Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
Nektar::VelocityCorrectionScheme Class Reference

#include <VelocityCorrectionScheme.h>

Inheritance diagram for Nektar::VelocityCorrectionScheme:
[legend]

Public Member Functions

 VelocityCorrectionScheme (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
virtual ~VelocityCorrectionScheme ()
 
virtual void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
void SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
void SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
void SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
void SolveViscous (const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
 
void SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
 
void EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
- Public Member Functions inherited from Nektar::IncNavierStokes
virtual ~IncNavierStokes ()
 
virtual void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
int GetNConvectiveFields (void)
 
void AddForcing (const SolverUtils::ForcingSharedPtr &pForce)
 
virtual void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
virtual void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
virtual bool v_HasConstantDensity () override
 
virtual void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
virtual void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels) override
 
virtual void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels) override
 
virtual void v_SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta) override
 
virtual void v_GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta) override
 
virtual void v_SetMovingFrameProjectionMat (const bnu::matrix< NekDouble > &vProjMat) override
 
virtual void v_GetMovingFrameProjectionMat (bnu::matrix< NekDouble > &vProjMat) override
 
bool DefinedForcing (const std::string &sForce)
 
void GetPivotPoint (Array< OneD, NekDouble > &vPivotPoint)
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
SOLVER_UTILS_EXPORT bool ParallelInTime ()
 Check if solver use Parallel-in-Time. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
SOLVER_UTILS_EXPORT void GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

void SetupFlowrate (NekDouble aii_dt)
 Set up the Stokes solution used to impose constant flowrate through a boundary. More...
 
NekDouble MeasureFlowrate (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 Measure the volumetric flow rate through the volumetric flow rate reference surface. More...
 
virtual bool v_PostIntegrate (int step) override
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
virtual void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
virtual void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
virtual Array< OneD, bool > v_GetSystemSingularChecks () override
 
virtual int v_GetForceDimension () override
 
virtual void v_SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
virtual void v_SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
virtual void v_SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
virtual void v_SolveViscous (const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
 
virtual void v_SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
 
virtual void v_EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
virtual bool v_RequireFwdTrans () override
 
virtual std::string v_GetExtrapolateStr (void)
 
virtual std::string v_GetSubSteppingExtrapolateStr (const std::string &instr)
 
void SetUpSVV (void)
 
void SetUpExtrapolation (void)
 
void SVVVarDiffCoeff (const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble > > &vel=NullNekDoubleArrayOfArray)
 
void AppendSVVFactors (StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
 
void ComputeGJPNormalVelocity (const Array< OneD, const Array< OneD, NekDouble > > &inarray, StdRegions::VarCoeffMap &varcoeffs)
 
- Protected Member Functions inherited from Nektar::IncNavierStokes
 IncNavierStokes (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
EquationType GetEquationType (void)
 
void EvaluateAdvectionTerms (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void WriteModalEnergy (void)
 
void SetBoundaryConditions (NekDouble time)
 time dependent boundary conditions updating More...
 
void SetRadiationBoundaryForcing (int fieldid)
 Set Radiation forcing term. More...
 
void SetZeroNormalVelocity ()
 Set Normal Velocity Component to Zero. More...
 
void SetWomersleyBoundary (const int fldid, const int bndid)
 Set Womersley Profile if specified. More...
 
void SetUpWomersley (const int fldid, const int bndid, std::string womstr)
 Set Up Womersley details. More...
 
void SetMovingReferenceFrameBCs (const NekDouble &time)
 Set the moving reference frame boundary conditions. More...
 
void SetMRFWallBCs (const NekDouble &time)
 
void SetMRFDomainVelBCs (const NekDouble &time)
 
virtual MultiRegions::ExpListSharedPtr v_GetPressure () override
 
virtual void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
virtual void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
virtual int v_GetForceDimension ()=0
 
virtual Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 
virtual bool v_PreIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Protected Attributes

bool m_useHomo1DSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useGJPStabilisation
 bool to identify if GJP semi-implicit is active. More...
 
bool m_useGJPNormalVel
 bool to identify if GJP normal Velocity should be applied in explicit approach More...
 
NekDouble m_GJPJumpScale
 
NekDouble m_sVVCutoffRatio
 cutt off ratio from which to start decayhing modes More...
 
NekDouble m_sVVDiffCoeff
 Diffusion coefficient of SVV modes. More...
 
NekDouble m_sVVCutoffRatioHomo1D
 
NekDouble m_sVVDiffCoeffHomo1D
 Diffusion coefficient of SVV modes in homogeneous 1D Direction. More...
 
Array< OneD, NekDoublem_svvVarDiffCoeff
 Array of coefficient if power kernel is used in SVV. More...
 
bool m_IsSVVPowerKernel
 Identifier for Power Kernel otherwise DG kernel. More...
 
Array< OneD, NekDoublem_diffCoeff
 Diffusion coefficients (will be kinvis for velocities) More...
 
StdRegions::VarCoeffMap m_varCoeffLap
 Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise. More...
 
NekDouble m_flowrate
 Desired volumetric flowrate. More...
 
NekDouble m_flowrateArea
 Area of the boundary through which we are measuring the flowrate. More...
 
bool m_homd1DFlowinPlane
 
NekDouble m_greenFlux
 Flux of the Stokes function solution. More...
 
NekDouble m_alpha
 Current flowrate correction. More...
 
int m_flowrateBndID
 Boundary ID of the flowrate reference surface. More...
 
int m_planeID
 Plane ID for cases with homogeneous expansion. More...
 
MultiRegions::ExpListSharedPtr m_flowrateBnd
 Flowrate reference surface. More...
 
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
 Stokes solution used to impose flowrate. More...
 
std::ofstream m_flowrateStream
 Output stream to record flowrate. More...
 
int m_flowrateSteps
 Interval at which to record flowrate data. More...
 
NekDouble m_flowrateAiidt
 Value of aii_dt used to compute Stokes flowrate solution. More...
 
Array< OneD, Array< OneD, NekDouble > > m_F
 
- Protected Attributes inherited from Nektar::IncNavierStokes
ExtrapolateSharedPtr m_extrapolation
 
std::ofstream m_mdlFile
 modal energy file More...
 
bool m_SmoothAdvection
 bool to identify if advection term smoothing is requested More...
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 Forcing terms. More...
 
int m_nConvectiveFields
 Number of fields to be convected;. More...
 
Array< OneD, int > m_velocity
 int which identifies which components of m_fields contains the velocity (u,v,w); More...
 
MultiRegions::ExpListSharedPtr m_pressure
 Pointer to field holding pressure field. More...
 
NekDouble m_kinvis
 Kinematic viscosity. More...
 
int m_energysteps
 dump energy to file at steps time More...
 
EquationType m_equationType
 equation type; More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToElmtID
 Mapping from BCs to Elmt IDs. More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToTraceID
 Mapping from BCs to Elmt Edge IDs. More...
 
Array< OneD, Array< OneD, NekDouble > > m_fieldsRadiationFactor
 RHS Factor for Radiation Condition. More...
 
int m_intSteps
 Number of time integration steps AND Order of extrapolation for pressure boundary conditions. More...
 
Array< OneD, NekDoublem_pivotPoint
 
std::map< int, std::map< int, WomersleyParamsSharedPtr > > m_womersleyParams
 Womersley parameters if required. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities. More...
 
Array< OneD, NekDoublem_movingFrameTheta
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Static Protected Attributes

static std::string solverTypeLookupId
 
- Static Protected Attributes inherited from Nektar::IncNavierStokes
static std::string eqTypeLookupIds []
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 42 of file VelocityCorrectionScheme.h.

Constructor & Destructor Documentation

◆ VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::VelocityCorrectionScheme ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)

Constructor.

Constructor. Creates ...

Parameters

param

Definition at line 66 of file VelocityCorrectionScheme.cpp.

69 : UnsteadySystem(pSession, pGraph), IncNavierStokes(pSession, pGraph),
71{
72}
IncNavierStokes(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Constructor.
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.
StdRegions::VarCoeffMap m_varCoeffLap
Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.
static VarCoeffMap NullVarCoeffMap
Definition: StdRegions.hpp:353

◆ ~VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::~VelocityCorrectionScheme ( void  )
virtual

Destructor

Definition at line 517 of file VelocityCorrectionScheme.cpp.

518{
519}

Member Function Documentation

◆ AppendSVVFactors()

void Nektar::VelocityCorrectionScheme::AppendSVVFactors ( StdRegions::ConstFactorMap factors,
MultiRegions::VarFactorsMap varFactorsMap 
)
protected

Definition at line 1134 of file VelocityCorrectionScheme.cpp.

1137{
1138
1139 if (m_useSpecVanVisc)
1140 {
1144 {
1146 {
1149 }
1150 else
1151 {
1154 }
1155 }
1156 }
1157}
NekDouble m_kinvis
Kinematic viscosity.
Array< OneD, NekDouble > m_svvVarDiffCoeff
Array of coefficient if power kernel is used in SVV.
bool m_IsSVVPowerKernel
Identifier for Power Kernel otherwise DG kernel.
NekDouble m_sVVCutoffRatio
cutt off ratio from which to start decayhing modes
NekDouble m_sVVDiffCoeff
Diffusion coefficient of SVV modes.
bool m_useSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
StdRegions::ConstFactorMap factors
static Array< OneD, NekDouble > NullNekDouble1DArray

References Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDGKerDiffCoeff, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorSVVPowerKerDiffCoeff, Nektar::VarcoeffHashingTest::factors, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, m_sVVCutoffRatio, m_sVVDiffCoeff, m_svvVarDiffCoeff, m_useSpecVanVisc, and Nektar::NullNekDouble1DArray.

Referenced by v_SolveViscous(), and Nektar::VCSImplicit::v_SolveViscous().

◆ ComputeGJPNormalVelocity()

void Nektar::VelocityCorrectionScheme::ComputeGJPNormalVelocity ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
StdRegions::VarCoeffMap varcoeffs 
)
protected

Definition at line 1165 of file VelocityCorrectionScheme.cpp.

1168{
1170 {
1172 std::dynamic_pointer_cast<MultiRegions::ContField>(m_fields[0]);
1173
1175 cfield->GetGJPForcing();
1176
1177 int nTracePts = GJPData->GetNumTracePts();
1178 Array<OneD, NekDouble> unorm(nTracePts, 1.0);
1179 Array<OneD, NekDouble> Fwd(nTracePts), Bwd(nTracePts);
1180 Array<OneD, Array<OneD, NekDouble>> traceNormals =
1181 GJPData->GetTraceNormals();
1182
1183 m_fields[0]->GetFwdBwdTracePhys(inarray[0], Fwd, Bwd, true, true);
1184 Vmath::Vmul(nTracePts, Fwd, 1, traceNormals[0], 1, unorm, 1);
1185
1186 // Evaluate u.n on trace
1187 for (int f = 1; f < m_fields[0]->GetCoordim(0); ++f)
1188 {
1189 m_fields[0]->GetFwdBwdTracePhys(inarray[f], Fwd, Bwd, true, true);
1190 Vmath::Vvtvp(nTracePts, Fwd, 1, traceNormals[f], 1, unorm, 1, unorm,
1191 1);
1192 }
1193 Vmath::Vabs(nTracePts, unorm, 1, unorm, 1);
1194 varcoeffs[StdRegions::eVarCoeffGJPNormVel] = unorm;
1195 }
1196}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
bool m_useGJPNormalVel
bool to identify if GJP normal Velocity should be applied in explicit approach
std::shared_ptr< GJPStabilisation > GJPStabilisationSharedPtr
std::shared_ptr< ContField > ContFieldSharedPtr
Definition: ContField.h:270
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:548
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569

References Nektar::StdRegions::eVarCoeffGJPNormVel, Nektar::SolverUtils::EquationSystem::m_fields, m_useGJPNormalVel, Vmath::Vabs(), Vmath::Vmul(), and Vmath::Vvtvp().

Referenced by v_SolveViscous(), and Nektar::VCSImplicit::v_SolveViscous().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::VelocityCorrectionScheme::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 46 of file VelocityCorrectionScheme.h.

49 {
52 pGraph);
53 p->InitObject();
54 return p;
55 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
inline

Definition at line 104 of file VelocityCorrectionScheme.h.

107 {
108 v_EvaluateAdvection_SetPressureBCs(inarray, outarray, time);
109 }
virtual void v_EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)

References v_EvaluateAdvection_SetPressureBCs().

Referenced by v_InitObject().

◆ MeasureFlowrate()

NekDouble Nektar::VelocityCorrectionScheme::MeasureFlowrate ( const Array< OneD, Array< OneD, NekDouble > > &  inarray)
protected

Measure the volumetric flow rate through the volumetric flow rate reference surface.

This routine computes the volumetric flow rate

\[ Q(\mathbf{u}) = \frac{1}{\mu(R)} \int_R \mathbf{u} \cdot d\mathbf{s} \]

through the boundary region \( R \).

Definition at line 443 of file VelocityCorrectionScheme.cpp.

445{
446 NekDouble flowrate = 0.0;
447
448 if (m_flowrateBnd && m_flowrateBndID >= 0)
449 {
450 // If we're an actual boundary, calculate the vector flux through
451 // the boundary.
452 Array<OneD, Array<OneD, NekDouble>> boundary(m_spacedim);
453
455 {
456 // General case
457 for (int i = 0; i < m_spacedim; ++i)
458 {
459 m_fields[i]->ExtractPhysToBnd(m_flowrateBndID, inarray[i],
460 boundary[i]);
461 }
462 flowrate = m_flowrateBnd->VectorFlux(boundary);
463 }
464 else if (m_planeID == 0)
465 {
466 // Homogeneous with forcing in plane. Calculate flux only on
467 // the meanmode - calculateFlux necessary for hybrid
468 // parallelisation.
469 for (int i = 0; i < m_spacedim; ++i)
470 {
471 m_fields[i]->GetPlane(m_planeID)->ExtractPhysToBnd(
472 m_flowrateBndID, inarray[i], boundary[i]);
473 }
474
475 // the flowrate is calculated on the mean mode so it needs to be
476 // multiplied by LZ to be consistent with the general case.
477 flowrate = m_flowrateBnd->VectorFlux(boundary) *
478 m_session->GetParameter("LZ");
479 }
480 }
482 {
483 // 3DH1D case with no Flowrate boundary defined: compute flux
484 // through the zero-th (mean) plane.
485 flowrate = m_flowrateBnd->Integral(inarray[2]);
486 }
487
488 // Communication to obtain the total flowrate
490 {
491 m_comm->GetColumnComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
492 }
493 else
494 {
495 m_comm->GetSpaceComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
496 }
497 return flowrate / m_flowrateArea;
498}
int m_spacedim
Spatial dimension (>= expansion dim).
LibUtilities::CommSharedPtr m_comm
Communicator.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
enum HomogeneousType m_HomogeneousType
MultiRegions::ExpListSharedPtr m_flowrateBnd
Flowrate reference surface.
NekDouble m_flowrateArea
Area of the boundary through which we are measuring the flowrate.
int m_planeID
Plane ID for cases with homogeneous expansion.
int m_flowrateBndID
Boundary ID of the flowrate reference surface.
double NekDouble

References Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_planeID, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, and Nektar::LibUtilities::ReduceSum.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ SetUpExtrapolation()

void Nektar::VelocityCorrectionScheme::SetUpExtrapolation ( void  )
protected

Definition at line 151 of file VelocityCorrectionScheme.cpp.

152{
153 // creation of the extrapolation object
156 {
157 std::string vExtrapolation = v_GetExtrapolateStr();
158 if (m_session->DefinesSolverInfo("Extrapolation"))
159 {
160 vExtrapolation = v_GetSubSteppingExtrapolateStr(
161 m_session->GetSolverInfo("Extrapolation"));
162 }
164 vExtrapolation, m_session, m_fields, m_pressure, m_velocity,
166
167 m_extrapolation->SetForcing(m_forcing);
168 m_extrapolation->SubSteppingTimeIntegration(m_intScheme);
169 m_extrapolation->GenerateHOPBCMap(m_session);
170 }
171}
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
ExtrapolateSharedPtr m_extrapolation
Array< OneD, int > m_velocity
int which identifies which components of m_fields contains the velocity (u,v,w);
EquationType m_equationType
equation type;
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
virtual std::string v_GetExtrapolateStr(void)
virtual std::string v_GetSubSteppingExtrapolateStr(const std::string &instr)
@ eUnsteadyStokes
@ eUnsteadyNavierStokes
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:48

References Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::eUnsteadyNavierStokes, Nektar::eUnsteadyStokes, Nektar::GetExtrapolateFactory(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::IncNavierStokes::m_equationType, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_velocity, v_GetExtrapolateStr(), and v_GetSubSteppingExtrapolateStr().

Referenced by v_InitObject().

◆ SetupFlowrate()

void Nektar::VelocityCorrectionScheme::SetupFlowrate ( NekDouble  aii_dt)
protected

Set up the Stokes solution used to impose constant flowrate through a boundary.

This routine solves a Stokes equation using a unit forcing direction, specified by the user to be in the desired flow direction. This field can then be used to correct the end of each timestep to impose a constant volumetric flow rate through a user-defined boundary.

There are three modes of operation:

  • Standard two-dimensional or three-dimensional simulations (e.g. pipes or channels)
  • 3DH1D simulations where the forcing is not in the homogeneous direction (e.g. channel flow, where the y-direction of the 2D mesh is perpendicular to the wall);
  • 3DH1D simulations where the forcing is in the homogeneous direction (e.g. pipe flow in the z-direction).

In the first two cases, the user should define:

  • the Flowrate parameter, which dictates the volumetric flux through the reference area
  • tag a boundary region with the Flowrate user-defined type to define the reference area
  • define a FlowrateForce function with components ForceX, ForceY and ForceZ that defines a unit forcing in the appropriate direction.

In the latter case, the user should define only the Flowrate; the reference area is taken to be the homogeneous plane and the force is assumed to be the unit z-vector \( \hat{e}_z \).

This routine solves a single timestep of the Stokes problem (premultiplied by the backwards difference coefficient):

\[ \frac{\partial\mathbf{u}}{\partial t} = -\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f} \]

with a zero initial condition to obtain a field \( \mathbf{u}_s \). The flowrate is then corrected at each timestep \( n \) by adding the correction \( \alpha\mathbf{u}_s \) where

\[ \alpha = \frac{\overline{Q} - Q(\mathbf{u^n})}{Q(\mathbf{u}_s)} \]

where \( Q(\cdot)\) is the volumetric flux through the appropriate surface or line, which is implemented in VelocityCorrectionScheme::MeasureFlowrate. For more details, see chapter 3.2 of the thesis of D. Moxey (University of Warwick, 2011).

Definition at line 221 of file VelocityCorrectionScheme.cpp.

222{
223 m_flowrateBndID = -1;
224 m_flowrateArea = 0.0;
225
226 const Array<OneD, const SpatialDomains::BoundaryConditionShPtr> &bcs =
227 m_fields[0]->GetBndConditions();
228
229 std::string forces[] = {"X", "Y", "Z"};
230 Array<OneD, NekDouble> flowrateForce(m_spacedim, 0.0);
231
232 // Set up flowrate forces.
233 bool defined = true;
234 for (int i = 0; i < m_spacedim; ++i)
235 {
236 std::string varName = std::string("Force") + forces[i];
237 defined = m_session->DefinesFunction("FlowrateForce", varName);
238
239 if (!defined && m_HomogeneousType == eHomogeneous1D)
240 {
241 break;
242 }
243
244 ASSERTL0(defined,
245 "A 'FlowrateForce' function must defined with components "
246 "[ForceX, ...] to define direction of flowrate forcing");
247
249 m_session->GetFunction("FlowrateForce", varName);
250 flowrateForce[i] = ffunc->Evaluate();
251 }
252
253 // Define flag for case with homogeneous expansion and forcing not in the
254 // z-direction
255 m_homd1DFlowinPlane = false;
256 if (defined && m_HomogeneousType == eHomogeneous1D)
257 {
258 m_homd1DFlowinPlane = true;
259 }
260
261 // For 3DH1D simulations, if force isn't defined then assume in
262 // z-direction.
263 if (!defined)
264 {
265 flowrateForce[2] = 1.0;
266 }
267
268 // Find the boundary condition that is tagged as the flowrate boundary.
269 for (size_t i = 0; i < bcs.size(); ++i)
270 {
271 if (boost::iequals(bcs[i]->GetUserDefined(), "Flowrate"))
272 {
273 m_flowrateBndID = i;
274 break;
275 }
276 }
277
278 int tmpBr = m_flowrateBndID;
279 m_comm->AllReduce(tmpBr, LibUtilities::ReduceMax);
281 "One boundary region must be marked using the 'Flowrate' "
282 "user-defined type to monitor the volumetric flowrate.");
283
284 // Extract an appropriate expansion list to represents the boundary.
285 if (m_flowrateBndID >= 0)
286 {
287 // For a boundary, extract the boundary itself.
288 m_flowrateBnd = m_fields[0]->GetBndCondExpansions()[m_flowrateBndID];
289 }
291 {
292 // For 3DH1D simulations with no force specified, find the mean
293 // (0th) plane.
294 Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
295 int tmpId = -1;
296
297 for (size_t i = 0; i < zIDs.size(); ++i)
298 {
299 if (zIDs[i] == 0)
300 {
301 tmpId = i;
302 break;
303 }
304 }
305
306 ASSERTL1(tmpId <= 0, "Should be either at location 0 or -1 if not "
307 "found");
308
309 if (tmpId != -1)
310 {
311 m_flowrateBnd = m_fields[0]->GetPlane(tmpId);
312 }
313 }
314
315 // At this point, some processors may not have m_flowrateBnd
316 // set if they don't contain the appropriate boundary. To
317 // calculate the area, we integrate 1.0 over the boundary
318 // (which has been set up with the appropriate subcommunicator
319 // to avoid deadlock), and then communicate this to the other
320 // processors with an AllReduce.
321 if (m_flowrateBnd)
322 {
323 Array<OneD, NekDouble> inArea(m_flowrateBnd->GetNpoints(), 1.0);
324 m_flowrateArea = m_flowrateBnd->Integral(inArea);
325 }
327
328 // In homogeneous case with forcing not aligned to the z-direction,
329 // redefine m_flowrateBnd so it is a 1D expansion
332 {
333 // For 3DH1D simulations with no force specified, find the mean
334 // (0th) plane.
335 Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
336 m_planeID = -1;
337
338 for (size_t i = 0; i < zIDs.size(); ++i)
339 {
340 if (zIDs[i] == 0)
341 {
342 m_planeID = i;
343 break;
344 }
345 }
346
347 ASSERTL1(m_planeID <= 0, "Should be either at location 0 or -1 "
348 "if not found");
349
350 if (m_planeID != -1)
351 {
353 m_fields[0]->GetBndCondExpansions()[m_flowrateBndID]->GetPlane(
354 m_planeID);
355 }
356 }
357
358 // Set up some storage for the Stokes solution (to be stored in
359 // m_flowrateStokes) and its initial condition (inTmp), which holds the
360 // unit forcing.
361 int nqTot = m_fields[0]->GetNpoints();
362 Array<OneD, Array<OneD, NekDouble>> inTmp(m_spacedim);
363 m_flowrateStokes = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
364
365 for (int i = 0; i < m_spacedim; ++i)
366 {
367 inTmp[i] = Array<OneD, NekDouble>(nqTot, flowrateForce[i] * aii_dt);
368 m_flowrateStokes[i] = Array<OneD, NekDouble>(nqTot, 0.0);
369
371 {
372 Array<OneD, NekDouble> inTmp2(nqTot);
373 m_fields[i]->HomogeneousFwdTrans(nqTot, inTmp[i], inTmp2);
374 m_fields[i]->SetWaveSpace(true);
375 inTmp[i] = inTmp2;
376 }
377
378 Vmath::Zero(m_fields[i]->GetNcoeffs(), m_fields[i]->UpdateCoeffs(), 1);
379 }
380
381 // Create temporary extrapolation object to avoid issues with
382 // m_extrapolation for HOPBCs using higher order timestepping schemes.
383 // Zero pressure BCs in Neumann boundaries that may have been
384 // set in the advection step.
385 Array<OneD, const SpatialDomains::BoundaryConditionShPtr> PBndConds =
386 m_pressure->GetBndConditions();
387 Array<OneD, MultiRegions::ExpListSharedPtr> PBndExp =
388 m_pressure->GetBndCondExpansions();
389 for (size_t n = 0; n < PBndConds.size(); ++n)
390 {
391 if (PBndConds[n]->GetBoundaryConditionType() ==
393 {
394 Vmath::Zero(PBndExp[n]->GetNcoeffs(), PBndExp[n]->UpdateCoeffs(),
395 1);
396 }
397 }
398
399 // Finally, calculate the solution and the flux of the Stokes
400 // solution. We set m_greenFlux to maximum numeric limit, which signals
401 // to SolveUnsteadyStokesSystem that we don't need to apply a flowrate
402 // force.
403 m_greenFlux = numeric_limits<NekDouble>::max();
404 m_flowrateAiidt = aii_dt;
405
406 // Save the number of convective field in case it is not set
407 // to spacedim. Only need velocity components for stokes forcing
408 int SaveNConvectiveFields = m_nConvectiveFields;
410 SolveUnsteadyStokesSystem(inTmp, m_flowrateStokes, 0.0, aii_dt);
411 m_nConvectiveFields = SaveNConvectiveFields;
413
414 // If the user specified IO_FlowSteps, open a handle to store output.
415 if (m_comm->GetRank() == 0 && m_flowrateSteps &&
416 !m_flowrateStream.is_open())
417 {
418 std::string filename = m_session->GetSessionName();
419 filename += ".prs";
420 m_flowrateStream.open(filename.c_str());
421 m_flowrateStream.setf(ios::scientific, ios::floatfield);
422 m_flowrateStream << "# step time dP" << endl
423 << "# -------------------------------------------"
424 << endl;
425 }
426
427 // Replace pressure BCs with those evaluated from advection step
428 m_extrapolation->CopyPressureHBCsToPbndExp();
429}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
int m_nConvectiveFields
Number of fields to be convected;.
SOLVER_UTILS_EXPORT int GetNcoeffs()
NekDouble m_greenFlux
Flux of the Stokes function solution.
NekDouble MeasureFlowrate(const Array< OneD, Array< OneD, NekDouble > > &inarray)
Measure the volumetric flow rate through the volumetric flow rate reference surface.
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
Stokes solution used to impose flowrate.
void SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
int m_flowrateSteps
Interval at which to record flowrate data.
std::ofstream m_flowrateStream
Output stream to record flowrate.
NekDouble m_flowrateAiidt
Value of aii_dt used to compute Stokes flowrate solution.
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:129
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487

References ASSERTL0, ASSERTL1, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SpatialDomains::eNeumann, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_flowrateSteps, m_flowrateStokes, m_flowrateStream, m_greenFlux, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::IncNavierStokes::m_nConvectiveFields, m_planeID, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), Nektar::LibUtilities::ReduceMax, SolveUnsteadyStokesSystem(), and Vmath::Zero().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  fields,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 69 of file VelocityCorrectionScheme.h.

72 {
73 v_SetUpPressureForcing(fields, Forcing, aii_Dt);
74 }
virtual void v_SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)

References v_SetUpPressureForcing().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SetUpSVV()

void Nektar::VelocityCorrectionScheme::SetUpSVV ( void  )
protected

Definition at line 908 of file VelocityCorrectionScheme.cpp.

909{
910
911 m_session->MatchSolverInfo("SpectralVanishingViscosity", "PowerKernel",
912 m_useSpecVanVisc, false);
913
915 {
917 }
918 else
919 {
920 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
921 "PowerKernel", m_useSpecVanVisc, false);
922 }
923
925 {
926 m_IsSVVPowerKernel = true;
927 }
928 else
929 {
930 m_session->MatchSolverInfo("SpectralVanishingViscosity", "DGKernel",
931 m_useSpecVanVisc, false);
933 {
935 }
936 else
937 {
938 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
939 "DGKernel", m_useSpecVanVisc, false);
940 }
941
943 {
944 m_IsSVVPowerKernel = false;
945 }
946 }
947
948 // set up varcoeff kernel if PowerKernel or DG is specified
950 {
951 Array<OneD, Array<OneD, NekDouble>> SVVVelFields =
953 if (m_session->DefinesFunction("SVVVelocityMagnitude"))
954 {
955 if (m_comm->GetRank() == 0)
956 {
957 cout << "Seting up SVV velocity from "
958 "SVVVelocityMagnitude section in session file"
959 << endl;
960 }
961 size_t nvel = m_velocity.size();
962 size_t phystot = m_fields[0]->GetTotPoints();
963 SVVVelFields = Array<OneD, Array<OneD, NekDouble>>(nvel);
964 vector<string> vars;
965 for (size_t i = 0; i < nvel; ++i)
966 {
967 SVVVelFields[i] = Array<OneD, NekDouble>(phystot);
968 vars.push_back(m_session->GetVariable(m_velocity[i]));
969 }
970
971 // Load up files into m_fields;
972 GetFunction("SVVVelocityMagnitude")->Evaluate(vars, SVVVelFields);
973 }
974
975 m_svvVarDiffCoeff = Array<OneD, NekDouble>(m_fields[0]->GetNumElmts());
976 SVVVarDiffCoeff(1.0, m_svvVarDiffCoeff, SVVVelFields);
977 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 1.0);
978 }
979 else
980 {
982 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 0.1);
983 }
984
985 // Load parameters for Spectral Vanishing Viscosity
986 if (m_useSpecVanVisc == false)
987 {
988 m_session->MatchSolverInfo("SpectralVanishingViscosity", "True",
989 m_useSpecVanVisc, false);
990 if (m_useSpecVanVisc == false)
991 {
992 m_session->MatchSolverInfo("SpectralVanishingViscosity",
993 "ExpKernel", m_useSpecVanVisc, false);
994 }
996
997 if (m_useSpecVanVisc == false)
998 {
999 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
1000 "True", m_useSpecVanVisc, false);
1001 if (m_useSpecVanVisc == false)
1002 {
1003 m_session->MatchSolverInfo(
1004 "SpectralVanishingViscositySpectralHP", "ExpKernel",
1005 m_useSpecVanVisc, false);
1006 }
1007 }
1008 }
1009
1010 // Case of only Homo1D kernel
1011 if (m_session->DefinesSolverInfo("SpectralVanishingViscosityHomo1D"))
1012 {
1013 m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D", "True",
1014 m_useHomo1DSpecVanVisc, false);
1015 if (m_useHomo1DSpecVanVisc == false)
1016 {
1017 m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D",
1018 "ExpKernel", m_useHomo1DSpecVanVisc,
1019 false);
1020 }
1021 }
1022
1023 m_session->LoadParameter("SVVCutoffRatio", m_sVVCutoffRatio, 0.75);
1024 m_session->LoadParameter("SVVCutoffRatioHomo1D", m_sVVCutoffRatioHomo1D,
1026 m_session->LoadParameter("SVVDiffCoeffHomo1D", m_sVVDiffCoeffHomo1D,
1028
1030 {
1031 ASSERTL0(
1033 "Expect to have three velocity fields with homogenous expansion");
1034
1036 {
1037 Array<OneD, unsigned int> planes;
1038 planes = m_fields[0]->GetZIDs();
1039
1040 size_t num_planes = planes.size();
1041 Array<OneD, NekDouble> SVV(num_planes, 0.0);
1042 NekDouble fac;
1043 size_t kmodes = m_fields[0]->GetHomogeneousBasis()->GetNumModes();
1044 size_t pstart;
1045
1046 pstart = m_sVVCutoffRatioHomo1D * kmodes;
1047
1048 for (size_t n = 0; n < num_planes; ++n)
1049 {
1050 if (planes[n] > pstart)
1051 {
1052 fac = (NekDouble)((planes[n] - kmodes) *
1053 (planes[n] - kmodes)) /
1054 ((NekDouble)((planes[n] - pstart) *
1055 (planes[n] - pstart)));
1056 SVV[n] = m_sVVDiffCoeffHomo1D * exp(-fac) / m_kinvis;
1057 }
1058 }
1059
1060 for (size_t i = 0; i < m_velocity.size(); ++i)
1061 {
1062 m_fields[m_velocity[i]]->SetHomo1DSpecVanVisc(SVV);
1063 }
1064 }
1065 }
1066}
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
NekDouble m_sVVDiffCoeffHomo1D
Diffusion coefficient of SVV modes in homogeneous 1D Direction.
void SVVVarDiffCoeff(const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble > > &vel=NullNekDoubleArrayOfArray)
bool m_useHomo1DSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray

References ASSERTL0, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::GetFunction(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_session, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::IncNavierStokes::m_velocity, Nektar::NullNekDouble1DArray, Nektar::NullNekDoubleArrayOfArray, and SVVVarDiffCoeff().

Referenced by v_InitObject().

◆ SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 76 of file VelocityCorrectionScheme.h.

79 {
80 v_SetUpViscousForcing(inarray, Forcing, aii_Dt);
81 }
virtual void v_SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)

References v_SetUpViscousForcing().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SolvePressure()

void Nektar::VelocityCorrectionScheme::SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
inline

Definition at line 83 of file VelocityCorrectionScheme.h.

84 {
85 v_SolvePressure(Forcing);
86 }
virtual void v_SolvePressure(const Array< OneD, NekDouble > &Forcing)

References v_SolvePressure().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const NekDouble  a_iixDt 
)
inline

Definition at line 96 of file VelocityCorrectionScheme.h.

100 {
101 v_SolveUnsteadyStokesSystem(inarray, outarray, time, a_iixDt);
102 }
virtual void v_SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)

References v_SolveUnsteadyStokesSystem().

Referenced by SetupFlowrate(), and v_InitObject().

◆ SolveViscous()

void Nektar::VelocityCorrectionScheme::SolveViscous ( const Array< OneD, const Array< OneD, NekDouble > > &  Forcing,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  aii_Dt 
)
inline

Definition at line 88 of file VelocityCorrectionScheme.h.

92 {
93 v_SolveViscous(Forcing, inarray, outarray, aii_Dt);
94 }
virtual void v_SolveViscous(const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)

References v_SolveViscous().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SVVVarDiffCoeff()

void Nektar::VelocityCorrectionScheme::SVVVarDiffCoeff ( const NekDouble  velmag,
Array< OneD, NekDouble > &  diffcoeff,
const Array< OneD, Array< OneD, NekDouble > > &  vel = NullNekDoubleArrayOfArray 
)
protected

Definition at line 1068 of file VelocityCorrectionScheme.cpp.

1071{
1072 size_t phystot = m_fields[0]->GetTotPoints();
1073 size_t nel = m_fields[0]->GetNumElmts();
1074 size_t nvel, cnt;
1075
1076 Array<OneD, NekDouble> tmp;
1077
1078 Vmath::Fill(nel, velmag, diffcoeff, 1);
1079
1080 if (vel != NullNekDoubleArrayOfArray)
1081 {
1082 Array<OneD, NekDouble> Velmag(phystot);
1083 nvel = vel.size();
1084 // calculate magnitude of v
1085 Vmath::Vmul(phystot, vel[0], 1, vel[0], 1, Velmag, 1);
1086 for (size_t n = 1; n < nvel; ++n)
1087 {
1088 Vmath::Vvtvp(phystot, vel[n], 1, vel[n], 1, Velmag, 1, Velmag, 1);
1089 }
1090 Vmath::Vsqrt(phystot, Velmag, 1, Velmag, 1);
1091
1092 cnt = 0;
1093 Array<OneD, NekDouble> tmp;
1094 // calculate mean value of vel mag.
1095 for (size_t i = 0; i < nel; ++i)
1096 {
1097 size_t nq = m_fields[0]->GetExp(i)->GetTotPoints();
1098 tmp = Velmag + cnt;
1099 diffcoeff[i] = m_fields[0]->GetExp(i)->Integral(tmp);
1100 Vmath::Fill(nq, 1.0, tmp, 1);
1101 NekDouble area = m_fields[0]->GetExp(i)->Integral(tmp);
1102 diffcoeff[i] = diffcoeff[i] / area;
1103 cnt += nq;
1104 }
1105 }
1106 else
1107 {
1108 nvel = m_expdim;
1109 }
1110
1111 for (size_t e = 0; e < nel; e++)
1112 {
1113 LocalRegions::ExpansionSharedPtr exp = m_fields[0]->GetExp(e);
1114 NekDouble h = 0;
1115
1116 // Find maximum length of edge.
1117 size_t nEdge = exp->GetGeom()->GetNumEdges();
1118 for (size_t i = 0; i < nEdge; ++i)
1119 {
1120 h = max(h, exp->GetGeom()->GetEdge(i)->GetVertex(0)->dist(
1121 *(exp->GetGeom()->GetEdge(i)->GetVertex(1))));
1122 }
1123
1124 int p = 0;
1125 for (int i = 0; i < m_expdim; ++i)
1126 {
1127 p = max(p, exp->GetBasisNumModes(i) - 1);
1128 }
1129
1130 diffcoeff[e] *= h / p;
1131 }
1132}
int m_expdim
Expansion dimension.
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:529
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43

References Vmath::Fill(), Nektar::SolverUtils::EquationSystem::m_expdim, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::NullNekDoubleArrayOfArray, CellMLToNektar.cellml_metadata::p, Vmath::Vmul(), Vmath::Vsqrt(), and Vmath::Vvtvp().

Referenced by SetUpSVV().

◆ v_DoInitialise()

void Nektar::VelocityCorrectionScheme::v_DoInitialise ( bool  dumpInitialConditions = true)
overrideprotectedvirtual

Sets up initial conditions.

Sets the initial conditions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSImplicit, and Nektar::VCSMapping.

Definition at line 611 of file VelocityCorrectionScheme.cpp.

612{
613 m_F = Array<OneD, Array<OneD, NekDouble>>(m_nConvectiveFields);
614
615 for (int i = 0; i < m_nConvectiveFields; ++i)
616 {
617 m_F[i] = Array<OneD, NekDouble>(m_fields[0]->GetTotPoints(), 0.0);
618 }
619
620 m_flowrateAiidt = 0.0;
621
622 AdvectionSystem::v_DoInitialise(dumpInitialConditions);
623
624 // Set up Field Meta Data for output files
625 m_fieldMetaDataMap["Kinvis"] = boost::lexical_cast<std::string>(m_kinvis);
626 m_fieldMetaDataMap["TimeStep"] =
627 boost::lexical_cast<std::string>(m_timestep);
628
629 // set boundary conditions here so that any normal component
630 // correction are imposed before they are imposed on initial
631 // field below
633
634 // Ensure the initial conditions have correct BCs
635 for (size_t i = 0; i < m_fields.size(); ++i)
636 {
637 m_fields[i]->ImposeDirichletConditions(m_fields[i]->UpdateCoeffs());
638 m_fields[i]->LocalToGlobal();
639 m_fields[i]->GlobalToLocal();
640 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
641 m_fields[i]->UpdatePhys());
642 }
643}
void SetBoundaryConditions(NekDouble time)
time dependent boundary conditions updating
NekDouble m_timestep
Time step size.
NekDouble m_time
Current time of simulation.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
SOLVER_UTILS_EXPORT int GetTotPoints()
virtual SOLVER_UTILS_EXPORT void v_DoInitialise(bool dumpInitialConditions=true) override
Sets up initial conditions.
Array< OneD, Array< OneD, NekDouble > > m_F

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_F, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::IncNavierStokes::SetBoundaryConditions(), and Nektar::SolverUtils::UnsteadySystem::v_DoInitialise().

Referenced by Nektar::VCSImplicit::v_DoInitialise().

◆ v_EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::v_EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protectedvirtual

Explicit part of the method - Advection, Forcing + HOPBCs

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 696 of file VelocityCorrectionScheme.cpp.

699{
700 LibUtilities::Timer timer;
701 timer.Start();
702 EvaluateAdvectionTerms(inarray, outarray, time);
703 timer.Stop();
704 timer.AccumulateRegion("Advection Terms");
705
706 // Smooth advection
708 {
709 for (int i = 0; i < m_nConvectiveFields; ++i)
710 {
711 m_pressure->SmoothField(outarray[i]);
712 }
713 }
714
715 // Add forcing terms
716 for (auto &x : m_forcing)
717 {
718 x->Apply(m_fields, inarray, outarray, time);
719 }
720
721 // Calculate High-Order pressure boundary conditions
722 timer.Start();
723 m_extrapolation->EvaluatePressureBCs(inarray, outarray, m_kinvis);
724 timer.Stop();
725 timer.AccumulateRegion("Pressure BCs");
726}
bool m_SmoothAdvection
bool to identify if advection term smoothing is requested
void EvaluateAdvectionTerms(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::IncNavierStokes::EvaluateAdvectionTerms(), Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_SmoothAdvection, Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by EvaluateAdvection_SetPressureBCs().

◆ v_GenerateSummary()

void Nektar::VelocityCorrectionScheme::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Prints a summary with some information regards the time-stepping.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::SmoothedProfileMethod, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 524 of file VelocityCorrectionScheme.cpp.

525{
527 SolverUtils::AddSummaryItem(s, "Splitting Scheme",
528 "Velocity correction (strong press. form)");
529
530 if (m_extrapolation->GetSubStepName().size())
531 {
532 SolverUtils::AddSummaryItem(s, "Substepping",
533 m_extrapolation->GetSubStepName());
534 }
535
536 string dealias = m_homogen_dealiasing ? "Homogeneous1D" : "";
538 {
539 dealias += (dealias == "" ? "" : " + ") + string("spectral/hp");
540 }
541 if (dealias != "")
542 {
543 SolverUtils::AddSummaryItem(s, "Dealiasing", dealias);
544 }
545
546 string smoothing = m_useSpecVanVisc ? "spectral/hp" : "";
547 if (smoothing != "")
548 {
550 {
552 s, "Smoothing-SpecHP",
553 "SVV (" + smoothing + " Exp Kernel(cut-off = " +
554 boost::lexical_cast<string>(m_sVVCutoffRatio) +
555 ", diff coeff = " +
556 boost::lexical_cast<string>(m_sVVDiffCoeff) + "))");
557 }
558 else
559 {
561 {
563 s, "Smoothing-SpecHP",
564 "SVV (" + smoothing + " Power Kernel (Power ratio =" +
565 boost::lexical_cast<string>(m_sVVCutoffRatio) +
566 ", diff coeff = " +
567 boost::lexical_cast<string>(m_sVVDiffCoeff) +
568 "*Uh/p))");
569 }
570 else
571 {
573 s, "Smoothing-SpecHP",
574 "SVV (" + smoothing + " DG Kernel (diff coeff = " +
575 boost::lexical_cast<string>(m_sVVDiffCoeff) +
576 "*Uh/p))");
577 }
578 }
579 }
580
582 {
584 s, "Smoothing-Homo1D",
585 "SVV (Homogeneous1D - Exp Kernel(cut-off = " +
586 boost::lexical_cast<string>(m_sVVCutoffRatioHomo1D) +
587 ", diff coeff = " +
588 boost::lexical_cast<string>(m_sVVDiffCoeffHomo1D) + "))");
589 }
590
592 {
594 s, "GJP Stab. Impl. ",
595 m_session->GetSolverInfo("GJPStabilisation"));
596 SolverUtils::AddSummaryItem(s, "GJP Stab. JumpScale", m_GJPJumpScale);
597
598 if (boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
599 "Explicit"))
600 {
602 s, "GJP Normal Velocity",
603 m_session->GetSolverInfo("GJPNormalVelocity"));
604 }
605 }
606}
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
bool m_homogen_dealiasing
Flag to determine if dealiasing is used for homogeneous simulations.
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
bool m_useGJPStabilisation
bool to identify if GJP semi-implicit is active.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:49

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::IncNavierStokes::m_extrapolation, m_GJPJumpScale, Nektar::SolverUtils::EquationSystem::m_homogen_dealiasing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useGJPStabilisation, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::NullNekDouble1DArray, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

Referenced by Nektar::SmoothedProfileMethod::v_GenerateSummary().

◆ v_GetExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetExtrapolateStr ( void  )
inlineprotectedvirtual

Reimplemented in Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 216 of file VelocityCorrectionScheme.h.

217 {
218 return "Standard";
219 }

Referenced by SetUpExtrapolation().

◆ v_GetForceDimension()

int Nektar::VelocityCorrectionScheme::v_GetForceDimension ( void  )
overrideprotectedvirtual

Implements Nektar::IncNavierStokes.

Definition at line 688 of file VelocityCorrectionScheme.cpp.

689{
690 return m_session->GetVariables().size() - 1;
691}

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_GetSubSteppingExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetSubSteppingExtrapolateStr ( const std::string &  instr)
inlineprotectedvirtual

Reimplemented in Nektar::VCSWeakPressure.

Definition at line 221 of file VelocityCorrectionScheme.h.

222 {
223 return instr;
224 }

Referenced by SetUpExtrapolation().

◆ v_GetSystemSingularChecks()

Array< OneD, bool > Nektar::VelocityCorrectionScheme::v_GetSystemSingularChecks ( )
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 677 of file VelocityCorrectionScheme.cpp.

678{
679 int vVar = m_session->GetVariables().size();
680 Array<OneD, bool> vChecks(vVar, false);
681 vChecks[vVar - 1] = true;
682 return vChecks;
683}

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_InitObject()

void Nektar::VelocityCorrectionScheme::v_InitObject ( bool  DeclareField = true)
overridevirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::IncNavierStokes.

Reimplemented in Nektar::SmoothedProfileMethod, and Nektar::VCSMapping.

Definition at line 74 of file VelocityCorrectionScheme.cpp.

75{
76 int n;
77
79 m_explicitDiffusion = false;
80
81 // Set m_pressure to point to last field of m_fields;
82 if (boost::iequals(m_session->GetVariable(m_fields.size() - 1), "p"))
83 {
84 m_nConvectiveFields = m_fields.size() - 1;
86 }
87 else
88 {
89 ASSERTL0(false, "Need to set up pressure field definition");
90 }
91
92 // Determine diffusion coefficients for each field
93 m_diffCoeff = Array<OneD, NekDouble>(m_nConvectiveFields, m_kinvis);
94 for (n = 0; n < m_nConvectiveFields; ++n)
95 {
96 std::string varName = m_session->GetVariable(n);
97 if (m_session->DefinesFunction("DiffusionCoefficient", varName))
98 {
100 m_session->GetFunction("DiffusionCoefficient", varName);
101 m_diffCoeff[n] = ffunc->Evaluate();
102 }
103 }
104
105 // Integrate only the convective fields
106 for (n = 0; n < m_nConvectiveFields; ++n)
107 {
108 m_intVariables.push_back(n);
109 }
110
112 SetUpSVV();
113
114 // check to see if it is explicity turned off
115 m_session->MatchSolverInfo("GJPStabilisation", "False",
117
118 // if GJPStabilisation set to False bool will be true and
119 // if not false so negate/revese bool
121
122 m_session->MatchSolverInfo("GJPNormalVelocity", "True", m_useGJPNormalVel,
123 false);
124
126 {
127 ASSERTL0(boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
128 "Explicit"),
129 "Can only specify GJPNormalVelocity with"
130 " GJPStabilisation set to Explicit currently");
131 }
132
133 m_session->LoadParameter("GJPJumpScale", m_GJPJumpScale, 1.0);
134
135 m_session->MatchSolverInfo("SmoothAdvection", "True", m_SmoothAdvection,
136 false);
137
138 // set explicit time-intregration class operators
141
142 // set implicit time-intregration class operators
145
146 // Set up bits for flowrate.
147 m_session->LoadParameter("Flowrate", m_flowrate, 0.0);
148 m_session->LoadParameter("IO_FlowSteps", m_flowrateSteps, 0);
149}
virtual void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
NekDouble m_flowrate
Desired volumetric flowrate.
void EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Array< OneD, NekDouble > m_diffCoeff
Diffusion coefficients (will be kinvis for velocities)

References ASSERTL0, Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), EvaluateAdvection_SetPressureBCs(), m_diffCoeff, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateSteps, m_GJPJumpScale, Nektar::SolverUtils::UnsteadySystem::m_intVariables, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_SmoothAdvection, m_useGJPNormalVel, m_useGJPStabilisation, SetUpExtrapolation(), SetUpSVV(), SolveUnsteadyStokesSystem(), and Nektar::IncNavierStokes::v_InitObject().

Referenced by Nektar::SmoothedProfileMethod::v_InitObject(), and Nektar::VCSMapping::v_InitObject().

◆ v_PostIntegrate()

bool Nektar::VelocityCorrectionScheme::v_PostIntegrate ( int  step)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 500 of file VelocityCorrectionScheme.cpp.

501{
502 if (m_flowrateSteps > 0)
503 {
504 if (m_comm->GetRank() == 0 && (step + 1) % m_flowrateSteps == 0)
505 {
506 m_flowrateStream << setw(8) << step << setw(16) << m_time
507 << setw(16) << m_alpha << endl;
508 }
509 }
510
512}
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step) override
NekDouble m_alpha
Current flowrate correction.

References m_alpha, Nektar::SolverUtils::EquationSystem::m_comm, m_flowrateSteps, m_flowrateStream, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::AdvectionSystem::v_PostIntegrate().

◆ v_RequireFwdTrans()

virtual bool Nektar::VelocityCorrectionScheme::v_RequireFwdTrans ( void  )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 211 of file VelocityCorrectionScheme.h.

212 {
213 return false;
214 }

◆ v_SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  fields,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Poisson solver solver

Reimplemented in Nektar::VCSMapping, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 799 of file VelocityCorrectionScheme.cpp.

802{
803 size_t i;
804 size_t physTot = m_fields[0]->GetTotPoints();
805 size_t nvel = m_velocity.size();
806
807 m_fields[0]->PhysDeriv(eX, fields[0], Forcing[0]);
808
809 for (i = 1; i < nvel; ++i)
810 {
811 // Use Forcing[1] as storage since it is not needed for the pressure
812 m_fields[i]->PhysDeriv(DirCartesianMap[i], fields[i], Forcing[1]);
813 Vmath::Vadd(physTot, Forcing[1], 1, Forcing[0], 1, Forcing[0], 1);
814 }
815
816 Vmath::Smul(physTot, 1.0 / aii_Dt, Forcing[0], 1, Forcing[0], 1);
817}
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245

References Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eX, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_velocity, Vmath::Smul(), and Vmath::Vadd().

Referenced by SetUpPressureForcing(), and Nektar::VCSMapping::v_SetUpPressureForcing().

◆ v_SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Helmholtz solver

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 822 of file VelocityCorrectionScheme.cpp.

825{
826 NekDouble aii_dtinv = 1.0 / aii_Dt;
827 size_t phystot = m_fields[0]->GetTotPoints();
828
829 // Grad p
830 m_pressure->BwdTrans(m_pressure->GetCoeffs(), m_pressure->UpdatePhys());
831
832 int nvel = m_velocity.size();
833 if (nvel == 2)
834 {
835 m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
836 Forcing[m_velocity[1]]);
837 }
838 else
839 {
840 m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
841 Forcing[m_velocity[1]], Forcing[m_velocity[2]]);
842 }
843
844 // zero convective fields.
845 for (int i = nvel; i < m_nConvectiveFields; ++i)
846 {
847 Vmath::Zero(phystot, Forcing[i], 1);
848 }
849
850 // Subtract inarray/(aii_dt) and divide by kinvis. Kinvis will
851 // need to be updated for the convected fields.
852 for (int i = 0; i < m_nConvectiveFields; ++i)
853 {
854 Blas::Daxpy(phystot, -aii_dtinv, inarray[i], 1, Forcing[i], 1);
855 Blas::Dscal(phystot, 1.0 / m_diffCoeff[i], &(Forcing[i])[0], 1);
856 }
857}
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:151
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:137

References Blas::Daxpy(), Blas::Dscal(), m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_velocity, and Vmath::Zero().

Referenced by SetUpViscousForcing().

◆ v_SolvePressure()

void Nektar::VelocityCorrectionScheme::v_SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
protectedvirtual

Solve pressure system

Reimplemented in Nektar::VCSMapping, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 862 of file VelocityCorrectionScheme.cpp.

864{
866 // Setup coefficient for equation
868
869 // Solver Pressure Poisson Equation
870 m_pressure->HelmSolve(Forcing, m_pressure->UpdateCoeffs(), factors);
871
872 // Add presure to outflow bc if using convective like BCs
873 m_extrapolation->AddPressureToOutflowBCs(m_kinvis);
874}
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:408

References Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, Nektar::IncNavierStokes::m_extrapolation, Nektar::IncNavierStokes::m_kinvis, and Nektar::IncNavierStokes::m_pressure.

Referenced by SolvePressure(), and Nektar::VCSMapping::v_SolvePressure().

◆ v_SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::v_SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const NekDouble  aii_Dt 
)
protectedvirtual

Implicit part of the method - Poisson + nConv*Helmholtz

Reimplemented in Nektar::SmoothedProfileMethod.

Definition at line 731 of file VelocityCorrectionScheme.cpp.

735{
736 boost::ignore_unused(time);
737
738 // Set up flowrate if we're starting for the first time or the value of
739 // aii_Dt has changed.
740 if (m_flowrate > 0.0 && (aii_Dt != m_flowrateAiidt))
741 {
742 SetupFlowrate(aii_Dt);
743 }
744
745 size_t physTot = m_fields[0]->GetTotPoints();
746
747 // Substep the pressure boundary condition if using substepping
748 m_extrapolation->SubStepSetPressureBCs(inarray, aii_Dt, m_kinvis);
749
750 // Set up forcing term for pressure Poisson equation
751 LibUtilities::Timer timer;
752 timer.Start();
753 SetUpPressureForcing(inarray, m_F, aii_Dt);
754 timer.Stop();
755 timer.AccumulateRegion("Pressure Forcing");
756
757 // Solve Pressure System
758 timer.Start();
759 SolvePressure(m_F[0]);
760 timer.Stop();
761 timer.AccumulateRegion("Pressure Solve");
762
763 // Set up forcing term for Helmholtz problems
764 timer.Start();
765 SetUpViscousForcing(inarray, m_F, aii_Dt);
766 timer.Stop();
767 timer.AccumulateRegion("Viscous Forcing");
768
769 // Solve velocity system
770 timer.Start();
771 SolveViscous(m_F, inarray, outarray, aii_Dt);
772 timer.Stop();
773 timer.AccumulateRegion("Viscous Solve");
774
775 // Apply flowrate correction
776 if (m_flowrate > 0.0 && m_greenFlux != numeric_limits<NekDouble>::max())
777 {
778 NekDouble currentFlux = MeasureFlowrate(outarray);
779 m_alpha = (m_flowrate - currentFlux) / m_greenFlux;
780
781 for (int i = 0; i < m_spacedim; ++i)
782 {
783 Vmath::Svtvp(physTot, m_alpha, m_flowrateStokes[i], 1, outarray[i],
784 1, outarray[i], 1);
785 // Enusre coeff space is updated for next time step
786 m_fields[i]->FwdTransLocalElmt(outarray[i],
787 m_fields[i]->UpdateCoeffs());
788 // Impsoe symmetry of flow on coeff space (good to enfore
789 // periodicity).
790 m_fields[i]->LocalToGlobal();
791 m_fields[i]->GlobalToLocal();
792 }
793 }
794}
void SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
void SetupFlowrate(NekDouble aii_dt)
Set up the Stokes solution used to impose constant flowrate through a boundary.
void SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
void SolveViscous(const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
void SolvePressure(const Array< OneD, NekDouble > &Forcing)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617

References Nektar::LibUtilities::Timer::AccumulateRegion(), m_alpha, Nektar::IncNavierStokes::m_extrapolation, m_F, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateAiidt, m_flowrateStokes, m_greenFlux, Nektar::IncNavierStokes::m_kinvis, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), SetupFlowrate(), SetUpPressureForcing(), SetUpViscousForcing(), SolvePressure(), SolveViscous(), Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), and Vmath::Svtvp().

Referenced by SolveUnsteadyStokesSystem(), and Nektar::SmoothedProfileMethod::v_SolveUnsteadyStokesSystem().

◆ v_SolveViscous()

void Nektar::VelocityCorrectionScheme::v_SolveViscous ( const Array< OneD, const Array< OneD, NekDouble > > &  Forcing,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  aii_Dt 
)
protectedvirtual

Solve velocity system

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 879 of file VelocityCorrectionScheme.cpp.

883{
887
888 AppendSVVFactors(factors, varFactorsMap);
889 ComputeGJPNormalVelocity(inarray, varCoeffMap);
890
891 // Solve Helmholtz system and put in Physical space
892 for (int i = 0; i < m_nConvectiveFields; ++i)
893 {
894 // Add diffusion coefficient to GJP matrix operator (Implicit part)
896 {
898 }
899
900 // Setup coefficients for equation
901 factors[StdRegions::eFactorLambda] = 1.0 / aii_Dt / m_diffCoeff[i];
902 m_fields[i]->HelmSolve(Forcing[i], m_fields[i]->UpdateCoeffs(), factors,
903 varCoeffMap, varFactorsMap);
904 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
905 }
906}
void AppendSVVFactors(StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
void ComputeGJPNormalVelocity(const Array< OneD, const Array< OneD, NekDouble > > &inarray, StdRegions::VarCoeffMap &varcoeffs)
static VarFactorsMap NullVarFactorsMap
std::map< StdRegions::ConstFactorType, Array< OneD, NekDouble > > VarFactorsMap
std::map< StdRegions::VarCoeffType, VarCoeffEntry > VarCoeffMap
Definition: StdRegions.hpp:352

References AppendSVVFactors(), ComputeGJPNormalVelocity(), Nektar::StdRegions::eFactorGJP, Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, m_GJPJumpScale, Nektar::IncNavierStokes::m_nConvectiveFields, m_useGJPStabilisation, Nektar::StdRegions::NullVarCoeffMap, and Nektar::MultiRegions::NullVarFactorsMap.

Referenced by SolveViscous(), and Nektar::VCSMapping::v_SolveViscous().

◆ v_TransCoeffToPhys()

void Nektar::VelocityCorrectionScheme::v_TransCoeffToPhys ( void  )
overrideprotectedvirtual

Virtual function for transformation to physical space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 648 of file VelocityCorrectionScheme.cpp.

649{
650 size_t nfields = m_fields.size() - 1;
651 for (size_t k = 0; k < nfields; ++k)
652 {
653 // Backward Transformation in physical space for time evolution
654 m_fields[k]->BwdTrans(m_fields[k]->GetCoeffs(),
655 m_fields[k]->UpdatePhys());
656 }
657}

References Nektar::SolverUtils::EquationSystem::m_fields.

◆ v_TransPhysToCoeff()

void Nektar::VelocityCorrectionScheme::v_TransPhysToCoeff ( void  )
overrideprotectedvirtual

Virtual function for transformation to coefficient space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 662 of file VelocityCorrectionScheme.cpp.

663{
664
665 size_t nfields = m_fields.size() - 1;
666 for (size_t k = 0; k < nfields; ++k)
667 {
668 // Forward Transformation in physical space for time evolution
669 m_fields[k]->FwdTransLocalElmt(m_fields[k]->GetPhys(),
670 m_fields[k]->UpdateCoeffs());
671 }
672}

References Nektar::SolverUtils::EquationSystem::m_fields.

Member Data Documentation

◆ className

string Nektar::VelocityCorrectionScheme::className
static
Initial value:
=
"VelocityCorrectionScheme", VelocityCorrectionScheme::create)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 58 of file VelocityCorrectionScheme.h.

◆ m_alpha

NekDouble Nektar::VelocityCorrectionScheme::m_alpha
protected

Current flowrate correction.

Definition at line 150 of file VelocityCorrectionScheme.h.

Referenced by v_PostIntegrate(), and v_SolveUnsteadyStokesSystem().

◆ m_diffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_diffCoeff
protected

◆ m_F

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_F
protected

◆ m_flowrate

NekDouble Nektar::VelocityCorrectionScheme::m_flowrate
protected

Desired volumetric flowrate.

Definition at line 142 of file VelocityCorrectionScheme.h.

Referenced by v_InitObject(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateAiidt

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateAiidt
protected

Value of aii_dt used to compute Stokes flowrate solution.

Definition at line 164 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_DoInitialise(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateArea

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateArea
protected

Area of the boundary through which we are measuring the flowrate.

Definition at line 144 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBnd

MultiRegions::ExpListSharedPtr Nektar::VelocityCorrectionScheme::m_flowrateBnd
protected

Flowrate reference surface.

Definition at line 156 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBndID

int Nektar::VelocityCorrectionScheme::m_flowrateBndID
protected

Boundary ID of the flowrate reference surface.

Definition at line 152 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateSteps

int Nektar::VelocityCorrectionScheme::m_flowrateSteps
protected

Interval at which to record flowrate data.

Definition at line 162 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_InitObject(), and v_PostIntegrate().

◆ m_flowrateStokes

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_flowrateStokes
protected

Stokes solution used to impose flowrate.

Definition at line 158 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateStream

std::ofstream Nektar::VelocityCorrectionScheme::m_flowrateStream
protected

Output stream to record flowrate.

Definition at line 160 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_PostIntegrate().

◆ m_GJPJumpScale

NekDouble Nektar::VelocityCorrectionScheme::m_GJPJumpScale
protected

◆ m_greenFlux

NekDouble Nektar::VelocityCorrectionScheme::m_greenFlux
protected

Flux of the Stokes function solution.

Definition at line 148 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ m_homd1DFlowinPlane

bool Nektar::VelocityCorrectionScheme::m_homd1DFlowinPlane
protected

Definition at line 146 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_IsSVVPowerKernel

bool Nektar::VelocityCorrectionScheme::m_IsSVVPowerKernel
protected

Identifier for Power Kernel otherwise DG kernel.

Definition at line 133 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_planeID

int Nektar::VelocityCorrectionScheme::m_planeID
protected

Plane ID for cases with homogeneous expansion.

Definition at line 154 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_sVVCutoffRatio

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatio
protected

◆ m_sVVCutoffRatioHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatioHomo1D
protected

◆ m_sVVDiffCoeff

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeff
protected

◆ m_sVVDiffCoeffHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeffHomo1D
protected

Diffusion coefficient of SVV modes in homogeneous 1D Direction.

Definition at line 129 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_svvVarDiffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_svvVarDiffCoeff
protected

Array of coefficient if power kernel is used in SVV.

Definition at line 131 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_useGJPNormalVel

bool Nektar::VelocityCorrectionScheme::m_useGJPNormalVel
protected

bool to identify if GJP normal Velocity should be applied in explicit approach

Definition at line 120 of file VelocityCorrectionScheme.h.

Referenced by ComputeGJPNormalVelocity(), and v_InitObject().

◆ m_useGJPStabilisation

bool Nektar::VelocityCorrectionScheme::m_useGJPStabilisation
protected

◆ m_useHomo1DSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useHomo1DSpecVanVisc
protected

bool to identify if spectral vanishing viscosity is active.

Definition at line 113 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), Nektar::VCSImplicit::v_GenerateSummary(), and Nektar::VCSWeakPressure::v_GenerateSummary().

◆ m_useSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useSpecVanVisc
protected

◆ m_varCoeffLap

StdRegions::VarCoeffMap Nektar::VelocityCorrectionScheme::m_varCoeffLap
protected

Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.

Definition at line 139 of file VelocityCorrectionScheme.h.

◆ solverTypeLookupId

string Nektar::VelocityCorrectionScheme::solverTypeLookupId
staticprotected
Initial value:
=
"SolverType", "VelocityCorrectionScheme", eVelocityCorrectionScheme)
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.
@ eVelocityCorrectionScheme

Definition at line 166 of file VelocityCorrectionScheme.h.