Nektar++
ProcessInterpField.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessInterpField.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Interpolate one field to another.
32//
33////////////////////////////////////////////////////////////////////////////////
34#include <iostream>
35#include <string>
36
37#include <boost/geometry.hpp>
38
44
45#include "ProcessInterpField.h"
46
47using namespace std;
48namespace bg = boost::geometry;
49namespace bgi = boost::geometry::index;
50
51namespace Nektar::FieldUtils
52{
53
57 "Interpolates one field to another, requires fromxml, "
58 "fromfld to be defined");
59
61{
62
63 m_config["fromxml"] = ConfigOption(
64 false, "NotSet", "Xml file from which to interpolate field");
65 m_config["fromfld"] = ConfigOption(
66 false, "NotSet", "Fld file from which to interpolate field");
67
68 m_config["clamptolowervalue"] =
69 ConfigOption(false, "-10000000", "Lower bound for interpolation value");
70 m_config["clamptouppervalue"] =
71 ConfigOption(false, "10000000", "Upper bound for interpolation value");
72 m_config["defaultvalue"] =
73 ConfigOption(false, "0", "Default value if point is outside domain");
74 m_config["realmodetoimag"] =
75 ConfigOption(false, "NotSet", "Take fields as sin mode");
76 m_config["distTolerance"] =
77 ConfigOption(false, "1e-5", "The maximum acceptable distance.");
78}
79
81{
82}
83
84void ProcessInterpField::v_Process(po::variables_map &vm)
85{
86 m_f->SetUpExp(vm);
87
88 FieldSharedPtr fromField = std::shared_ptr<Field>(new Field());
89
90 std::vector<std::string> files;
91
92 // set up session file for from field
93 char *argv[] = {const_cast<char *>("FieldConvert"), nullptr};
94 ParseUtils::GenerateVector(m_config["fromxml"].as<string>(), files);
96 1, argv, files,
97 LibUtilities::GetCommFactory().CreateInstance("Serial", 0, 0));
98
99 // Set up range based on min and max of local parallel partition
102
103 int numHomoDir = m_f->m_numHomogeneousDir;
104 int coordim = m_f->m_exp[0]->GetCoordim(0) + numHomoDir;
105 int npts = m_f->m_exp[0]->GetTotPoints();
107
108 for (int i = 0; i < coordim; ++i)
109 {
110 coords[i] = Array<OneD, NekDouble>(npts);
111 }
112
113 for (int i = coordim; i < 3; ++i)
114 {
115 coords[i] = NullNekDouble1DArray;
116 }
117
118 m_f->m_exp[0]->GetCoords(coords[0], coords[1], coords[2]);
119
120 rng->m_checkShape = false;
121 switch (coordim)
122 {
123 case 3:
124 rng->m_doZrange = true;
125 rng->m_zmin = Vmath::Vmin(npts, coords[2], 1);
126 rng->m_zmax = Vmath::Vmax(npts, coords[2], 1);
127 /* Falls through. */
128 case 2:
129 rng->m_doYrange = true;
130 rng->m_ymin = Vmath::Vmin(npts, coords[1], 1);
131 rng->m_ymax = Vmath::Vmax(npts, coords[1], 1);
132 /* Falls through. */
133 case 1:
134 rng->m_doXrange = true;
135 rng->m_xmin = Vmath::Vmin(npts, coords[0], 1);
136 rng->m_xmax = Vmath::Vmax(npts, coords[0], 1);
137 break;
138 default:
139 NEKERROR(ErrorUtil::efatal, "coordim should be <= 3");
140 }
141
142 // setup rng parameters.
143 fromField->m_graph =
144 SpatialDomains::MeshGraphIO::Read(fromField->m_session, rng);
145
146 // Read in local from field partitions
147 const SpatialDomains::ExpansionInfoMap &expansions =
148 fromField->m_graph->GetExpansionInfo();
149
150 // check for case where no elements are specified on this
151 // parallel partition
152 if (!expansions.size())
153 {
154 return;
155 }
156
157 Array<OneD, int> ElementGIDs(expansions.size());
158
159 int i = 0;
160 for (auto &expIt : expansions)
161 {
162 ElementGIDs[i++] = expIt.second->m_geomShPtr->GetGlobalID();
163 }
164
165 string fromfld = m_config["fromfld"].as<string>();
166 m_f->FieldIOForFile(fromfld)->Import(
167 fromfld, fromField->m_fielddef, fromField->m_data,
169
170 int fromNumHomoDir = fromField->m_fielddef[0]->m_numHomogeneousDir;
171 for (i = 0; i < fromField->m_fielddef.size(); ++i)
172 {
173 int d1 = fromField->m_fielddef[i]->m_basis.size();
174 d1 -= 1;
175 if (d1 >= 0 && (fromField->m_fielddef[i]->m_basis[d1] ==
177 fromField->m_fielddef[i]->m_basis[d1] ==
179 {
180 fromField->m_fielddef[i]->m_homogeneousZIDs[0] += 2;
181 fromField->m_fielddef[i]->m_numModes[d1] = 4;
182 fromField->m_fielddef[i]->m_basis[d1] = LibUtilities::eFourier;
183 }
184 }
185
186 //----------------------------------------------
187 // Set up Expansion information to use mode order from field
188 fromField->m_graph->SetExpansionInfo(fromField->m_fielddef);
189
190 int nfields = fromField->m_fielddef[0]->m_fields.size();
191
192 fromField->m_exp.resize(nfields);
193 fromField->m_exp[0] = fromField->SetUpFirstExpList(fromNumHomoDir, true);
194
195 m_f->m_exp.resize(nfields);
196
197 // declare auxiliary fields.
198 for (i = 1; i < nfields; ++i)
199 {
200 m_f->m_exp[i] = m_f->AppendExpList(numHomoDir);
201 fromField->m_exp[i] = fromField->AppendExpList(fromNumHomoDir);
202 }
203
204 // load field into expansion in fromfield.
205 set<int> sinmode;
206 if (m_config["realmodetoimag"].as<string>().compare("NotSet"))
207 {
208 ParseUtils::GenerateVariableSet(m_config["realmodetoimag"].as<string>(),
209 m_f->m_variables, sinmode);
210 }
211 for (int j = 0; j < nfields; ++j)
212 {
213 for (i = 0; i < fromField->m_fielddef.size(); i++)
214 {
215 fromField->m_exp[j]->ExtractDataToCoeffs(
216 fromField->m_fielddef[i], fromField->m_data[i],
217 fromField->m_fielddef[0]->m_fields[j],
218 fromField->m_exp[j]->UpdateCoeffs());
219 }
220 if (fromNumHomoDir == 1)
221 {
222 fromField->m_exp[j]->SetWaveSpace(true);
223 if (sinmode.count(j))
224 {
225 int Ncoeff = fromField->m_exp[j]->GetPlane(2)->GetNcoeffs();
227 Ncoeff, -1., fromField->m_exp[j]->GetPlane(2)->GetCoeffs(),
228 1, fromField->m_exp[j]->GetPlane(3)->UpdateCoeffs(), 1);
229 Vmath::Zero(Ncoeff,
230 fromField->m_exp[j]->GetPlane(2)->UpdateCoeffs(),
231 1);
232 }
233 }
234 fromField->m_exp[j]->BwdTrans(fromField->m_exp[j]->GetCoeffs(),
235 fromField->m_exp[j]->UpdatePhys());
236 }
237
238 int nq1 = m_f->m_exp[0]->GetTotPoints();
239
240 NekDouble clamp_low = m_config["clamptolowervalue"].as<NekDouble>();
241 NekDouble clamp_up = m_config["clamptouppervalue"].as<NekDouble>();
242 NekDouble def_value = m_config["defaultvalue"].as<NekDouble>();
243 NekDouble tolerance = m_config["distTolerance"].as<NekDouble>();
244
246 if (m_f->m_verbose && m_f->m_comm->TreatAsRankZero())
247 {
249 }
250
251 interp.Interpolate(fromField->m_exp, m_f->m_exp, def_value, tolerance);
252
253 if (m_f->m_verbose && m_f->m_comm->TreatAsRankZero())
254 {
255 cout << endl;
256 }
257
258 for (int i = 0; i < nfields; ++i)
259 {
260 for (int j = 0; j < nq1; ++j)
261 {
262 if (m_f->m_exp[i]->GetPhys()[j] > clamp_up)
263 {
264 m_f->m_exp[i]->UpdatePhys()[j] = clamp_up;
265 }
266 else if (m_f->m_exp[i]->GetPhys()[j] < clamp_low)
267 {
268 m_f->m_exp[i]->UpdatePhys()[j] = clamp_low;
269 }
270 }
271 m_f->m_exp[i]->FwdTransLocalElmt(m_f->m_exp[i]->GetPhys(),
272 m_f->m_exp[i]->UpdateCoeffs());
273 }
274 // save field names
275 m_f->m_variables = fromField->m_fielddef[0]->m_fields;
276}
277
279 const int goal) const
280{
281 LibUtilities::PrintProgressbar(position, goal, "Interpolating");
282}
283} // namespace Nektar::FieldUtils
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202
A class that contains algorithms for interpolation between pts fields, expansions and different meshe...
FieldSharedPtr m_f
Field object.
Definition: Module.h:239
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:272
void PrintProgressbar(const int position, const int goal) const
void v_Process(po::variables_map &vm) override
Write mesh to output file.
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Abstract base class for processing modules.
Definition: Module.h:301
void SetProgressCallback(FuncPointerT func, ObjectPointerT obj)
sets a callback funtion which gets called every time the interpolation progresses
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static SessionReaderSharedPtr CreateInstance(int argc, char *argv[])
Creates an instance of the SessionReader class.
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
static bool GenerateVariableSet(const std::string &str, const std::vector< std::string > &variables, std::set< int > &out)
Generate a set of variable locations.
Definition: ParseUtils.cpp:168
static bool GenerateVector(const std::string &str, std::vector< T > &out)
Takes a comma-separated string and converts it to entries in a vector.
Definition: ParseUtils.cpp:130
static MeshGraphSharedPtr Read(const LibUtilities::SessionReaderSharedPtr pSession, LibUtilities::DomainRangeShPtr rng=LibUtilities::NullDomainRangeShPtr, bool fillGraph=true, SpatialDomains::MeshGraphSharedPtr partitionedGraph=nullptr)
Definition: MeshGraphIO.cpp:53
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:1026
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:180
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:47
int PrintProgressbar(const int position, const int goal, const std::string message, int lastprogress=-1)
Prints a progressbar.
Definition: Progressbar.hpp:65
static FieldMetaDataMap NullFieldMetaDataMap
Definition: FieldIO.h:51
std::shared_ptr< DomainRange > DomainRangeShPtr
Definition: DomainRange.h:64
CommFactory & GetCommFactory()
@ eFourierHalfModeIm
Fourier Modified expansions with just the imaginary part of the first mode .
Definition: BasisType.h:68
@ eFourierHalfModeRe
Fourier Modified expansions with just the real part of the first mode .
Definition: BasisType.h:66
@ eFourier
Fourier Expansion .
Definition: BasisType.h:55
std::map< int, ExpansionInfoShPtr > ExpansionInfoMap
Definition: MeshGraph.h:141
static Array< OneD, NekDouble > NullNekDouble1DArray
double NekDouble
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.hpp:725
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.hpp:644
STL namespace.
Represents a command-line configuration option.
Definition: Module.h:129