Nektar++
ExactSolverToro.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: ExactSolverToro.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Exact Riemann solver (Toro 2009).
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37#define TOL 1e-6
38#define NRITER 20
39
40namespace Nektar
41{
44 "ExactToro", ExactSolverToro::create, "Exact Riemann solver");
45
48 : CompressibleSolver(pSession)
49{
50}
51
52/**
53 * @brief Use either PVRS, two-rarefaction or two-shock Riemann solvers to
54 * calculate an initial pressure for the Newton-Raphson scheme.
55 *
56 * @param g Array of calculated gamma values.
57 * @param rhoL Density left state.
58 * @param rhoR Density right state.
59 * @param uL x-velocity component left state.
60 * @param uR x-velocity component right state.
61 * @param pL Pressure component left state.
62 * @param pR Pressure component right state.
63 * @param cL Sound speed component left state.
64 * @param cR Sound speed component right state.
65 * @return Computed initial guess for the Newton-Raphson scheme.
66 */
68 NekDouble pL, NekDouble cL, NekDouble rhoR,
69 NekDouble uR, NekDouble pR, NekDouble cR)
70{
71 const NekDouble quser = 2.0;
72 NekDouble cup, ppv, pmin, pmax, qmax;
73
74 cup = 0.25 * (rhoL + rhoR) * (cL + cR);
75 ppv = 0.5 * (pL + pR) + 0.5 * (uL - uR) * cup;
76 ppv = std::max(0.0, ppv);
77 pmin = std::min(pL, pR);
78 pmax = std::max(pL, pR);
79 qmax = pmax / pmin;
80
81 if (qmax <= quser && pmin <= ppv && ppv <= pmax)
82 {
83 // Select PVRS Riemann solver.
84 return ppv;
85 }
86 else if (ppv < pmin)
87 {
88 // Select two-rarefaction Riemann solver.
89 NekDouble pq = pow(pL / pR, g[1]);
90 NekDouble um =
91 (pq * uL / cL + uR / cR + g[4] * (pq - 1.0)) / (pq / cL + 1.0 / cR);
92 NekDouble ptL = 1.0 + g[7] * (uL - um) / cL;
93 NekDouble ptR = 1.0 + g[7] * (um - uR) / cR;
94 return 0.5 * (pL * pow(ptL, g[3]) + pR * pow(ptR, g[3]));
95 }
96 else
97 {
98 // Select two-shock Riemann solver with PVRS as estimate.
99 NekDouble geL = sqrt((g[5] / rhoL) / (g[6] * pL + ppv));
100 NekDouble geR = sqrt((g[5] / rhoR) / (g[6] * pR + ppv));
101 return (geL * pL + geR * pR - (uR - uL)) / (geL + geR);
102 }
103}
104
105/**
106 * @brief Evaluate pressure functions fL and fR in Newton iteration of
107 * Riemann solver (see equation 4.85 and 4.86 of Toro 2009).
108 *
109 * @param g Array of gamma parameters.
110 * @param p Pressure at current iteration.
111 * @param dk Density (left or right state)
112 * @param pk Pressure (left or right state)
113 * @param ck Sound speed (left or right state)
114 * @param f Computed pressure (shock).
115 * @param fd Computed pressure (rarefaction).
116 */
118 NekDouble ck, NekDouble &f, NekDouble &fd)
119{
120 if (p <= pk)
121 {
122 // Rarefaction wave
123 NekDouble prat = p / pk;
124 f = g[4] * ck * (pow(prat, g[1]) - 1.0);
125 fd = pow(prat, -g[2]) / (dk * ck);
126 }
127 else
128 {
129 // Shock wave
130 NekDouble ak = g[5] / dk;
131 NekDouble bk = g[6] * pk;
132 NekDouble qrt = sqrt(ak / (bk + p));
133 f = (p - pk) * qrt;
134 fd = (1.0 - 0.5 * (p - pk) / (bk + p)) * qrt;
135 }
136}
137
138/**
139 * @brief Exact Riemann solver for the Euler equations.
140 *
141 * This algorithm is transcribed from:
142 *
143 * "Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
144 * Introduction", E. F. Toro (3rd edition, 2009).
145 *
146 * The full Fortran 77 routine can be found at the end of chapter 4 (section
147 * 4.9). This transcription is essentially the functions STARPU and SAMPLE
148 * glued together, and variable names are kept mostly the same. See the
149 * preceding chapter which explains the derivation of the solver. The
150 * routines PREFUN and GUESSP are kept separate and are reproduced above.
151 *
152 * @param rhoL Density left state.
153 * @param rhoR Density right state.
154 * @param rhouL x-momentum component left state.
155 * @param rhouR x-momentum component right state.
156 * @param rhovL y-momentum component left state.
157 * @param rhovR y-momentum component right state.
158 * @param rhowL z-momentum component left state.
159 * @param rhowR z-momentum component right state.
160 * @param EL Energy left state.
161 * @param ER Energy right state.
162 * @param rhof Computed Riemann flux for density.
163 * @param rhouf Computed Riemann flux for x-momentum component
164 * @param rhovf Computed Riemann flux for y-momentum component
165 * @param rhowf Computed Riemann flux for z-momentum component
166 * @param Ef Computed Riemann flux for energy.
167 */
169 NekDouble rhoL, NekDouble rhouL, NekDouble rhovL, NekDouble rhowL,
170 NekDouble EL, NekDouble rhoR, NekDouble rhouR, NekDouble rhovR,
171 NekDouble rhowR, NekDouble ER, NekDouble &rhof, NekDouble &rhouf,
172 NekDouble &rhovf, NekDouble &rhowf, NekDouble &Ef)
173{
174 static NekDouble gamma = m_params["gamma"]();
175
176 // Left and right variables.
177 NekDouble uL = rhouL / rhoL;
178 NekDouble vL = rhovL / rhoL;
179 NekDouble wL = rhowL / rhoL;
180 NekDouble uR = rhouR / rhoR;
181 NekDouble vR = rhovR / rhoR;
182 NekDouble wR = rhowR / rhoR;
183
184 // Left and right pressure.
185 NekDouble pL =
186 (gamma - 1.0) * (EL - 0.5 * (rhouL * uL + rhovL * vL + rhowL * wL));
187 NekDouble pR =
188 (gamma - 1.0) * (ER - 0.5 * (rhouR * uR + rhovR * vR + rhowR * wR));
189
190 // Compute gammas.
191 NekDouble g[] = {gamma,
192 (gamma - 1.0) / (2.0 * gamma),
193 (gamma + 1.0) / (2.0 * gamma),
194 2.0 * gamma / (gamma - 1.0),
195 2.0 / (gamma - 1.0),
196 2.0 / (gamma + 1.0),
197 (gamma - 1.0) / (gamma + 1.0),
198 0.5 * (gamma - 1.0),
199 gamma - 1.0};
200
201 // Compute sound speeds.
202 NekDouble cL = sqrt(gamma * pL / rhoL);
203 NekDouble cR = sqrt(gamma * pR / rhoR);
204
205 ASSERTL0(g[4] * (cL + cR) > (uR - uL),
206 "Vacuum is generated by given data.");
207
208 // Guess initial pressure.
209 NekDouble pOld = guessp(g, rhoL, uL, pL, cL, rhoR, uR, pR, cR);
210 NekDouble uDiff = uR - uL;
211 NekDouble p, fL, fR, fLd, fRd, change;
212 int k;
213
214 // Newton-Raphson iteration for pressure in star region.
215 for (k = 0; k < NRITER; ++k)
216 {
217 prefun(g, pOld, rhoL, pL, cL, fL, fLd);
218 prefun(g, pOld, rhoR, pR, cR, fR, fRd);
219 p = pOld - (fL + fR + uDiff) / (fLd + fRd);
220 change = 2 * fabs((p - pOld) / (p + pOld));
221
222 if (change <= TOL)
223 {
224 break;
225 }
226
227 if (p < 0.0)
228 {
229 p = TOL;
230 }
231
232 pOld = p;
233 }
234
235 ASSERTL0(k < NRITER, "Divergence in Newton-Raphson scheme");
236
237 // Compute velocity in star region.
238 NekDouble u = 0.5 * (uL + uR + fR - fL);
239
240 // -- SAMPLE ROUTINE --
241 // The variable S aligns with the Fortran parameter S of the SAMPLE
242 // routine, but is hard-coded as 0 (and should be optimised out by the
243 // compiler). Since we are using a Godunov scheme we pick this as 0 (see
244 // chapter 6 of Toro 2009).
245 const NekDouble S = 0.0;
246
247 // Computed primitive variables.
248 NekDouble outRho, outU, outV, outW, outP;
249
250 if (S <= u)
251 {
252 if (p <= pL)
253 {
254 // Left rarefaction
255 NekDouble shL = uL - cL;
256 if (S <= shL)
257 {
258 // Sampled point is left data state.
259 outRho = rhoL;
260 outU = uL;
261 outV = vL;
262 outW = wL;
263 outP = pL;
264 }
265 else
266 {
267 NekDouble cmL = cL * pow(p / pL, g[1]);
268 NekDouble stL = u - cmL;
269
270 if (S > stL)
271 {
272 // Sampled point is star left state
273 outRho = rhoL * pow(p / pL, 1.0 / gamma);
274 outU = u;
275 outV = vL;
276 outW = wL;
277 outP = p;
278 }
279 else
280 {
281 // Sampled point is inside left fan
282 NekDouble c = g[5] * (cL + g[7] * (uL - S));
283 outRho = rhoL * pow(c / cL, g[4]);
284 outU = g[5] * (cL + g[7] * uL + S);
285 outV = vL;
286 outW = wL;
287 outP = pL * pow(c / cL, g[3]);
288 }
289 }
290 }
291 else
292 {
293 // Left shock
294 NekDouble pmL = p / pL;
295 NekDouble SL = uL - cL * sqrt(g[2] * pmL + g[1]);
296 if (S <= SL)
297 {
298 // Sampled point is left data state
299 outRho = rhoL;
300 outU = uL;
301 outV = vL;
302 outW = wL;
303 outP = pL;
304 }
305 else
306 {
307 // Sampled point is star left state
308 outRho = rhoL * (pmL + g[6]) / (pmL * g[6] + 1.0);
309 outU = u;
310 outV = vL;
311 outW = wL;
312 outP = p;
313 }
314 }
315 }
316 else
317 {
318 if (p > pR)
319 {
320 // Right shock
321 NekDouble pmR = p / pR;
322 NekDouble SR = uR + cR * sqrt(g[2] * pmR + g[1]);
323 if (S >= SR)
324 {
325 // Sampled point is right data state
326 outRho = rhoR;
327 outU = uR;
328 outV = vR;
329 outW = wR;
330 outP = pR;
331 }
332 else
333 {
334 // Sampled point is star right state
335 outRho = rhoR * (pmR + g[6]) / (pmR * g[6] + 1.0);
336 outU = u;
337 outV = vR;
338 outW = wR;
339 outP = p;
340 }
341 }
342 else
343 {
344 // Right rarefaction
345 NekDouble shR = uR + cR;
346
347 if (S >= shR)
348 {
349 // Sampled point is right data state
350 outRho = rhoR;
351 outU = uR;
352 outV = vR;
353 outW = wR;
354 outP = pR;
355 }
356 else
357 {
358 NekDouble cmR = cR * pow(p / pR, g[1]);
359 NekDouble stR = u + cmR;
360
361 if (S <= stR)
362 {
363 // Sampled point is star right state
364 outRho = rhoR * pow(p / pR, 1.0 / gamma);
365 outU = u;
366 outV = vR;
367 outW = wR;
368 outP = p;
369 }
370 else
371 {
372 // Sampled point is inside left fan
373 NekDouble c = g[5] * (cR - g[7] * (uR - S));
374 outRho = rhoR * pow(c / cR, g[4]);
375 outU = g[5] * (-cR + g[7] * uR + S);
376 outV = vR;
377 outW = wR;
378 outP = pR * pow(c / cR, g[3]);
379 }
380 }
381 }
382 }
383
384 // Transform computed primitive variables to fluxes.
385 rhof = outRho * outU;
386 rhouf = outP + outRho * outU * outU;
387 rhovf = outRho * outU * outV;
388 rhowf = outRho * outU * outW;
389 Ef = outU *
390 (outP / (gamma - 1.0) +
391 0.5 * outRho * (outU * outU + outV * outV + outW * outW) + outP);
392}
393} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define TOL
#define NRITER
static std::string solverName
ExactSolverToro(const LibUtilities::SessionReaderSharedPtr &pSession)
static RiemannSolverSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
void v_PointSolve(NekDouble rhoL, NekDouble rhouL, NekDouble rhovL, NekDouble rhowL, NekDouble EL, NekDouble rhoR, NekDouble rhouR, NekDouble rhovR, NekDouble rhowR, NekDouble ER, NekDouble &rhof, NekDouble &rhouf, NekDouble &rhovf, NekDouble &rhowf, NekDouble &Ef) override
Exact Riemann solver for the Euler equations.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
std::map< std::string, RSParamFuncType > m_params
Map of parameter function types.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
RiemannSolverFactory & GetRiemannSolverFactory()
NekDouble guessp(NekDouble g[], NekDouble rhoL, NekDouble uL, NekDouble pL, NekDouble cL, NekDouble rhoR, NekDouble uR, NekDouble pR, NekDouble cR)
Use either PVRS, two-rarefaction or two-shock Riemann solvers to calculate an initial pressure for th...
void prefun(NekDouble *g, NekDouble p, NekDouble dk, NekDouble pk, NekDouble ck, NekDouble &f, NekDouble &fd)
Evaluate pressure functions fL and fR in Newton iteration of Riemann solver (see equation 4....
double NekDouble
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294