Nektar++
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | Friends | List of all members
Nektar::MMFAdvection Class Reference

#include <MMFAdvection.h>

Inheritance diagram for Nektar::MMFAdvection:
[legend]

Public Member Functions

virtual ~MMFAdvection ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::MMFSystem
SOLVER_UTILS_EXPORT MMFSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~MMFSystem ()
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
SOLVER_UTILS_EXPORT void MMFInitObject (const Array< OneD, const Array< OneD, NekDouble > > &Anisotropy, const int TangentXelem=-1)
 
SOLVER_UTILS_EXPORT void CopyBoundaryTrace (const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, const BoundaryCopyType BDCopyType, const int var=0, const std::string btype="NoUserDefined")
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
SOLVER_UTILS_EXPORT bool ParallelInTime ()
 Check if solver use Parallel-in-Time. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Public Attributes

TestType m_TestType
 
- Public Attributes inherited from Nektar::SolverUtils::MMFSystem
NekDouble m_pi
 
int m_shapedim
 
SurfaceType m_surfaceType
 
UpwindType m_upwindType
 
TestMaxwellType m_TestMaxwellType
 
PolType m_PolType
 
IncType m_IncType
 
Array< OneD, NekDoublem_MMFfactors
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

 MMFAdvection (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Session reader. More...
 
void WeakDGDirectionalAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField)
 
void GetFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Evaluate the flux at each solution point. More...
 
void GetFluxVectorDeAlias (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Evaluate the flux at each solution point using dealiasing. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the RHS. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection. More...
 
void EvaluateAdvectionVelocity (Array< OneD, Array< OneD, NekDouble > > &velocity)
 
NekDouble ComputeCirculatingArclength (const NekDouble zlevel, const NekDouble Rhs)
 
Array< OneD, NekDouble > & GetNormalVelocity ()
 Get the normal velocity. More...
 
void ComputeNablaCdotVelocity (Array< OneD, NekDouble > &vellc)
 
void ComputeveldotMF (Array< OneD, Array< OneD, NekDouble > > &veldotMF)
 
void AdvectionBellPlane (Array< OneD, NekDouble > &outfield)
 
void AdvectionBellSphere (Array< OneD, NekDouble > &outfield)
 
void Test2Dproblem (const NekDouble time, Array< OneD, NekDouble > &outfield)
 
void Test3Dproblem (const NekDouble time, Array< OneD, NekDouble > &outfield)
 
virtual void v_InitObject (bool DeclareFields=true) override
 Initialise the object. More...
 
virtual void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print Summary. More...
 
virtual void v_SetInitialConditions (const NekDouble initialtime, bool dumpInitialConditions, const int domain) override
 
virtual void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time) override
 
- Protected Member Functions inherited from Nektar::SolverUtils::MMFSystem
void SetUpMovingFrames (const Array< OneD, const Array< OneD, NekDouble > > &Anisotropy, const int TangentXelem)
 
void CheckMovingFrames (const Array< OneD, const Array< OneD, NekDouble > > &movingframes)
 
SOLVER_UTILS_EXPORT void ComputencdotMF ()
 
SOLVER_UTILS_EXPORT void ComputeDivCurlMF ()
 
SOLVER_UTILS_EXPORT void ComputeMFtrace ()
 
SOLVER_UTILS_EXPORT void VectorDotProd (const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, NekDouble > &v3)
 
SOLVER_UTILS_EXPORT void VectorCrossProd (const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &v3)
 
SOLVER_UTILS_EXPORT void VectorCrossProd (const Array< OneD, NekDouble > &v1, const Array< OneD, NekDouble > &v2, Array< OneD, NekDouble > &v3)
 
SOLVER_UTILS_EXPORT void ComputeCurl (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleCartesianToMovingframes (const Array< OneD, const Array< OneD, NekDouble > > &uvec, unsigned int field)
 
SOLVER_UTILS_EXPORT void DeriveCrossProductMF (Array< OneD, Array< OneD, NekDouble > > &CrossProductMF)
 
SOLVER_UTILS_EXPORT void ComputeNtimesMF ()
 
SOLVER_UTILS_EXPORT void ComputeNtimesFz (const int dir, const Array< OneD, Array< OneD, NekDouble > > &Fwd, const Array< OneD, Array< OneD, NekDouble > > &Bwd, const Array< OneD, const NekDouble > &imFwd, const Array< OneD, const NekDouble > &imBwd, Array< OneD, NekDouble > &outarrayFwd, Array< OneD, NekDouble > &outarrayBwd)
 
SOLVER_UTILS_EXPORT void ComputeNtimesF12 (const Array< OneD, Array< OneD, NekDouble > > &Fwd, const Array< OneD, Array< OneD, NekDouble > > &Bwd, const Array< OneD, const NekDouble > &im1Fwd, const Array< OneD, const NekDouble > &im1Bwd, const Array< OneD, const NekDouble > &im2Fwd, const Array< OneD, const NekDouble > &im2Bwd, Array< OneD, NekDouble > &outarrayFwd, Array< OneD, NekDouble > &outarrayBwd)
 
SOLVER_UTILS_EXPORT void ComputeNtimestimesdFz (const int dir, const Array< OneD, Array< OneD, NekDouble > > &Fwd, const Array< OneD, Array< OneD, NekDouble > > &Bwd, const Array< OneD, const NekDouble > &imFwd, const Array< OneD, const NekDouble > &imBwd, Array< OneD, NekDouble > &outarrayFwd, Array< OneD, NekDouble > &outarrayBwd)
 
SOLVER_UTILS_EXPORT void ComputeNtimestimesdF12 (const Array< OneD, Array< OneD, NekDouble > > &Fwd, const Array< OneD, Array< OneD, NekDouble > > &Bwd, const Array< OneD, const NekDouble > &im1Fwd, const Array< OneD, const NekDouble > &im1Bwd, const Array< OneD, const NekDouble > &im2Fwd, const Array< OneD, const NekDouble > &im2Bwd, Array< OneD, NekDouble > &outarrayFwd, Array< OneD, NekDouble > &outarrayBwd)
 
SOLVER_UTILS_EXPORT void CartesianToSpherical (const NekDouble x0j, const NekDouble x1j, const NekDouble x2j, NekDouble &sin_varphi, NekDouble &cos_varphi, NekDouble &sin_theta, NekDouble &cos_theta)
 
SOLVER_UTILS_EXPORT void ComputeZimYim (Array< OneD, Array< OneD, NekDouble > > &epsvec, Array< OneD, Array< OneD, NekDouble > > &muvec)
 
SOLVER_UTILS_EXPORT void AdddedtMaxwell (const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void GetMaxwellFluxVector (const int var, const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetMaxwellFlux1D (const int var, const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetMaxwellFlux2D (const int var, const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void LaxFriedrichMaxwellFlux1D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxFwd, Array< OneD, Array< OneD, NekDouble > > &numfluxBwd)
 
SOLVER_UTILS_EXPORT void UpwindMaxwellFlux1D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxFwd, Array< OneD, Array< OneD, NekDouble > > &numfluxBwd)
 
SOLVER_UTILS_EXPORT void AverageMaxwellFlux1D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxFwd, Array< OneD, Array< OneD, NekDouble > > &numfluxBwd)
 
SOLVER_UTILS_EXPORT void NumericalMaxwellFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxFwd, Array< OneD, Array< OneD, NekDouble > > &numfluxBwd, const NekDouble time=0.0)
 
SOLVER_UTILS_EXPORT void NumericalMaxwellFluxTM (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxFwd, Array< OneD, Array< OneD, NekDouble > > &numfluxBwd, const NekDouble time)
 
SOLVER_UTILS_EXPORT void NumericalMaxwellFluxTE (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxFwd, Array< OneD, Array< OneD, NekDouble > > &numfluxBwd, const NekDouble time)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetIncidentField (const int var, const NekDouble time)
 
SOLVER_UTILS_EXPORT void Computedemdxicdote ()
 
SOLVER_UTILS_EXPORT NekDouble AvgInt (const Array< OneD, const NekDouble > &inarray)
 
SOLVER_UTILS_EXPORT NekDouble AvgAbsInt (const Array< OneD, const NekDouble > &inarray)
 
SOLVER_UTILS_EXPORT NekDouble AbsIntegral (const Array< OneD, const NekDouble > &inarray)
 
SOLVER_UTILS_EXPORT NekDouble RootMeanSquare (const Array< OneD, const NekDouble > &inarray)
 
SOLVER_UTILS_EXPORT NekDouble VectorAvgMagnitude (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 
SOLVER_UTILS_EXPORT void GramSchumitz (const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &outarray, bool KeepTheMagnitude=true)
 
SOLVER_UTILS_EXPORT void BubbleSort (Array< OneD, NekDouble > &refarray, Array< OneD, NekDouble > &sortarray)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 

Protected Attributes

SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
NekDouble m_advx
 
NekDouble m_advy
 
NekDouble m_advz
 
NekDouble m_waveFreq
 
NekDouble m_RotAngle
 
NekDouble m_Mass0
 
int m_VelProjection
 
Array< OneD, Array< OneD, NekDouble > > m_velocity
 Advection velocity. More...
 
Array< OneD, NekDoublem_traceVn
 
Array< OneD, Array< OneD, NekDouble > > m_veldotMF
 
Array< OneD, NekDoublem_vellc
 
int m_planeNumber
 
- Protected Attributes inherited from Nektar::SolverUtils::MMFSystem
NekDouble m_alpha
 
NekDouble m_Incfreq
 
int m_SmoothFactor
 
NekDouble m_SFinit
 
Array< OneD, Array< OneD, NekDouble > > m_movingframes
 
Array< OneD, Array< OneD, NekDouble > > m_surfaceNormal
 
Array< OneD, Array< OneD, NekDouble > > m_ncdotMFFwd
 
Array< OneD, Array< OneD, NekDouble > > m_ncdotMFBwd
 
Array< OneD, Array< OneD, NekDouble > > m_nperpcdotMFFwd
 
Array< OneD, Array< OneD, NekDouble > > m_nperpcdotMFBwd
 
Array< OneD, Array< OneD, NekDouble > > m_DivMF
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_CurlMF
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_MFtraceFwd
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_MFtraceBwd
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_ntimesMFFwd
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_ntimesMFBwd
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_ntimes_ntimesMFFwd
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_ntimes_ntimesMFBwd
 
Array< OneD, Array< OneD, NekDouble > > m_ZimFwd
 
Array< OneD, Array< OneD, NekDouble > > m_ZimBwd
 
Array< OneD, Array< OneD, NekDouble > > m_YimFwd
 
Array< OneD, Array< OneD, NekDouble > > m_YimBwd
 
Array< OneD, Array< OneD, NekDouble > > m_epsvec
 
Array< OneD, Array< OneD, NekDouble > > m_muvec
 
Array< OneD, Array< OneD, NekDouble > > m_negepsvecminus1
 
Array< OneD, Array< OneD, NekDouble > > m_negmuvecminus1
 
Array< OneD, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > > m_dedxi_cdot_e
 
SpatialDomains::GeomMMF m_MMFdir
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities. More...
 
Array< OneD, NekDoublem_movingFrameTheta
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 

Friends

class MemoryManager< MMFAdvection >
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Definition at line 61 of file MMFAdvection.h.

Constructor & Destructor Documentation

◆ ~MMFAdvection()

Nektar::MMFAdvection::~MMFAdvection ( )
virtual

Destructor.

Unsteady linear advection equation destructor.

Definition at line 201 of file MMFAdvection.cpp.

202{
203}

◆ MMFAdvection()

Nektar::MMFAdvection::MMFAdvection ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Session reader.

Definition at line 51 of file MMFAdvection.cpp.

53 : UnsteadySystem(pSession, pGraph), MMFSystem(pSession, pGraph),
54 AdvectionSystem(pSession, pGraph)
55{
56 m_planeNumber = 0;
57}
SOLVER_UTILS_EXPORT AdvectionSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SOLVER_UTILS_EXPORT MMFSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Definition: MMFSystem.cpp:43
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

References m_planeNumber.

Member Function Documentation

◆ AdvectionBellPlane()

void Nektar::MMFAdvection::AdvectionBellPlane ( Array< OneD, NekDouble > &  outfield)
protected

Definition at line 913 of file MMFAdvection.cpp.

914{
915 int nq = m_fields[0]->GetNpoints();
916
917 NekDouble dist, m_radius_limit;
918
919 Array<OneD, NekDouble> x(nq);
920 Array<OneD, NekDouble> y(nq);
921 Array<OneD, NekDouble> z(nq);
922
923 m_fields[0]->GetCoords(x, y, z);
924
925 // Sets of parameters
926 m_radius_limit = 0.5;
927
928 NekDouble x0j, x1j;
929 outfield = Array<OneD, NekDouble>(nq, 0.0);
930 for (int j = 0; j < nq; ++j)
931 {
932 x0j = x[j];
933 x1j = y[j];
934
935 dist = sqrt(x0j * x0j + x1j * x1j);
936
937 if (dist < m_radius_limit)
938 {
939 outfield[j] = 0.5 * (1.0 + cos(m_pi * dist / m_radius_limit));
940 }
941 else
942 {
943 outfield[j] = 0.0;
944 }
945 }
946}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
std::vector< double > z(NPUPPER)
double NekDouble
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_pi, tinysimd::sqrt(), and Nektar::UnitTests::z().

Referenced by v_EvaluateExactSolution(), and v_SetInitialConditions().

◆ AdvectionBellSphere()

void Nektar::MMFAdvection::AdvectionBellSphere ( Array< OneD, NekDouble > &  outfield)
protected

Definition at line 948 of file MMFAdvection.cpp.

949{
950 int nq = m_fields[0]->GetNpoints();
951
952 NekDouble dist, radius, cosdiff, sin_theta, cos_theta, sin_varphi,
953 cos_varphi;
954 NekDouble m_theta_c, m_varphi_c, m_radius_limit, m_c0;
955
956 Array<OneD, NekDouble> x(nq);
957 Array<OneD, NekDouble> y(nq);
958 Array<OneD, NekDouble> z(nq);
959
960 m_fields[0]->GetCoords(x, y, z);
961
962 // Sets of parameters
963 m_theta_c = 0.0;
964 m_varphi_c = 3.0 * m_pi / 2.0;
965 m_radius_limit = 7.0 * m_pi / 64.0;
966 m_c0 = 0.0;
967
968 NekDouble x0j, x1j, x2j;
969 outfield = Array<OneD, NekDouble>(nq, 0.0);
970 for (int j = 0; j < nq; ++j)
971 {
972 x0j = x[j];
973 x1j = y[j];
974 x2j = z[j];
975
976 radius = sqrt(x0j * x0j + x1j * x1j + x2j * x2j);
977
978 sin_varphi = x1j / sqrt(x0j * x0j + x1j * x1j);
979 cos_varphi = x0j / sqrt(x0j * x0j + x1j * x1j);
980
981 sin_theta = x2j / radius;
982 cos_theta = sqrt(x0j * x0j + x1j * x1j) / radius;
983
984 cosdiff = cos_varphi * cos(m_varphi_c) + sin_varphi * sin(m_varphi_c);
985 dist = radius * acos(sin(m_theta_c) * sin_theta +
986 cos(m_theta_c) * cos_theta * cosdiff);
987
988 if (dist < m_radius_limit)
989 {
990 outfield[j] =
991 0.5 * (1.0 + cos(m_pi * dist / m_radius_limit)) + m_c0;
992 }
993 else
994 {
995 outfield[j] = m_c0;
996 }
997 }
998}

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_pi, tinysimd::sqrt(), and Nektar::UnitTests::z().

Referenced by v_EvaluateExactSolution(), and v_SetInitialConditions().

◆ ComputeCirculatingArclength()

NekDouble Nektar::MMFAdvection::ComputeCirculatingArclength ( const NekDouble  zlevel,
const NekDouble  Rhs 
)
protected

Definition at line 688 of file MMFAdvection.cpp.

690{
691
692 NekDouble Tol = 0.0001, Maxiter = 1000, N = 100;
693 NekDouble newy, F = 0.0, dF = 1.0, y0, tmp;
694
695 Array<OneD, NekDouble> xp(N + 1);
696 Array<OneD, NekDouble> yp(N + 1);
697
698 NekDouble intval = 0.0;
699 switch (m_surfaceType)
700 {
703 {
704 intval = sqrt(Rhs - zlevel * zlevel);
705 }
706 break;
707
709 {
710 intval = sqrt(0.5 * (Rhs - zlevel * zlevel * zlevel * zlevel -
711 zlevel * zlevel));
712 }
713 break;
714
716 {
717 tmp = 0.5 *
718 (Rhs - zlevel * zlevel * zlevel * zlevel - zlevel * zlevel);
719 intval = sqrt(0.5 * (1.0 + sqrt(1.0 + 4.0 * tmp)));
720 }
721 break;
722
723 default:
724 break;
725 }
726
727 switch (m_surfaceType)
728 {
729 // Find the half of all the xp and yp on zlevel ....
733 {
734 for (int j = 0; j < N + 1; ++j)
735 {
736 xp[j] = j * 2.0 * intval / N - intval;
737
738 y0 = 1.0;
739 for (int i = 0; i < Maxiter; ++i)
740 {
741 switch (m_surfaceType)
742 {
743 // Find the half of all the xp and yp on zlevel ....
746 {
747 F = xp[j] * xp[j] + y0 * y0 + zlevel * zlevel - Rhs;
748 dF = 2.0 * y0;
749 }
750 break;
751
753 {
754 F = 2.0 * xp[j] * xp[j] + y0 * y0 * y0 * y0 +
755 y0 * y0 + zlevel * zlevel * zlevel * zlevel +
756 zlevel * zlevel - Rhs;
757 dF = 4.0 * y0 * y0 * y0 + 2.0 * y0;
758 }
759 break;
760
761 default:
762 break;
763 }
764
765 newy = y0 - F / dF;
766
767 if (fabs(F / dF) < Tol)
768 {
769 yp[j] = newy;
770 break;
771 }
772
773 else
774 {
775 y0 = newy;
776 }
777
778 ASSERTL0(i < Maxiter,
779 "Advection Velocity convergence fails");
780
781 } // i-loop
782 }
783 }
784 break;
785
787 {
788 for (int j = 0; j < N + 1; ++j)
789 {
790 xp[j] = j * 2.0 * intval / N - intval;
791 tmp = 0.5 * Rhs -
792 0.5 * (zlevel * zlevel * zlevel * zlevel +
793 zlevel * zlevel) -
794 (xp[j] * xp[j] * xp[j] * xp[j] - xp[j] * xp[j]);
795 if (tmp < 0)
796 {
797 tmp = -1.0 * tmp;
798 }
799 yp[j] = sqrt(tmp);
800 } // j-loop
801 }
802 break;
803
804 default:
805 break;
806
807 } // switch-loop
808
809 NekDouble pi = 3.14159265358979323846;
810 NekDouble arclength = 0.0;
811 for (int j = 0; j < N; ++j)
812 {
813 arclength =
814 arclength + sqrt((yp[j + 1] - yp[j]) * (yp[j + 1] - yp[j]) +
815 (xp[j + 1] - xp[j]) * (xp[j + 1] - xp[j])) /
816 pi;
817 }
818
819 return arclength;
820}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215

References ASSERTL0, Nektar::SolverUtils::eIrregular, Nektar::SolverUtils::eNonconvex, Nektar::SolverUtils::eSphere, Nektar::SolverUtils::eTRSphere, Nektar::SolverUtils::MMFSystem::m_surfaceType, and tinysimd::sqrt().

◆ ComputeNablaCdotVelocity()

void Nektar::MMFAdvection::ComputeNablaCdotVelocity ( Array< OneD, NekDouble > &  vellc)
protected

Definition at line 1045 of file MMFAdvection.cpp.

1046{
1047 int nq = m_fields[0]->GetNpoints();
1048
1049 Array<OneD, NekDouble> velcoeff(nq, 0.0);
1050
1051 Array<OneD, NekDouble> Dtmp0(nq);
1052 Array<OneD, NekDouble> Dtmp1(nq);
1053 Array<OneD, NekDouble> Dtmp2(nq);
1054 Array<OneD, NekDouble> Drv(nq);
1055
1056 vellc = Array<OneD, NekDouble>(nq, 0.0);
1057
1058 // m_vellc = \nabla m_vel \cdot tan_i
1059 Array<OneD, NekDouble> tmp(nq);
1060 Array<OneD, NekDouble> vessel(nq);
1061
1062 for (int j = 0; j < m_shapedim; ++j)
1063 {
1064 Vmath::Zero(nq, velcoeff, 1);
1065 for (int k = 0; k < m_spacedim; ++k)
1066 {
1067 // a_j = tan_j cdot m_vel
1068 Vmath::Vvtvp(nq, &m_movingframes[j][k * nq], 1, &m_velocity[k][0],
1069 1, &velcoeff[0], 1, &velcoeff[0], 1);
1070 }
1071
1072 // d a_j / d x^k
1073 m_fields[0]->PhysDeriv(velcoeff, Dtmp0, Dtmp1, Dtmp2);
1074
1075 for (int k = 0; k < m_spacedim; ++k)
1076 {
1077 // tan_j^k ( d a_j / d x^k )
1078 switch (k)
1079 {
1080 case (0):
1081 {
1082 Vmath::Vvtvp(nq, &Dtmp0[0], 1, &m_movingframes[j][k * nq],
1083 1, &vellc[0], 1, &vellc[0], 1);
1084 }
1085 break;
1086
1087 case (1):
1088 {
1089 Vmath::Vvtvp(nq, &Dtmp1[0], 1, &m_movingframes[j][k * nq],
1090 1, &vellc[0], 1, &vellc[0], 1);
1091 }
1092 break;
1093
1094 case (2):
1095 {
1096 Vmath::Vvtvp(nq, &Dtmp2[0], 1, &m_movingframes[j][k * nq],
1097 1, &vellc[0], 1, &vellc[0], 1);
1098 }
1099 break;
1100 }
1101 }
1102 }
1103}
Array< OneD, Array< OneD, NekDouble > > m_velocity
Advection velocity.
Definition: MMFAdvection.h:95
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, Array< OneD, NekDouble > > m_movingframes
Definition: MMFSystem.h:185
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_movingframes, Nektar::SolverUtils::MMFSystem::m_shapedim, Nektar::SolverUtils::EquationSystem::m_spacedim, m_velocity, Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_InitObject().

◆ ComputeveldotMF()

void Nektar::MMFAdvection::ComputeveldotMF ( Array< OneD, Array< OneD, NekDouble > > &  veldotMF)
protected

Definition at line 1105 of file MMFAdvection.cpp.

1107{
1108 int nq = m_fields[0]->GetNpoints();
1109
1110 veldotMF = Array<OneD, Array<OneD, NekDouble>>(m_shapedim);
1111
1112 Array<OneD, NekDouble> magMF(nq);
1113 for (int j = 0; j < m_shapedim; ++j)
1114 {
1115 veldotMF[j] = Array<OneD, NekDouble>(nq, 0.0);
1116
1117 for (int k = 0; k < m_spacedim; ++k)
1118 {
1119 Vmath::Vvtvp(nq, &m_movingframes[j][k * nq], 1, &m_velocity[k][0],
1120 1, &veldotMF[j][0], 1, &veldotMF[j][0], 1);
1121 }
1122 }
1123}

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_movingframes, Nektar::SolverUtils::MMFSystem::m_shapedim, Nektar::SolverUtils::EquationSystem::m_spacedim, m_velocity, and Vmath::Vvtvp().

Referenced by v_InitObject().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::MMFAdvection::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 68 of file MMFAdvection.h.

71 {
74 p->InitObject();
75 return p;
76 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ DoOdeProjection()

void Nektar::MMFAdvection::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the projection.

Compute the projection for the linear advection equation.

Parameters
inarrayGiven fields.
outarrayCalculated solution.
timeTime.

Definition at line 457 of file MMFAdvection.cpp.

460{
461 // Counter variable
462 int i;
463
464 // Number of fields (variables of the problem)
465 int nVariables = inarray.size();
466
467 // Set the boundary conditions
469
470 // Switch on the projection type (Discontinuous or Continuous)
471 switch (m_projectionType)
472 {
473 // Discontinuous projection
475 {
476 // Number of quadrature points
477 int nQuadraturePts = GetNpoints();
478
479 // Just copy over array
480 if (inarray != outarray)
481 {
482 for (i = 0; i < nVariables; ++i)
483 {
484 Vmath::Vcopy(nQuadraturePts, inarray[i], 1, outarray[i], 1);
485 }
486 }
487 break;
488 }
489
490 // Continuous projection
493 {
494 Array<OneD, NekDouble> coeffs(m_fields[0]->GetNcoeffs(), 0.0);
495 for (i = 0; i < nVariables; ++i)
496 {
497 m_fields[i]->FwdTrans(inarray[i], coeffs);
498 m_fields[i]->BwdTrans(coeffs, outarray[i]);
499 }
500 break;
501 }
502
503 default:
504 ASSERTL0(false, "Unknown projection scheme");
505 break;
506 }
507}
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

◆ DoOdeRhs()

void Nektar::MMFAdvection::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the RHS.

Compute the right-hand side for the linear advection equation.

Parameters
inarrayGiven fields.
outarrayCalculated solution.
timeTime.

Definition at line 393 of file MMFAdvection.cpp.

396{
397 boost::ignore_unused(time);
398
399 int i;
400 int nvariables = inarray.size();
401 int npoints = GetNpoints();
402
403 switch (m_projectionType)
404 {
406 {
407 int ncoeffs = inarray[0].size();
408
409 if (m_spacedim == 3)
410 {
411 Array<OneD, Array<OneD, NekDouble>> WeakAdv(nvariables);
412
413 WeakAdv[0] = Array<OneD, NekDouble>(ncoeffs * nvariables);
414 for (i = 1; i < nvariables; ++i)
415 {
416 WeakAdv[i] = WeakAdv[i - 1] + ncoeffs;
417 }
418
419 // Compute \nabla \cdot \vel u according to MMF scheme
420 WeakDGDirectionalAdvection(inarray, WeakAdv);
421
422 for (i = 0; i < nvariables; ++i)
423 {
424 m_fields[i]->MultiplyByElmtInvMass(WeakAdv[i], WeakAdv[i]);
425 m_fields[i]->BwdTrans(WeakAdv[i], outarray[i]);
426 Vmath::Neg(npoints, outarray[i], 1);
427 }
428 }
429 else
430 {
431 m_advObject->Advect(2, m_fields, m_velocity, inarray, outarray,
432 0.0);
433
434 for (i = 0; i < nvariables; ++i)
435 {
436 Vmath::Neg(npoints, outarray[i], 1);
437 }
438 }
439 }
440 break;
441
442 default:
443 {
444 ASSERTL0(false, "Unknown projection scheme");
445 }
446 break;
447 }
448}
void WeakDGDirectionalAdvection(const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField)
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_spacedim, m_velocity, Vmath::Neg(), and WeakDGDirectionalAdvection().

Referenced by v_InitObject().

◆ EvaluateAdvectionVelocity()

void Nektar::MMFAdvection::EvaluateAdvectionVelocity ( Array< OneD, Array< OneD, NekDouble > > &  velocity)
protected

Definition at line 606 of file MMFAdvection.cpp.

608{
609 int nq = m_fields[0]->GetNpoints();
610
611 NekDouble vel_phi, vel_theta, sin_varphi, cos_varphi, sin_theta, cos_theta;
612 NekDouble x0j, x1j, x2j;
613
614 Array<OneD, NekDouble> x0(nq);
615 Array<OneD, NekDouble> x1(nq);
616 Array<OneD, NekDouble> x2(nq);
617
618 m_fields[0]->GetCoords(x0, x1, x2);
619
620 // theta = a*sin(z/r), phi = a*tan(y/x);
621 for (int j = 0; j < nq; j++)
622 {
623 x0j = x0[j];
624 x1j = x1[j];
625 x2j = x2[j];
626
627 CartesianToSpherical(x0j, x1j, x2j, sin_varphi, cos_varphi, sin_theta,
628 cos_theta);
629
630 vel_phi = m_waveFreq * (cos_theta * cos(m_RotAngle) +
631 sin_theta * cos_varphi * sin(m_RotAngle));
632 vel_theta = -1.0 * m_waveFreq * sin_theta * sin(m_RotAngle);
633
634 velocity[0][j] =
635 -1.0 * vel_phi * sin_varphi - vel_theta * sin_theta * cos_varphi;
636 velocity[1][j] =
637 vel_phi * cos_varphi - vel_theta * sin_theta * sin_varphi;
638 velocity[2][j] = vel_theta * cos_theta;
639 }
640
641 // Project the veloicty on the tangent plane
642
643 if (m_VelProjection)
644 {
645 // Check MovingFrames \cdot SurfaceNormals = 0
646 Array<OneD, Array<OneD, NekDouble>> newvelocity(m_spacedim);
647
648 Array<OneD, Array<OneD, NekDouble>> MF1(m_spacedim);
649 Array<OneD, Array<OneD, NekDouble>> MF2(m_spacedim);
650 Array<OneD, Array<OneD, NekDouble>> SN(m_spacedim);
651
652 for (int k = 0; k < m_spacedim; ++k)
653 {
654 newvelocity[k] = Array<OneD, NekDouble>(nq);
655 MF1[k] = Array<OneD, NekDouble>(nq);
656 MF2[k] = Array<OneD, NekDouble>(nq);
657 SN[k] = Array<OneD, NekDouble>(nq);
658
659 Vmath::Vcopy(nq, &m_movingframes[0][k * nq], 1, &MF1[k][0], 1);
660 Vmath::Vcopy(nq, &m_movingframes[1][k * nq], 1, &MF2[k][0], 1);
661 }
662
663 VectorCrossProd(MF1, MF2, SN);
664 GramSchumitz(SN, m_velocity, newvelocity, true);
665
666 Array<OneD, NekDouble> tmp(nq, 0.0);
667 Array<OneD, NekDouble> Projection(nq, 0.0);
668
669 for (int k = 0; k < m_spacedim; ++k)
670 {
671 Vmath::Vsub(nq, &m_velocity[0][0], 1, &newvelocity[0][0], 1,
672 &tmp[0], 1);
673 Vmath::Vmul(nq, &tmp[0], 1, &tmp[0], 1, &tmp[0], 1);
674 Vmath::Vadd(nq, tmp, 1, Projection, 1, Projection, 1);
675 }
676
677 std::cout
678 << "Velocity vector is projected onto the tangent plane: Diff = "
679 << RootMeanSquare(Projection) << std::endl;
680
681 for (int k = 0; k < m_spacedim; ++k)
682 {
683 Vmath::Vcopy(nq, &newvelocity[k][0], 1, &m_velocity[k][0], 1);
684 }
685 }
686}
SOLVER_UTILS_EXPORT void VectorCrossProd(const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &v3)
Definition: MMFSystem.cpp:682
SOLVER_UTILS_EXPORT void GramSchumitz(const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &outarray, bool KeepTheMagnitude=true)
Definition: MMFSystem.cpp:2388
SOLVER_UTILS_EXPORT void CartesianToSpherical(const NekDouble x0j, const NekDouble x1j, const NekDouble x2j, NekDouble &sin_varphi, NekDouble &cos_varphi, NekDouble &sin_theta, NekDouble &cos_theta)
Definition: MMFSystem.cpp:778
SOLVER_UTILS_EXPORT NekDouble RootMeanSquare(const Array< OneD, const NekDouble > &inarray)
Definition: MMFSystem.cpp:2327
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414

References Nektar::SolverUtils::MMFSystem::CartesianToSpherical(), Nektar::SolverUtils::MMFSystem::GramSchumitz(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_movingframes, m_RotAngle, Nektar::SolverUtils::EquationSystem::m_spacedim, m_velocity, m_VelProjection, m_waveFreq, Nektar::SolverUtils::MMFSystem::RootMeanSquare(), Vmath::Vadd(), Vmath::Vcopy(), Nektar::SolverUtils::MMFSystem::VectorCrossProd(), Vmath::Vmul(), and Vmath::Vsub().

Referenced by v_InitObject().

◆ GetFluxVector()

void Nektar::MMFAdvection::GetFluxVector ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Evaluate the flux at each solution point.

Return the flux vector for the linear advection equation.

Parameters
iComponent of the flux vector to calculate.
physfieldFields.
fluxResulting flux.

Definition at line 516 of file MMFAdvection.cpp.

519{
520 ASSERTL1(flux[0].size() == m_velocity.size(),
521 "Dimension of flux array and velocity array do not match");
522
523 int i, j;
524 int nq = physfield[0].size();
525
526 for (i = 0; i < flux.size(); ++i)
527 {
528 for (j = 0; j < flux[0].size(); ++j)
529 {
530 Vmath::Vmul(nq, physfield[i], 1, m_velocity[j], 1, flux[i][j], 1);
531 }
532 }
533}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249

References ASSERTL1, m_velocity, and Vmath::Vmul().

Referenced by v_InitObject().

◆ GetFluxVectorDeAlias()

void Nektar::MMFAdvection::GetFluxVectorDeAlias ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Evaluate the flux at each solution point using dealiasing.

◆ GetNormalVelocity()

Array< OneD, NekDouble > & Nektar::MMFAdvection::GetNormalVelocity ( )
protected

Get the normal velocity.

Get the normal velocity for the linear advection equation.

Definition at line 363 of file MMFAdvection.cpp.

364{
365 // Number of trace (interface) points
366 int i;
367 int nTracePts = GetTraceNpoints();
368
369 // Auxiliary variable to compute the normal velocity
370 Array<OneD, NekDouble> tmp(nTracePts);
371
372 // Reset the normal velocity
373 Vmath::Zero(nTracePts, m_traceVn, 1);
374
375 for (i = 0; i < m_velocity.size(); ++i)
376 {
377 m_fields[0]->ExtractTracePhys(m_velocity[i], tmp);
378
379 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, tmp, 1, m_traceVn, 1,
380 m_traceVn, 1);
381 }
382
383 return m_traceVn;
384}
Array< OneD, NekDouble > m_traceVn
Definition: MMFAdvection.h:96
SOLVER_UTILS_EXPORT int GetTraceNpoints()
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.

References Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_traceNormals, m_traceVn, m_velocity, Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_InitObject().

◆ Test2Dproblem()

void Nektar::MMFAdvection::Test2Dproblem ( const NekDouble  time,
Array< OneD, NekDouble > &  outfield 
)
protected

Definition at line 1000 of file MMFAdvection.cpp.

1002{
1003 int nq = m_fields[0]->GetNpoints();
1004
1005 Array<OneD, NekDouble> x0(nq);
1006 Array<OneD, NekDouble> x1(nq);
1007 Array<OneD, NekDouble> x2(nq);
1008
1009 m_fields[0]->GetCoords(x0, x1, x2);
1010
1011 Array<OneD, NekDouble> u(nq);
1012
1013 for (int i = 0; i < nq; ++i)
1014 {
1015 u[i] = cos(m_pi * (x0[i] - m_advx * time)) *
1016 cos(m_pi * (x1[i] - m_advy * time));
1017 }
1018
1019 outfield = u;
1020}

References m_advx, m_advy, Nektar::SolverUtils::EquationSystem::m_fields, and Nektar::SolverUtils::MMFSystem::m_pi.

Referenced by v_EvaluateExactSolution(), and v_SetInitialConditions().

◆ Test3Dproblem()

void Nektar::MMFAdvection::Test3Dproblem ( const NekDouble  time,
Array< OneD, NekDouble > &  outfield 
)
protected

Definition at line 1022 of file MMFAdvection.cpp.

1024{
1025 int nq = m_fields[0]->GetNpoints();
1026
1027 Array<OneD, NekDouble> x0(nq);
1028 Array<OneD, NekDouble> x1(nq);
1029 Array<OneD, NekDouble> x2(nq);
1030
1031 m_fields[0]->GetCoords(x0, x1, x2);
1032
1033 Array<OneD, NekDouble> u(nq);
1034
1035 for (int i = 0; i < nq; ++i)
1036 {
1037 u[i] = cos(m_pi * (x0[i] - m_advx * time)) *
1038 cos(m_pi * (x1[i] - m_advy * time)) *
1039 cos(m_pi * (x2[i] - m_advz * time));
1040 }
1041
1042 outfield = u;
1043}

References m_advx, m_advy, m_advz, Nektar::SolverUtils::EquationSystem::m_fields, and Nektar::SolverUtils::MMFSystem::m_pi.

Referenced by v_EvaluateExactSolution(), and v_SetInitialConditions().

◆ v_DoSolve()

void Nektar::MMFAdvection::v_DoSolve ( void  )
overrideprotectedvirtual

Solves an unsteady problem.

Initialises the time integration scheme (as specified in the session file), and perform the time integration.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 205 of file MMFAdvection.cpp.

206{
207 ASSERTL0(m_intScheme != 0, "No time integration scheme.");
208
209 int i, nchk = 1;
210 int nvariables = 0;
211 int nfields = m_fields.size();
212 int nq = m_fields[0]->GetNpoints();
213
214 if (m_intVariables.empty())
215 {
216 for (i = 0; i < nfields; ++i)
217 {
218 m_intVariables.push_back(i);
219 }
220 nvariables = nfields;
221 }
222 else
223 {
224 nvariables = m_intVariables.size();
225 }
226
227 // Set up wrapper to fields data storage.
228 Array<OneD, Array<OneD, NekDouble>> fields(nvariables);
229 Array<OneD, Array<OneD, NekDouble>> tmp(nvariables);
230
231 // Order storage to list time-integrated fields first.
232 for (i = 0; i < nvariables; ++i)
233 {
234 fields[i] = m_fields[m_intVariables[i]]->GetPhys();
235 m_fields[m_intVariables[i]]->SetPhysState(false);
236 }
237
238 // Initialise time integration scheme
239 m_intScheme->InitializeScheme(m_timestep, fields, m_time, m_ode);
240
241 // Check uniqueness of checkpoint output
242 ASSERTL0((m_checktime == 0.0 && m_checksteps == 0) ||
243 (m_checktime > 0.0 && m_checksteps == 0) ||
244 (m_checktime == 0.0 && m_checksteps > 0),
245 "Only one of IO_CheckTime and IO_CheckSteps "
246 "should be set!");
247
248 LibUtilities::Timer timer;
249 bool doCheckTime = false;
250 int step = 0;
251 NekDouble intTime = 0.0;
252 NekDouble cpuTime = 0.0;
253 NekDouble elapsed = 0.0;
254
255 int Ntot, indx;
256 // Perform integration in time.
257 Ntot = m_checksteps ? m_steps / m_checksteps + 1 : 0;
258
259 Array<OneD, NekDouble> dMass(Ntot ? Ntot : 1);
260
261 Array<OneD, NekDouble> zeta(nq);
262 Array<OneD, Array<OneD, NekDouble>> fieldsprimitive(nvariables);
263 for (int i = 0; i < nvariables; ++i)
264 {
265 fieldsprimitive[i] = Array<OneD, NekDouble>(nq);
266 }
267
269 {
270 timer.Start();
271 fields = m_intScheme->TimeIntegrate(step, m_timestep);
272 timer.Stop();
273
275 elapsed = timer.TimePerTest(1);
276 intTime += elapsed;
277 cpuTime += elapsed;
278
279 // Write out status information
280 if (m_infosteps && !((step + 1) % m_infosteps) &&
281 m_session->GetComm()->GetRank() == 0)
282 {
283 std::cout << "Steps: " << std::setw(8) << std::left << step + 1
284 << " "
285 << "Time: " << std::setw(12) << std::left << m_time;
286
287 std::stringstream ss;
288 ss << cpuTime << "s";
289 std::cout << " CPU Time: " << std::setw(8) << std::left << ss.str()
290 << std::endl;
291
292 // Masss = h^*
293 indx = m_checksteps ? (step + 1) / m_checksteps : 0;
294 dMass[indx] =
295 (m_fields[0]->Integral(fields[0]) - m_Mass0) / m_Mass0;
296
297 std::cout << "dMass = " << std::setw(8) << std::left << dMass[indx]
298 << std::endl;
299
300 cpuTime = 0.0;
301 }
302
303 // Transform data into coefficient space
304 for (i = 0; i < nvariables; ++i)
305 {
306 m_fields[m_intVariables[i]]->SetPhys(fields[i]);
307 m_fields[m_intVariables[i]]->FwdTransLocalElmt(
308 fields[i], m_fields[m_intVariables[i]]->UpdateCoeffs());
309 m_fields[m_intVariables[i]]->SetPhysState(false);
310 }
311
312 // Write out checkpoint files
313 if ((m_checksteps && step && !((step + 1) % m_checksteps)) ||
314 doCheckTime)
315 {
316 Checkpoint_Output(nchk++);
317 doCheckTime = false;
318 }
319
320 // Step advance
321 ++step;
322 }
323
324 std::cout << "dMass = ";
325 for (i = 0; i < Ntot; ++i)
326 {
327 std::cout << dMass[i] << " , ";
328 }
329 std::cout << std::endl << std::endl;
330
331 // Print out summary statistics
332 if (m_session->GetComm()->GetRank() == 0)
333 {
334 if (m_cflSafetyFactor > 0.0)
335 {
336 std::cout << "CFL safety factor : " << m_cflSafetyFactor
337 << std::endl
338 << "CFL time-step : " << m_timestep << std::endl;
339 }
340
341 if (m_session->GetSolverInfo("Driver") != "SteadyState")
342 {
343 std::cout << "Time-integration : " << intTime << "s" << std::endl;
344 }
345 }
346
347 for (i = 0; i < nvariables; ++i)
348 {
349 m_fields[m_intVariables[i]]->SetPhys(fields[i]);
350 m_fields[m_intVariables[i]]->SetPhysState(true);
351 }
352
353 for (i = 0; i < nvariables; ++i)
354 {
355 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
356 m_fields[i]->UpdateCoeffs());
357 }
358}
NekDouble m_timestep
Time step size.
int m_infosteps
Number of time steps between outputting status information.
NekDouble m_time
Current time of simulation.
NekDouble m_fintime
Finish time of the simulation.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
NekDouble m_checktime
Time between checkpoints.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
int m_steps
Number of steps to take.
int m_checksteps
Number of steps between checkpoints.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
static const NekDouble kNekZeroTol

References ASSERTL0, Nektar::SolverUtils::EquationSystem::Checkpoint_Output(), Nektar::NekConstants::kNekZeroTol, Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_checksteps, Nektar::SolverUtils::EquationSystem::m_checktime, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_fintime, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::SolverUtils::UnsteadySystem::m_intVariables, m_Mass0, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), and Nektar::LibUtilities::Timer::TimePerTest().

◆ v_EvaluateExactSolution()

void Nektar::MMFAdvection::v_EvaluateExactSolution ( unsigned int  field,
Array< OneD, NekDouble > &  outfield,
const NekDouble  time 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 1125 of file MMFAdvection.cpp.

1128{
1129 boost::ignore_unused(field);
1130
1131 switch (m_TestType)
1132 {
1133 case eAdvectionBell:
1134 {
1135 AdvectionBellSphere(outfield);
1136 }
1137 break;
1138
1139 case eTestPlane:
1140 {
1141 Test2Dproblem(time, outfield);
1142 }
1143 break;
1144
1146 {
1147 AdvectionBellPlane(outfield);
1148 }
1149 break;
1150
1151 case eTestCube:
1152 {
1153 Test3Dproblem(time, outfield);
1154 }
1155 break;
1156
1157 default:
1158 break;
1159 }
1160}
@ eTestPlaneMassConsv
Definition: MMFAdvection.h:46
@ eAdvectionBell
Definition: MMFAdvection.h:48
void Test2Dproblem(const NekDouble time, Array< OneD, NekDouble > &outfield)
void Test3Dproblem(const NekDouble time, Array< OneD, NekDouble > &outfield)
void AdvectionBellSphere(Array< OneD, NekDouble > &outfield)
void AdvectionBellPlane(Array< OneD, NekDouble > &outfield)
@ eTestPlane
Definition: MMFDiffusion.h:48
@ eTestCube
Definition: MMFDiffusion.h:49

References AdvectionBellPlane(), AdvectionBellSphere(), eAdvectionBell, Nektar::eTestCube, Nektar::eTestPlane, eTestPlaneMassConsv, m_TestType, Test2Dproblem(), and Test3Dproblem().

◆ v_GenerateSummary()

void Nektar::MMFAdvection::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print Summary.

Reimplemented from Nektar::SolverUtils::MMFSystem.

Definition at line 1162 of file MMFAdvection.cpp.

1163{
1166 SolverUtils::AddSummaryItem(s, "Rotation Angle", m_RotAngle);
1167}
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
Definition: MMFSystem.cpp:2452
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:49
const char *const TestTypeMap[]
Definition: MMFDiffusion.h:58

References Nektar::SolverUtils::AddSummaryItem(), m_RotAngle, m_TestType, Nektar::TestTypeMap, and Nektar::SolverUtils::MMFSystem::v_GenerateSummary().

◆ v_InitObject()

void Nektar::MMFAdvection::v_InitObject ( bool  DeclareFields = true)
overrideprotectedvirtual

Initialise the object.

Initialisation object for the unsteady linear advection equation.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 62 of file MMFAdvection.cpp.

63{
64 // Call to the initialisation object
65 UnsteadySystem::v_InitObject(DeclareFields);
66
67 int nq = m_fields[0]->GetNpoints();
68 int shapedim = m_fields[0]->GetShapeDimension();
69 Array<OneD, Array<OneD, NekDouble>> Anisotropy(shapedim);
70 for (int j = 0; j < shapedim; ++j)
71 {
72 Anisotropy[j] = Array<OneD, NekDouble>(nq, 1.0);
73 }
74
75 MMFSystem::MMFInitObject(Anisotropy);
76
77 // Define TestType
78 ASSERTL0(m_session->DefinesSolverInfo("TESTTYPE"),
79 "No TESTTYPE defined in session.");
80 std::string TestTypeStr = m_session->GetSolverInfo("TESTTYPE");
81 for (int i = 0; i < (int)SIZE_TestType; ++i)
82 {
83 if (boost::iequals(TestTypeMap[i], TestTypeStr))
84 {
86 break;
87 }
88 }
89
90 m_session->LoadParameter("Angular Frequency", m_waveFreq, m_pi);
91 m_session->LoadParameter("Rotational Angle", m_RotAngle, 0.0);
92 m_session->LoadParameter("Velocity Projection", m_VelProjection, 0);
93
94 // Read the advection velocities from session file
95 m_session->LoadParameter("advx", m_advx, 1.0);
96 m_session->LoadParameter("advy", m_advy, 1.0);
97 m_session->LoadParameter("advz", m_advz, 1.0);
98
99 std::vector<std::string> vel;
100 vel.push_back("Vx");
101 vel.push_back("Vy");
102 vel.push_back("Vz");
103
104 // Resize the advection velocities vector to dimension of the problem
105 vel.resize(m_spacedim);
106
107 // Store in the global variable m_velocity the advection velocities
108 m_velocity = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
109 for (int k = 0; k < m_spacedim; ++k)
110 {
111 m_velocity[k] = Array<OneD, NekDouble>(nq);
112 }
113
114 switch (m_surfaceType)
115 {
120 {
121 // true = project velocity onto the tangent plane
123 }
124 break;
125
128 {
129 GetFunction("AdvectionVelocity")->Evaluate(vel, m_velocity);
130 }
131 break;
132
133 default:
134 break;
135 }
136
137 std::cout << "|Velocity vector| = ( " << RootMeanSquare(m_velocity[0])
138 << " , " << RootMeanSquare(m_velocity[1]) << " , "
139 << RootMeanSquare(m_velocity[2]) << " ) " << std::endl;
140
141 // Define the normal velocity fields
142 if (m_fields[0]->GetTrace())
143 {
144 m_traceVn = Array<OneD, NekDouble>(GetTraceNpoints());
145 }
146
147 std::string advName;
148 std::string riemName;
149 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
152 m_advObject->SetFluxVector(&MMFAdvection::GetFluxVector, this);
153 m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
155 riemName, m_session);
156 m_riemannSolver->SetScalar("Vn", &MMFAdvection::GetNormalVelocity, this);
157
158 m_advObject->SetRiemannSolver(m_riemannSolver);
159 m_advObject->InitObject(m_session, m_fields);
160
161 // Compute m_traceVn = n \cdot v
163
164 // Compute m_vellc = nabal a^j \cdot m_vel
166 std::cout << "m_vellc is generated with mag = " << AvgInt(m_vellc)
167 << std::endl;
168
169 // Compute vel \cdot MF
171
172 // Modify e^i as v^i e^i
173 for (int j = 0; j < m_shapedim; j++)
174 {
175 for (int k = 0; k < m_spacedim; k++)
176 {
177 Vmath::Vmul(nq, &m_veldotMF[j][0], 1, &m_movingframes[j][k * nq], 1,
178 &m_movingframes[j][k * nq], 1);
179 }
180 }
181
182 // Reflect it into m_ncdotMFFwd and Bwd
184
185 // If explicit it computes RHS and PROJECTION for the time integration
187 {
190 }
191 // Otherwise it gives an error (no implicit integration)
192 else
193 {
194 ASSERTL0(false, "Implicit unsteady Advection not set up.");
195 }
196}
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Evaluate the flux at each solution point.
Array< OneD, Array< OneD, NekDouble > > m_veldotMF
Definition: MMFAdvection.h:98
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the RHS.
void ComputeNablaCdotVelocity(Array< OneD, NekDouble > &vellc)
void ComputeveldotMF(Array< OneD, Array< OneD, NekDouble > > &veldotMF)
void EvaluateAdvectionVelocity(Array< OneD, Array< OneD, NekDouble > > &velocity)
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
Definition: MMFAdvection.h:86
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity.
Array< OneD, NekDouble > m_vellc
Definition: MMFAdvection.h:99
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
SOLVER_UTILS_EXPORT NekDouble AvgInt(const Array< OneD, const NekDouble > &inarray)
Definition: MMFSystem.cpp:2281
SOLVER_UTILS_EXPORT void ComputencdotMF()
Definition: MMFSystem.cpp:303
SOLVER_UTILS_EXPORT void MMFInitObject(const Array< OneD, const Array< OneD, NekDouble > > &Anisotropy, const int TangentXelem=-1)
Definition: MMFSystem.cpp:53
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
RiemannSolverFactory & GetRiemannSolverFactory()
@ SIZE_TestType
Length of enum list.
Definition: MMFDiffusion.h:55

References ASSERTL0, Nektar::SolverUtils::MMFSystem::AvgInt(), ComputeNablaCdotVelocity(), Nektar::SolverUtils::MMFSystem::ComputencdotMF(), ComputeveldotMF(), Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::SolverUtils::eCube, Nektar::SolverUtils::eIrregular, Nektar::SolverUtils::eNonconvex, Nektar::SolverUtils::ePlane, Nektar::SolverUtils::eSphere, Nektar::SolverUtils::eTRSphere, EvaluateAdvectionVelocity(), Nektar::SolverUtils::GetAdvectionFactory(), GetFluxVector(), Nektar::SolverUtils::EquationSystem::GetFunction(), GetNormalVelocity(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), Nektar::SolverUtils::AdvectionSystem::m_advObject, m_advx, m_advy, m_advz, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_movingframes, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::MMFSystem::m_pi, m_riemannSolver, m_RotAngle, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::MMFSystem::m_shapedim, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::MMFSystem::m_surfaceType, m_TestType, m_traceVn, m_veldotMF, m_vellc, m_velocity, m_VelProjection, m_waveFreq, Nektar::SolverUtils::MMFSystem::MMFInitObject(), Nektar::SolverUtils::MMFSystem::RootMeanSquare(), Nektar::SIZE_TestType, Nektar::TestTypeMap, Nektar::SolverUtils::UnsteadySystem::v_InitObject(), and Vmath::Vmul().

◆ v_SetInitialConditions()

void Nektar::MMFAdvection::v_SetInitialConditions ( const NekDouble  initialtime,
bool  dumpInitialConditions,
const int  domain 
)
overrideprotectedvirtual

Set the physical fields based on a restart file, or a function describing the initial condition given in the session.

Parameters
initialtimeTime at which to evaluate the function.
dumpInitialConditionsWrite the initial condition to file?

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 822 of file MMFAdvection.cpp.

825{
826 boost::ignore_unused(domain);
827
828 int nq = m_fields[0]->GetNpoints();
829
830 Array<OneD, NekDouble> u(nq);
831
832 switch (m_TestType)
833 {
834 case eAdvectionBell:
835 {
837 m_fields[0]->SetPhys(u);
838
839 m_Mass0 = m_fields[0]->Integral(u);
840
841 // forward transform to fill the modal coeffs
842 for (int i = 0; i < m_fields.size(); ++i)
843 {
844 m_fields[i]->SetPhysState(true);
845 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
846 m_fields[i]->UpdateCoeffs());
847 }
848 }
849 break;
850
851 case eTestPlane:
852 {
853 Test2Dproblem(initialtime, u);
854 m_fields[0]->SetPhys(u);
855
856 m_Mass0 = m_fields[0]->Integral(u);
857
858 // forward transform to fill the modal coeffs
859 for (int i = 0; i < m_fields.size(); ++i)
860 {
861 m_fields[i]->SetPhysState(true);
862 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
863 m_fields[i]->UpdateCoeffs());
864 }
865 }
866 break;
867
869 {
871 m_fields[0]->SetPhys(u);
872
873 m_Mass0 = m_fields[0]->Integral(u);
874 std::cout << "m_Mass0 = " << m_Mass0 << std::endl;
875
876 // forward transform to fill the modal coeffs
877 for (int i = 0; i < m_fields.size(); ++i)
878 {
879 m_fields[i]->SetPhysState(true);
880 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
881 m_fields[i]->UpdateCoeffs());
882 }
883 }
884 break;
885
886 case eTestCube:
887 {
888 Test3Dproblem(initialtime, u);
889 m_fields[0]->SetPhys(u);
890
891 // forward transform to fill the modal coeffs
892 for (int i = 0; i < m_fields.size(); ++i)
893 {
894 m_fields[i]->SetPhysState(true);
895 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
896 m_fields[i]->UpdateCoeffs());
897 }
898 }
899 break;
900
901 default:
902 break;
903 }
904
905 if (dumpInitialConditions)
906 {
907 // dump initial conditions to file
908 std::string outname = m_sessionName + "_initial.chk";
909 WriteFld(outname);
910 }
911}
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
std::string m_sessionName
Name of the session.

References AdvectionBellPlane(), AdvectionBellSphere(), eAdvectionBell, Nektar::eTestCube, Nektar::eTestPlane, eTestPlaneMassConsv, Nektar::SolverUtils::EquationSystem::m_fields, m_Mass0, Nektar::SolverUtils::EquationSystem::m_sessionName, m_TestType, Test2Dproblem(), Test3Dproblem(), and Nektar::SolverUtils::EquationSystem::WriteFld().

◆ WeakDGDirectionalAdvection()

void Nektar::MMFAdvection::WeakDGDirectionalAdvection ( const Array< OneD, Array< OneD, NekDouble > > &  InField,
Array< OneD, Array< OneD, NekDouble > > &  OutField 
)
protected

Definition at line 535 of file MMFAdvection.cpp.

538{
539 int i, j;
540 int ncoeffs = GetNcoeffs();
541 int nTracePointsTot = GetTraceNpoints();
542 int nvariables = m_fields.size();
543
544 Array<OneD, Array<OneD, NekDouble>> physfield(nvariables);
545
546 // Get the variables in physical space
547 // already in physical space
548 for (i = 0; i < nvariables; ++i)
549 {
550 physfield[i] = InField[i];
551 }
552
553 Array<OneD, Array<OneD, NekDouble>> WeakDeriv(m_shapedim);
554 for (i = 0; i < nvariables; ++i)
555 {
556 for (j = 0; j < m_shapedim; ++j)
557 {
558 WeakDeriv[j] = Array<OneD, NekDouble>(ncoeffs, 0.0);
559
560 // Directional derivation with respect to the j'th moving frame
561 // tmp[j] = \nabla \physfield[i] \cdot \mathbf{e}^j
562 // Implemented at TriExp::v_IProductWRTDirectionalDerivBase_SumFa
563 m_fields[0]->IProductWRTDirectionalDerivBase(
564 m_movingframes[j], physfield[i], WeakDeriv[j]);
565 }
566
567 // Get the numerical flux and add to the modal coeffs
568 // if the NumericalFluxs function already includes the
569 // normal in the output
570
571 Array<OneD, NekDouble> Fwd(nTracePointsTot);
572 Array<OneD, NekDouble> Bwd(nTracePointsTot);
573
574 Array<OneD, NekDouble> flux(nTracePointsTot, 0.0);
575 Array<OneD, NekDouble> fluxFwd(nTracePointsTot);
576 Array<OneD, NekDouble> fluxBwd(nTracePointsTot);
577
578 // Evaluate numerical flux in physical space which may in
579 // general couple all component of vectors
580 m_fields[i]->GetFwdBwdTracePhys(physfield[i], Fwd, Bwd);
581
582 // evaulate upwinded m_fields[i]
583 m_fields[i]->GetTrace()->Upwind(m_traceVn, Fwd, Bwd, flux);
584
585 OutField[i] = Array<OneD, NekDouble>(ncoeffs, 0.0);
586 for (j = 0; j < m_shapedim; ++j)
587 {
588 // calculate numflux = (n \cdot MF)*flux
589 Vmath::Vmul(nTracePointsTot, &flux[0], 1, &m_ncdotMFFwd[j][0], 1,
590 &fluxFwd[0], 1);
591 Vmath::Vmul(nTracePointsTot, &flux[0], 1, &m_ncdotMFBwd[j][0], 1,
592 &fluxBwd[0], 1);
593 Vmath::Neg(ncoeffs, WeakDeriv[j], 1);
594
595 // FwdBwdtegral because generallize (N \cdot MF)_{FWD} \neq -(N
596 // \cdot MF)_{BWD}
597 m_fields[i]->AddFwdBwdTraceIntegral(fluxFwd, fluxBwd, WeakDeriv[j]);
598 m_fields[i]->SetPhysState(false);
599
600 Vmath::Vadd(ncoeffs, &WeakDeriv[j][0], 1, &OutField[i][0], 1,
601 &OutField[i][0], 1);
602 }
603 }
604}
Array< OneD, Array< OneD, NekDouble > > m_ncdotMFBwd
Definition: MMFSystem.h:189
Array< OneD, Array< OneD, NekDouble > > m_ncdotMFFwd
Definition: MMFSystem.h:188

References Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::MMFSystem::m_movingframes, Nektar::SolverUtils::MMFSystem::m_ncdotMFBwd, Nektar::SolverUtils::MMFSystem::m_ncdotMFFwd, Nektar::SolverUtils::MMFSystem::m_shapedim, m_traceVn, Vmath::Neg(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by DoOdeRhs().

Friends And Related Function Documentation

◆ MemoryManager< MMFAdvection >

friend class MemoryManager< MMFAdvection >
friend

Definition at line 52 of file MMFAdvection.h.

Member Data Documentation

◆ className

std::string Nektar::MMFAdvection::className
static
Initial value:
=
"MMFAdvection", MMFAdvection::create, "MMFAdvection equation.")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
Definition: MMFAdvection.h:68
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 78 of file MMFAdvection.h.

◆ m_advx

NekDouble Nektar::MMFAdvection::m_advx
protected

Definition at line 88 of file MMFAdvection.h.

Referenced by Test2Dproblem(), Test3Dproblem(), and v_InitObject().

◆ m_advy

NekDouble Nektar::MMFAdvection::m_advy
protected

Definition at line 88 of file MMFAdvection.h.

Referenced by Test2Dproblem(), Test3Dproblem(), and v_InitObject().

◆ m_advz

NekDouble Nektar::MMFAdvection::m_advz
protected

Definition at line 88 of file MMFAdvection.h.

Referenced by Test3Dproblem(), and v_InitObject().

◆ m_Mass0

NekDouble Nektar::MMFAdvection::m_Mass0
protected

Definition at line 91 of file MMFAdvection.h.

Referenced by v_DoSolve(), and v_SetInitialConditions().

◆ m_planeNumber

int Nektar::MMFAdvection::m_planeNumber
protected

Definition at line 103 of file MMFAdvection.h.

Referenced by MMFAdvection().

◆ m_riemannSolver

SolverUtils::RiemannSolverSharedPtr Nektar::MMFAdvection::m_riemannSolver
protected

Definition at line 86 of file MMFAdvection.h.

Referenced by v_InitObject().

◆ m_RotAngle

NekDouble Nektar::MMFAdvection::m_RotAngle
protected

Definition at line 89 of file MMFAdvection.h.

Referenced by EvaluateAdvectionVelocity(), v_GenerateSummary(), and v_InitObject().

◆ m_TestType

TestType Nektar::MMFAdvection::m_TestType

◆ m_traceVn

Array<OneD, NekDouble> Nektar::MMFAdvection::m_traceVn
protected

Definition at line 96 of file MMFAdvection.h.

Referenced by GetNormalVelocity(), v_InitObject(), and WeakDGDirectionalAdvection().

◆ m_veldotMF

Array<OneD, Array<OneD, NekDouble> > Nektar::MMFAdvection::m_veldotMF
protected

Definition at line 98 of file MMFAdvection.h.

Referenced by v_InitObject().

◆ m_vellc

Array<OneD, NekDouble> Nektar::MMFAdvection::m_vellc
protected

Definition at line 99 of file MMFAdvection.h.

Referenced by v_InitObject().

◆ m_velocity

Array<OneD, Array<OneD, NekDouble> > Nektar::MMFAdvection::m_velocity
protected

◆ m_VelProjection

int Nektar::MMFAdvection::m_VelProjection
protected

Definition at line 92 of file MMFAdvection.h.

Referenced by EvaluateAdvectionVelocity(), and v_InitObject().

◆ m_waveFreq

NekDouble Nektar::MMFAdvection::m_waveFreq
protected

Definition at line 89 of file MMFAdvection.h.

Referenced by EvaluateAdvectionVelocity(), and v_InitObject().