74 const std::shared_ptr<AssemblyMap> &pLocToGloMap)
75 :
GlobalLinSys(pKey, pExpList, pLocToGloMap), m_locToGloMap(pLocToGloMap)
105 "GlobalLinSysStaticCond: Not setup for dirForcing");
107 bool atLastLevel = pLocToGloMap->AtLastLevel();
108 int scLevel = pLocToGloMap->GetStaticCondLevel();
110 int nGlobDofs = pLocToGloMap->GetNumGlobalCoeffs();
111 int nLocBndDofs = pLocToGloMap->GetNumLocalBndCoeffs();
112 int nGlobBndDofs = pLocToGloMap->GetNumGlobalBndCoeffs();
113 int nDirBndDofs = pLocToGloMap->GetNumGlobalDirBndCoeffs();
114 int nIntDofs = nGlobDofs - nGlobBndDofs;
116 if ((nGlobDofs - nDirBndDofs) == 0)
126 unused =
m_wsp + 1 * nLocBndDofs;
127 F_bnd1 =
m_wsp + 2 * nLocBndDofs;
128 V_bnd =
m_wsp + 3 * nLocBndDofs;
129 F_int =
m_wsp + 4 * nLocBndDofs;
131 pLocToGloMap->LocalToLocalBnd(pLocOutput, V_bnd);
142 if (nGlobBndDofs - nDirBndDofs)
144 pLocToGloMap->LocalToLocalBnd(pLocInput, F_bnd);
157 F_Bnd = BinvD * F_Int;
159 Vmath::Vsub(nLocBndDofs, F_bnd, 1, F_bnd1, 1, F_bnd, 1);
172 F_Bnd = SchurCompl * V_Bnd;
174 Vmath::Vsub(nLocBndDofs, F_bnd, 1, F_bnd1, 1, F_bnd, 1);
183 Vmath::Vadd(nLocBndDofs, V_bnd, 1, F_bnd1, 1, V_bnd, 1);
194 pLocToGloMap->GetNextLevelLocalToGlobalMap();
198 nextLevLocToGloMap->PatchAssemble(F_bnd, F_bnd);
199 nextLevLocToGloMap->PatchLocalToGlobal(V_bnd, V_bnd);
204 nextLevLocToGloMap->PatchGlobalToLocal(V_bnd, V_bnd);
221 F_Int = F_Int - C * V_Bnd;
237 const std::shared_ptr<AssemblyMap> &pLocToGloMap)
239 int nLocalBnd =
m_locToGloMap.lock()->GetNumLocalBndCoeffs();
240 int nIntDofs =
m_locToGloMap.lock()->GetNumLocalCoeffs() - nLocalBnd;
243 if (pLocToGloMap->AtLastLevel())
250 pLocToGloMap->GetNextLevelLocalToGlobalMap());
267 const std::shared_ptr<AssemblyMap> &pLocToGloMap)
270 int n_exp =
m_expList.lock()->GetNumElmts();
273 pLocToGloMap->GetNumLocalBndCoeffsPerPatch();
275 pLocToGloMap->GetNumLocalIntCoeffsPerPatch();
280 nbdry_size, nbdry_size, blkmatStorage);
282 nbdry_size, nint_size, blkmatStorage);
284 nint_size, nbdry_size, blkmatStorage);
286 nint_size, nint_size, blkmatStorage);
288 for (n = 0; n < n_exp; ++n)
300 m_schurCompl->SetBlock(n, n, t = loc_schur->GetBlock(0, 0));
301 m_BinvD->SetBlock(n, n, t = loc_schur->GetBlock(0, 1));
302 m_C->SetBlock(n, n, t = loc_schur->GetBlock(1, 0));
303 m_invD->SetBlock(n, n, t = loc_schur->GetBlock(1, 1));
326 pLocToGloMap->GetNumLocalBndCoeffsPerPatch();
328 pLocToGloMap->GetNumLocalIntCoeffsPerPatch();
346 int nPatches = pLocToGloMap->GetNumPatches();
352 for (i = 0; i < nPatches; i++)
354 nEntriesA += nBndDofsPerPatch[i] * nBndDofsPerPatch[i];
355 nEntriesB += nBndDofsPerPatch[i] * nIntDofsPerPatch[i];
356 nEntriesC += nIntDofsPerPatch[i] * nBndDofsPerPatch[i];
357 nEntriesD += nIntDofsPerPatch[i] * nIntDofsPerPatch[i];
392 for (i = 0; i < nPatches; i++)
395 tmparray = storageA + cntA;
397 nBndDofsPerPatch[i], nBndDofsPerPatch[i], tmparray, wType);
399 tmparray = storageB + cntB;
401 nBndDofsPerPatch[i], nIntDofsPerPatch[i], tmparray, wType);
403 tmparray = storageC + cntC;
405 nIntDofsPerPatch[i], nBndDofsPerPatch[i], tmparray, wType);
407 tmparray = storageD + cntD;
409 nIntDofsPerPatch[i], nIntDofsPerPatch[i], tmparray, wType,
412 cntA += nBndDofsPerPatch[i] * nBndDofsPerPatch[i];
413 cntB += nBndDofsPerPatch[i] * nIntDofsPerPatch[i];
414 cntC += nIntDofsPerPatch[i] * nBndDofsPerPatch[i];
415 cntD += nIntDofsPerPatch[i] * nIntDofsPerPatch[i];
422 int schurComplSubMatnRows;
427 for (n = cnt = 0; n < SchurCompl->GetNumberOfBlockRows(); ++n)
429 schurComplSubMat = SchurCompl->GetBlock(n, n);
430 schurComplSubMatnRows = schurComplSubMat->GetRows();
433 pLocToGloMap->GetPatchMapFromPrevLevel()->GetPatchId() + cnt;
434 dofId = pLocToGloMap->GetPatchMapFromPrevLevel()->GetDofId() + cnt;
436 pLocToGloMap->GetPatchMapFromPrevLevel()->IsBndDof() + cnt;
437 sign = pLocToGloMap->GetPatchMapFromPrevLevel()->GetSign() + cnt;
440 for (i = 0; i < schurComplSubMatnRows; ++i)
442 int pId = patchId[i];
444 substructuredMat[0][pId]->GetPtr();
446 substructuredMat[1][patchId[i]]->GetPtr();
448 substructuredMat[2][patchId[i]]->GetPtr();
450 int subMat0rows = substructuredMat[0][pId]->GetRows();
451 int subMat1rows = substructuredMat[1][pId]->GetRows();
452 int subMat2rows = substructuredMat[2][pId]->GetRows();
456 for (j = 0; j < schurComplSubMatnRows; ++j)
459 "These values should be equal");
463 subMat0[dofId[i] + dofId[j] * subMat0rows] +=
464 sign[i] *
sign[j] * (*schurComplSubMat)(i, j);
468 subMat1[dofId[i] + dofId[j] * subMat1rows] +=
469 sign[i] *
sign[j] * (*schurComplSubMat)(i, j);
475 for (j = 0; j < schurComplSubMatnRows; ++j)
478 "These values should be equal");
482 subMat2[dofId[i] + dofId[j] * subMat2rows] +=
483 sign[i] *
sign[j] * (*schurComplSubMat)(i, j);
489 if (dofId[i] <= dofId[j])
491 (*subMat3)(dofId[i], dofId[j]) +=
493 (*schurComplSubMat)(i, j);
498 (*subMat3)(dofId[i], dofId[j]) +=
500 (*schurComplSubMat)(i, j);
506 cnt += schurComplSubMatnRows;
511 for (i = 0; i < nPatches; i++)
513 if (nIntDofsPerPatch[i])
516 substructuredMat[0][i]->GetPtr();
518 substructuredMat[1][i]->GetPtr();
520 substructuredMat[2][i]->GetPtr();
521 int subMat0rows = substructuredMat[0][i]->GetRows();
522 int subMat1rows = substructuredMat[1][i]->GetRows();
523 int subMat2rows = substructuredMat[2][i]->GetRows();
524 int subMat2cols = substructuredMat[2][i]->GetColumns();
527 substructuredMat[3][i]->Invert();
529 (*substructuredMat[1][i]) =
530 (*substructuredMat[1][i]) * (*substructuredMat[3][i]);
535 if (subMat1rows && subMat2cols)
537 Blas::Dgemm(
'N',
'N', subMat1rows, subMat2cols, subMat2rows,
538 -1.0, &subMat1[0], subMat1rows, &subMat2[0],
539 subMat2rows, 1.0, &subMat0[0], subMat0rows);
548 pLocToGloMap->GetNumLocalBndCoeffsPerPatch();
550 pLocToGloMap->GetNumLocalIntCoeffsPerPatch();
554 nbdry_size, nbdry_size, blkmatStorage);
556 nbdry_size, nint_size, blkmatStorage);
558 nint_size, nbdry_size, blkmatStorage);
560 nint_size, nint_size, blkmatStorage);
563 for (i = 0; i < nPatches; i++)
565 for (j = 0; j < 4; j++)
568 1.0, substructuredMat[j][i]);
569 blkMatrices[j]->SetBlock(i, i, tmpscalmat);
582 blkMatrices[2], blkMatrices[3], pLocToGloMap);
#define ASSERTL0(condition, msg)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
#define sign(a, b)
return the sign(b)*a
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
const std::weak_ptr< ExpList > m_expList
Local Matrix System.
void SolveLinearSystem(const int pNumRows, const Array< OneD, const NekDouble > &pInput, Array< OneD, NekDouble > &pOutput, const AssemblyMapSharedPtr &locToGloMap, const int pNumDir=0)
Solve the linear system for given input and output vectors.
const GlobalLinSysKey m_linSysKey
Key associated with this linear system.
virtual DNekScalMatSharedPtr v_GetBlock(unsigned int n)
Retrieves the block matrix from n-th expansion using the matrix key provided by the m_linSysKey.
virtual DNekScalBlkMatSharedPtr v_GetStaticCondBlock(unsigned int n)
Retrieves a the static condensation block matrices from n-th expansion using the matrix key provided ...
void Initialise(const std::shared_ptr< AssemblyMap > &pLocToGloMap)
Describe a linear system.
DNekScalBlkMatSharedPtr m_schurCompl
Block Schur complement matrix.
virtual void v_CoeffsFwdTransform(const Array< OneD, NekDouble > &pInput, Array< OneD, NekDouble > &pOutput)
std::weak_ptr< AssemblyMap > m_locToGloMap
Local to global map.
void SetupTopLevel(const std::shared_ptr< AssemblyMap > &locToGloMap)
Set up the storage for the Schur complement or the top level of the multi-level Schur complement.
~GlobalLinSysStaticCond() override
Array< OneD, NekDouble > m_wsp
Workspace array for matrix multiplication.
virtual void v_AssembleSchurComplement(std::shared_ptr< AssemblyMap > pLoctoGloMap)
GlobalLinSysStaticCond(const GlobalLinSysKey &mkey, const std::weak_ptr< ExpList > &pExpList, const std::shared_ptr< AssemblyMap > &locToGloMap)
Constructor for full direct matrix solve.
void v_InitObject() override
virtual void v_PreSolve(int scLevel, Array< OneD, NekDouble > &F_bnd)
virtual void v_BasisFwdTransform(Array< OneD, NekDouble > &pInOut)
GlobalLinSysStaticCondSharedPtr m_recursiveSchurCompl
Schur complement for Direct Static Condensation.
virtual void v_CoeffsBwdTransform(Array< OneD, NekDouble > &pInOut)
void v_Initialise(const std::shared_ptr< AssemblyMap > &locToGloMap) override
Initialise this object.
void v_Solve(const Array< OneD, const NekDouble > &in, Array< OneD, NekDouble > &out, const AssemblyMapSharedPtr &locToGloMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) override
Solve the linear system for given input and output vectors using a specified local to global map.
DNekScalBlkMatSharedPtr m_BinvD
Block matrix.
virtual GlobalLinSysStaticCondSharedPtr v_Recurse(const GlobalLinSysKey &mkey, const std::weak_ptr< ExpList > &pExpList, const DNekScalBlkMatSharedPtr pSchurCompl, const DNekScalBlkMatSharedPtr pBinvD, const DNekScalBlkMatSharedPtr pC, const DNekScalBlkMatSharedPtr pInvD, const std::shared_ptr< AssemblyMap > &locToGloMap)=0
void ConstructNextLevelCondensedSystem(const std::shared_ptr< AssemblyMap > &locToGloMap)
DNekScalBlkMatSharedPtr m_C
Block matrix.
int v_GetNumBlocks() override
Get the number of blocks in this system.
DNekScalBlkMatSharedPtr m_invD
Block matrix.
StdRegions::MatrixType GetMatrixType() const
Return the matrix type.
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
std::shared_ptr< AssemblyMap > AssemblyMapSharedPtr
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void Multiply(NekMatrix< ResultDataType, StandardMatrixTag > &result, const NekMatrix< LhsDataType, LhsMatrixType > &lhs, const ResultDataType &rhs)
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
std::shared_ptr< DNekMat > DNekMatSharedPtr
PointerWrapper
Specifies if the pointer passed to a NekMatrix or NekVector is copied into an internal representation...
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.