {
187 Vmath::Smul(nquad0, gmat[1][0], diff, 1, out_d1, 1);
188 }
189
190 if (out_d2.size())
191 {
192 Vmath::Smul(nquad0, gmat[2][0], diff, 1, out_d2, 1);
193 }
194 }
195}
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv(), Vmath::Smul(), and Vmath::Vmul().

Referenced by v_PhysDeriv_n().

◆ v_PhysDeriv() [2/2]

void Nektar::LocalRegions::SegExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
overrideprotectedvirtual

Calculate the derivative of the physical points in a given direction.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 293 of file SegExp.cpp.

296{
297 switch (dir)
298 {
299 case 0:
300 {
301 PhysDeriv(inarray, outarray, NullNekDouble1DArray,
303 }
304 break;
305 case 1:
306 {
307 PhysDeriv(inarray, NullNekDouble1DArray, outarray,
309 }
310 break;
311 case 2:
312 {
314 outarray);
315 }
316 break;
317 default:
318 {
319 ASSERTL1(false, "input dir is out of range");
320 }
321 break;
322 }
323}

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

◆ v_PhysDeriv_n()

void Nektar::LocalRegions::SegExp::v_PhysDeriv_n ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_dn 
)
overrideprotectedvirtual

Evaluate the derivative normal to a line: \( d/dn=\frac{spacedim}{||normal||}d/d{\xi} \). The derivative is calculated performing the product \( du/d{s}=\nabla u \cdot normal \).

Parameters
inarrayfunction to derive
out_dnresult of the derivative operation

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 244 of file SegExp.cpp.

246{
247 int nquad0 = m_base[0]->GetNumPoints();
248 Array<TwoD, const NekDouble> gmat =
249 m_metricinfo->GetDerivFactors(GetPointsKeys());
250 int coordim = m_geom->GetCoordim();
251 Array<OneD, NekDouble> out_dn_tmp(nquad0, 0.0);
252 switch (coordim)
253 {
254 case 2:
255
256 Array<OneD, NekDouble> inarray_d0(nquad0);
257 Array<OneD, NekDouble> inarray_d1(nquad0);
258
259 v_PhysDeriv(inarray, inarray_d0, inarray_d1);
260 Array<OneD, Array<OneD, NekDouble>> normals;
261 normals = Array<OneD, Array<OneD, NekDouble>>(coordim);
262 cout << "der_n" << endl;
263 for (int k = 0; k < coordim; ++k)
264 {
265 normals[k] = Array<OneD, NekDouble>(nquad0);
266 }
267 // @TODO: this routine no longer makes sense, since normals are not
268 // unique on
269 // an edge
270 // normals = GetMetricInfo()->GetNormal();
271 for (int i = 0; i < nquad0; i++)
272 {
273 cout << "nx= " << normals[0][i] << " ny=" << normals[1][i]
274 << endl;
275 }
277 "normal vectors do not exist: check if a"
278 "boundary region is defined as I ");
279 // \nabla u \cdot normal
280 Vmath::Vmul(nquad0, normals[0], 1, inarray_d0, 1, out_dn_tmp, 1);
281 Vmath::Vadd(nquad0, out_dn_tmp, 1, out_dn, 1, out_dn, 1);
282 Vmath::Zero(nquad0, out_dn_tmp, 1);
283 Vmath::Vmul(nquad0, normals[1], 1, inarray_d1, 1, out_dn_tmp, 1);
284 Vmath::Vadd(nquad0, out_dn_tmp, 1, out_dn, 1, out_dn, 1);
285
286 for (int i = 0; i < nquad0; i++)
287 {
288 cout << "deps/dx =" << inarray_d0[i]
289 << " deps/dy=" << inarray_d1[i] << endl;
290 }
291 }
292}
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray.
Definition: SegExp.cpp:149
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354

References ASSERTL0, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::NullNekDoubleArrayOfArray, v_PhysDeriv(), Vmath::Vadd(), Vmath::Vmul(), and Vmath::Zero().

◆ v_PhysDeriv_s()

void Nektar::LocalRegions::SegExp::v_PhysDeriv_s ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_ds 
)
overrideprotectedvirtual

Evaluate the derivative along a line: \( d/ds=\frac{spacedim}{||tangent||}d/d{\xi} \). The derivative is calculated performing the product \( du/d{s}=\nabla u \cdot tangent \).

Parameters
inarrayfunction to derive
out_dsresult of the derivative operation

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 205 of file SegExp.cpp.

207{
208 int nquad0 = m_base[0]->GetNumPoints();
209 int coordim = m_geom->GetCoordim();
210 Array<OneD, NekDouble> diff(nquad0);
211 // this operation is needed if you put out_ds==inarray
212 Vmath::Zero(nquad0, out_ds, 1);
213 switch (coordim)
214 {
215 case 2:
216 // diff= dU/de
217 Array<OneD, NekDouble> diff(nquad0);
218
219 PhysTensorDeriv(inarray, diff);
220
221 // get dS/de= (Jac)^-1
222 Array<OneD, NekDouble> Jac = m_metricinfo->GetJac(GetPointsKeys());
223 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
224 {
225 // calculate the derivative as (dU/de)*(Jac)^-1
226 Vmath::Vdiv(nquad0, diff, 1, Jac, 1, out_ds, 1);
227 }
228 else
229 {
230 NekDouble invJac = 1 / Jac[0];
231 Vmath::Smul(nquad0, invJac, diff, 1, out_ds, 1);
232 }
233 }
234}
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv(), Vmath::Smul(), Vmath::Vdiv(), and Vmath::Zero().

◆ v_PhysEvaluate() [1/3]

NekDouble Nektar::LocalRegions::SegExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion1D.

Definition at line 597 of file SegExp.cpp.

599{
600 Array<OneD, NekDouble> Lcoord = Array<OneD, NekDouble>(1);
601
602 ASSERTL0(m_geom, "m_geom not defined");
603 m_geom->GetLocCoords(coord, Lcoord);
604
605 return StdExpansion1D::v_PhysEvaluate(Lcoord, physvals);
606}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate() [2/3]

NekDouble Nektar::LocalRegions::SegExp::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 608 of file SegExp.cpp.

611{
612 Array<OneD, NekDouble> Lcoord(1);
613 ASSERTL0(m_geom, "m_geom not defined");
614 m_geom->GetLocCoords(coord, Lcoord);
615 return StdSegExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
616}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate() [3/3]

NekDouble Nektar::LocalRegions::SegExp::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs,
std::array< NekDouble, 6 > &  secondOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 618 of file SegExp.cpp.

622{
623 Array<OneD, NekDouble> Lcoord(1);
624 ASSERTL0(m_geom, "m_geom not defined");
625 m_geom->GetLocCoords(coord, Lcoord);
626 return StdSegExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs,
627 secondOrderDerivs);
628}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_SetCoeffsToOrientation()

void Nektar::LocalRegions::SegExp::v_SetCoeffsToOrientation ( StdRegions::Orientation  dir,
Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 716 of file SegExp.cpp.

719{
720
721 if (dir == StdRegions::eBackwards)
722 {
723 if (&inarray[0] != &outarray[0])
724 {
725 Array<OneD, NekDouble> intmp(inarray);
726 ReverseCoeffsAndSign(intmp, outarray);
727 }
728 else
729 {
730 ReverseCoeffsAndSign(inarray, outarray);
731 }
732 }
733}
void ReverseCoeffsAndSign(const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Reverse the coefficients in a boundary interior expansion this routine is of use when we need the seg...
Definition: SegExp.cpp:1329

References Nektar::StdRegions::eBackwards, and ReverseCoeffsAndSign().

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::SegExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 589 of file SegExp.cpp.

592{
593 // Evaluate point in local (eta) coordinates.
594 return StdExpansion1D::v_PhysEvaluate(Lcoord, physvals);
595}

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::SegExp::m_matrixManager
private

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::SegExp::m_staticCondMatrixManager
private