Nektar++
StdTriExp.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: StdTriExp.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Triangle routines built upon StdExpansion2D
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar::StdRegions
40{
42 const LibUtilities::BasisKey &Bb)
43 : StdExpansion(LibUtilities::StdTriData::getNumberOfCoefficients(
44 Ba.GetNumModes(), Bb.GetNumModes()),
45 2, Ba, Bb),
46 StdExpansion2D(LibUtilities::StdTriData::getNumberOfCoefficients(
47 Ba.GetNumModes(), Bb.GetNumModes()),
48 Ba, Bb)
49{
50 ASSERTL0(Ba.GetNumModes() <= Bb.GetNumModes(),
51 "order in 'a' direction is higher than order "
52 "in 'b' direction");
53}
54
55//-------------------------------
56// Integration Methods
57//-------------------------------
59{
60 int i;
61 int nquad1 = m_base[1]->GetNumPoints();
62 Array<OneD, NekDouble> w1_tmp(nquad1);
63
67
68 switch (m_base[1]->GetPointsType())
69 {
70 case LibUtilities::eGaussRadauMAlpha1Beta0: // (0,1) Jacobi Inner
71 // product
72 {
73 Vmath::Smul(nquad1, 0.5, w1, 1, w1_tmp, 1);
74 break;
75 }
76 default:
77 {
78 // include jacobian factor on whatever coordinates are defined.
79 for (i = 0; i < nquad1; ++i)
80 {
81 w1_tmp[i] = 0.5 * (1 - z1[i]) * w1[i];
82 }
83 break;
84 }
85 }
86
87 return StdExpansion2D::Integral(inarray, w0, w1_tmp);
88}
89
90//-----------------------------
91// Differentiation Methods
92//-----------------------------
93
94/**
95 * \brief Calculate the derivative of the physical points.
96 *
97 * \f$ \frac{\partial u}{\partial x_1} = \left .
98 * \frac{2.0}{1-\eta_2} \frac{\partial u}{\partial d\eta_1}
99 * \right |_{\eta_2}\f$
100 *
101 * \f$ \frac{\partial u}{\partial x_2} = \left .
102 * \frac{1+\eta_1}{1-\eta_2} \frac{\partial u}{\partial d\eta_1}
103 * \right |_{\eta_2} + \left . \frac{\partial u}{\partial d\eta_2}
104 * \right |_{\eta_1} \f$
105 */
109 [[maybe_unused]] Array<OneD, NekDouble> &out_d2)
110{
111 int i;
112 int nquad0 = m_base[0]->GetNumPoints();
113 int nquad1 = m_base[1]->GetNumPoints();
114 Array<OneD, NekDouble> wsp(std::max(nquad0, nquad1));
115
116 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
117 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
118
119 // set up geometric factor: 2/(1-z1)
120 Vmath::Sadd(nquad1, -1.0, z1, 1, wsp, 1);
121 Vmath::Sdiv(nquad1, -2.0, wsp, 1, wsp, 1);
122
123 if (out_d0.size() > 0)
124 {
125 PhysTensorDeriv(inarray, out_d0, out_d1);
126
127 for (i = 0; i < nquad1; ++i)
128 {
129 Blas::Dscal(nquad0, wsp[i], &out_d0[0] + i * nquad0, 1);
130 }
131
132 // if no d1 required do not need to calculate both deriv
133 if (out_d1.size() > 0)
134 {
135 // set up geometric factor: (1+z0)/2
136 Vmath::Sadd(nquad0, 1.0, z0, 1, wsp, 1);
137 Vmath::Smul(nquad0, 0.5, wsp, 1, wsp, 1);
138
139 for (i = 0; i < nquad1; ++i)
140 {
141 Vmath::Vvtvp(nquad0, &wsp[0], 1, &out_d0[0] + i * nquad0, 1,
142 &out_d1[0] + i * nquad0, 1,
143 &out_d1[0] + i * nquad0, 1);
144 }
145 }
146 }
147 else if (out_d1.size() > 0)
148 {
149 Array<OneD, NekDouble> diff0(nquad0 * nquad1);
150 PhysTensorDeriv(inarray, diff0, out_d1);
151
152 for (i = 0; i < nquad1; ++i)
153 {
154 Blas::Dscal(nquad0, wsp[i], &diff0[0] + i * nquad0, 1);
155 }
156
157 Vmath::Sadd(nquad0, 1.0, z0, 1, wsp, 1);
158 Vmath::Smul(nquad0, 0.5, wsp, 1, wsp, 1);
159
160 for (i = 0; i < nquad1; ++i)
161 {
162 Vmath::Vvtvp(nquad0, &wsp[0], 1, &diff0[0] + i * nquad0, 1,
163 &out_d1[0] + i * nquad0, 1, &out_d1[0] + i * nquad0,
164 1);
165 }
166 }
167}
168
169void StdTriExp::v_PhysDeriv(const int dir,
170 const Array<OneD, const NekDouble> &inarray,
171 Array<OneD, NekDouble> &outarray)
172{
173 switch (dir)
174 {
175 case 0:
176 {
177 v_PhysDeriv(inarray, outarray, NullNekDouble1DArray);
178 break;
179 }
180 case 1:
181 {
182 v_PhysDeriv(inarray, NullNekDouble1DArray, outarray);
183 break;
184 }
185 default:
186 {
187 ASSERTL1(false, "input dir is out of range");
188 break;
189 }
190 }
191}
192
196 [[maybe_unused]] Array<OneD, NekDouble> &out_d2)
197{
198 StdTriExp::v_PhysDeriv(inarray, out_d0, out_d1);
199}
200
201void StdTriExp::v_StdPhysDeriv(const int dir,
202 const Array<OneD, const NekDouble> &inarray,
203 Array<OneD, NekDouble> &outarray)
204{
205 StdTriExp::v_PhysDeriv(dir, inarray, outarray);
206}
207
208//---------------------------------------
209// Transforms
210//---------------------------------------
211
212/**
213 * \brief Backward tranform for triangular elements
214 *
215 * @note 'q' (base[1]) runs fastest in this element.
216 */
218 Array<OneD, NekDouble> &outarray)
219{
220 v_BwdTrans_SumFac(inarray, outarray);
221}
222
224 Array<OneD, NekDouble> &outarray)
225{
227 m_base[0]->GetNumModes());
228
229 BwdTrans_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(), inarray,
230 outarray, wsp);
231}
232
234 const Array<OneD, const NekDouble> &base0,
235 const Array<OneD, const NekDouble> &base1,
236 const Array<OneD, const NekDouble> &inarray,
238 [[maybe_unused]] bool doCheckCollDir0,
239 [[maybe_unused]] bool doCheckCollDir1)
240{
241 int i;
242 int mode;
243 int nquad0 = m_base[0]->GetNumPoints();
244 int nquad1 = m_base[1]->GetNumPoints();
245 int nmodes0 = m_base[0]->GetNumModes();
246 int nmodes1 = m_base[1]->GetNumModes();
247
248 ASSERTL1(wsp.size() >= nquad1 * nmodes0,
249 "Workspace size is not sufficient");
252 "Basis[1] is not of general tensor type");
253
254 for (i = mode = 0; i < nmodes0; ++i)
255 {
256 Blas::Dgemv('N', nquad1, nmodes1 - i, 1.0, base1.get() + mode * nquad1,
257 nquad1, &inarray[0] + mode, 1, 0.0, &wsp[0] + i * nquad1,
258 1);
259 mode += nmodes1 - i;
260 }
261
262 // fix for modified basis by splitting top vertex mode
264 {
265 Blas::Daxpy(nquad1, inarray[1], base1.get() + nquad1, 1,
266 &wsp[0] + nquad1, 1);
267 }
268
269 Blas::Dgemm('N', 'T', nquad0, nquad1, nmodes0, 1.0, base0.get(), nquad0,
270 &wsp[0], nquad1, 0.0, &outarray[0], nquad0);
271}
272
274 Array<OneD, NekDouble> &outarray)
275{
276 v_IProductWRTBase(inarray, outarray);
277
278 // get Mass matrix inverse
279 StdMatrixKey masskey(eInvMass, DetShapeType(), *this);
280 DNekMatSharedPtr matsys = GetStdMatrix(masskey);
281
282 // copy inarray in case inarray == outarray
283 NekVector<NekDouble> in(m_ncoeffs, outarray, eCopy);
285
286 out = (*matsys) * in;
287}
288
290 const Array<OneD, const NekDouble> &inarray,
291 Array<OneD, NekDouble> &outarray)
292{
293 int i, j;
294 int npoints[2] = {m_base[0]->GetNumPoints(), m_base[1]->GetNumPoints()};
295 int nmodes[2] = {m_base[0]->GetNumModes(), m_base[1]->GetNumModes()};
296
297 fill(outarray.get(), outarray.get() + m_ncoeffs, 0.0);
298
299 Array<OneD, NekDouble> physEdge[3];
300 Array<OneD, NekDouble> coeffEdge[3];
301 for (i = 0; i < 3; i++)
302 {
303 physEdge[i] = Array<OneD, NekDouble>(npoints[i != 0]);
304 coeffEdge[i] = Array<OneD, NekDouble>(nmodes[i != 0]);
305 }
306
307 for (i = 0; i < npoints[0]; i++)
308 {
309 physEdge[0][i] = inarray[i];
310 }
311
312 for (i = 0; i < npoints[1]; i++)
313 {
314 physEdge[1][i] = inarray[npoints[0] - 1 + i * npoints[0]];
315 physEdge[2][i] =
316 inarray[(npoints[1] - 1) * npoints[0] - i * npoints[0]];
317 }
318
319 StdSegExpSharedPtr segexp[2] = {
321 m_base[0]->GetBasisKey()),
323 m_base[1]->GetBasisKey())};
324
326 Array<OneD, int> signArray;
328
329 for (i = 0; i < 3; i++)
330 {
331 segexp[i != 0]->FwdTransBndConstrained(physEdge[i], coeffEdge[i]);
332
333 GetTraceToElementMap(i, mapArray, signArray);
334 for (j = 0; j < nmodes[i != 0]; j++)
335 {
336 sign = (NekDouble)signArray[j];
337 outarray[mapArray[j]] = sign * coeffEdge[i][j];
338 }
339 }
340
343
344 StdMatrixKey masskey(eMass, DetShapeType(), *this);
345 MassMatrixOp(outarray, tmp0, masskey);
346 v_IProductWRTBase(inarray, tmp1);
347
348 Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
349
350 // get Mass matrix inverse (only of interior DOF)
351 // use block (1,1) of the static condensed system
352 // note: this block alreay contains the inverse matrix
353 DNekMatSharedPtr matsys =
354 (m_stdStaticCondMatrixManager[masskey])->GetBlock(1, 1);
355
356 int nBoundaryDofs = v_NumBndryCoeffs();
357 int nInteriorDofs = m_ncoeffs - nBoundaryDofs;
358
359 Array<OneD, NekDouble> rhs(nInteriorDofs);
360 Array<OneD, NekDouble> result(nInteriorDofs);
361
362 v_GetInteriorMap(mapArray);
363
364 for (i = 0; i < nInteriorDofs; i++)
365 {
366 rhs[i] = tmp1[mapArray[i]];
367 }
368
369 Blas::Dgemv('N', nInteriorDofs, nInteriorDofs, 1.0, &(matsys->GetPtr())[0],
370 nInteriorDofs, rhs.get(), 1, 0.0, result.get(), 1);
371
372 for (i = 0; i < nInteriorDofs; i++)
373 {
374 outarray[mapArray[i]] = result[i];
375 }
376}
377
378//---------------------------------------
379// Inner product functions
380//---------------------------------------
381
382/**
383 * \brief Calculate the inner product of inarray with respect to the
384 * basis B=base0[p]*base1[pq] and put into outarray.
385 *
386 * \f$
387 * \begin{array}{rcl}
388 * I_{pq} = (\phi^A_q \phi^B_{pq}, u) &=&
389 * \sum_{i=0}^{nq_0}\sum_{j=0}^{nq_1}
390 * \phi^A_p(\eta_{0,i})\phi^B_{pq}(\eta_{1,j}) w^0_i w^1_j
391 * u(\xi_{0,i} \xi_{1,j}) \\
392 * & = & \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i})
393 * \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) \tilde{u}_{i,j}
394 * \end{array}
395 * \f$
396 *
397 * where
398 *
399 * \f$ \tilde{u}_{i,j} = w^0_i w^1_j u(\xi_{0,i},\xi_{1,j}) \f$
400 *
401 * which can be implemented as
402 *
403 * \f$ f_{pj} = \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i})
404 * \tilde{u}_{i,j}
405 * \rightarrow {\bf B_1 U} \f$
406 * \f$ I_{pq} = \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) f_{pj}
407 * \rightarrow {\bf B_2[p*skip] f[skip]} \f$
408 *
409 * \b Recall: \f$ \eta_{1} = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \,
410 * \eta_2 = \xi_2\f$
411 *
412 * \b Note: For the orthgonality of this expansion to be realised the
413 * 'q' ordering must run fastest in contrast to the Quad and Hex
414 * ordering where 'p' index runs fastest to be consistent with the
415 * quadrature ordering.
416 *
417 * In the triangular space the i (i.e. \f$\eta_1\f$ direction)
418 * ordering still runs fastest by convention.
419 */
421 Array<OneD, NekDouble> &outarray)
422{
423 StdTriExp::v_IProductWRTBase_SumFac(inarray, outarray);
424}
425
427 const Array<OneD, const NekDouble> &inarray,
428 Array<OneD, NekDouble> &outarray, bool multiplybyweights)
429{
430 int nquad0 = m_base[0]->GetNumPoints();
431 int nquad1 = m_base[1]->GetNumPoints();
432 int order0 = m_base[0]->GetNumModes();
433
434 if (multiplybyweights)
435 {
436 Array<OneD, NekDouble> tmp(nquad0 * nquad1 + nquad1 * order0);
437 Array<OneD, NekDouble> wsp(tmp + nquad0 * nquad1);
438
439 // multiply by integration constants
440 MultiplyByQuadratureMetric(inarray, tmp);
442 m_base[1]->GetBdata(), tmp, outarray, wsp);
443 }
444 else
445 {
446 Array<OneD, NekDouble> wsp(nquad1 * order0);
448 m_base[1]->GetBdata(), inarray, outarray,
449 wsp);
450 }
451}
452
454 const Array<OneD, const NekDouble> &base0,
455 const Array<OneD, const NekDouble> &base1,
456 const Array<OneD, const NekDouble> &inarray,
458 [[maybe_unused]] bool doCheckCollDir0,
459 [[maybe_unused]] bool doCheckCollDir1)
460{
461 int i;
462 int mode;
463 int nquad0 = m_base[0]->GetNumPoints();
464 int nquad1 = m_base[1]->GetNumPoints();
465 int nmodes0 = m_base[0]->GetNumModes();
466 int nmodes1 = m_base[1]->GetNumModes();
467
468 ASSERTL1(wsp.size() >= nquad1 * nmodes0,
469 "Workspace size is not sufficient");
470
471 Blas::Dgemm('T', 'N', nquad1, nmodes0, nquad0, 1.0, inarray.get(), nquad0,
472 base0.get(), nquad0, 0.0, wsp.get(), nquad1);
473
474 // Inner product with respect to 'b' direction
475 for (mode = i = 0; i < nmodes0; ++i)
476 {
477 Blas::Dgemv('T', nquad1, nmodes1 - i, 1.0, base1.get() + mode * nquad1,
478 nquad1, wsp.get() + i * nquad1, 1, 0.0,
479 outarray.get() + mode, 1);
480 mode += nmodes1 - i;
481 }
482
483 // fix for modified basis by splitting top vertex mode
485 {
486 outarray[1] +=
487 Blas::Ddot(nquad1, base1.get() + nquad1, 1, wsp.get() + nquad1, 1);
488 }
489}
490
492 const int dir, const Array<OneD, const NekDouble> &inarray,
493 Array<OneD, NekDouble> &outarray)
494{
495 StdTriExp::v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
496}
497
499 const int dir, const Array<OneD, const NekDouble> &inarray,
500 Array<OneD, NekDouble> &outarray)
501{
502 int i;
503 int nquad0 = m_base[0]->GetNumPoints();
504 int nquad1 = m_base[1]->GetNumPoints();
505 int nqtot = nquad0 * nquad1;
506 int nmodes0 = m_base[0]->GetNumModes();
507 int wspsize = max(max(nqtot, m_ncoeffs), nquad1 * nmodes0);
508
509 Array<OneD, NekDouble> gfac0(2 * wspsize);
510 Array<OneD, NekDouble> tmp0(gfac0 + wspsize);
511
512 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
513
514 // set up geometric factor: 2/(1-z1)
515 for (i = 0; i < nquad1; ++i)
516 {
517 gfac0[i] = 2.0 / (1 - z1[i]);
518 }
519
520 for (i = 0; i < nquad1; ++i)
521 {
522 Vmath::Smul(nquad0, gfac0[i], &inarray[0] + i * nquad0, 1,
523 &tmp0[0] + i * nquad0, 1);
524 }
525
526 MultiplyByQuadratureMetric(tmp0, tmp0);
527
528 switch (dir)
529 {
530 case 0:
531 {
532 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
533 m_base[1]->GetBdata(), tmp0, outarray,
534 gfac0);
535 break;
536 }
537 case 1:
538 {
540 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
541
542 for (i = 0; i < nquad0; ++i)
543 {
544 gfac0[i] = 0.5 * (1 + z0[i]);
545 }
546
547 for (i = 0; i < nquad1; ++i)
548 {
549 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp0[0] + i * nquad0, 1,
550 &tmp0[0] + i * nquad0, 1);
551 }
552
553 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
554 m_base[1]->GetBdata(), tmp0, tmp3,
555 gfac0);
556
557 MultiplyByQuadratureMetric(inarray, tmp0);
559 m_base[1]->GetDbdata(), tmp0, outarray,
560 gfac0);
561 Vmath::Vadd(m_ncoeffs, &tmp3[0], 1, &outarray[0], 1, &outarray[0],
562 1);
563 break;
564 }
565 default:
566 {
567 ASSERTL1(false, "input dir is out of range");
568 break;
569 }
570 }
571}
572
573//---------------------------------------
574// Evaluation functions
575//---------------------------------------
576
579{
580 NekDouble d1 = 1. - xi[1];
581 if (fabs(d1) < NekConstants::kNekZeroTol)
582 {
583 if (d1 >= 0.)
584 {
586 }
587 else
588 {
590 }
591 }
592 eta[0] = 2. * (1. + xi[0]) / d1 - 1.0;
593 eta[1] = xi[1];
594}
595
598{
599 xi[0] = (1.0 + eta[0]) * (1.0 - eta[1]) * 0.5 - 1.0;
600 xi[1] = eta[1];
601}
602
603void StdTriExp::v_FillMode(const int mode, Array<OneD, NekDouble> &outarray)
604{
605 int i, m;
606 int nquad0 = m_base[0]->GetNumPoints();
607 int nquad1 = m_base[1]->GetNumPoints();
608 int order0 = m_base[0]->GetNumModes();
609 int order1 = m_base[1]->GetNumModes();
610 int mode0 = 0;
611 Array<OneD, const NekDouble> base0 = m_base[0]->GetBdata();
612 Array<OneD, const NekDouble> base1 = m_base[1]->GetBdata();
613
614 ASSERTL2(mode <= m_ncoeffs, "calling argument mode is larger than "
615 "total expansion order");
616
617 m = order1;
618 for (i = 0; i < order0; ++i, m += order1 - i)
619 {
620 if (m > mode)
621 {
622 mode0 = i;
623 break;
624 }
625 }
626
627 // deal with top vertex mode in modified basis
628 if (mode == 1 && m_base[0]->GetBasisType() == LibUtilities::eModified_A)
629 {
630 Vmath::Fill(nquad0 * nquad1, 1.0, outarray, 1);
631 }
632 else
633 {
634 for (i = 0; i < nquad1; ++i)
635 {
636 Vmath::Vcopy(nquad0, (NekDouble *)(base0.get() + mode0 * nquad0), 1,
637 &outarray[0] + i * nquad0, 1);
638 }
639 }
640
641 for (i = 0; i < nquad0; ++i)
642 {
643 Vmath::Vmul(nquad1, (NekDouble *)(base1.get() + mode * nquad1), 1,
644 &outarray[0] + i, nquad0, &outarray[0] + i, nquad0);
645 }
646}
647
649 const Array<OneD, const NekDouble> &coords, int mode)
650{
652 LocCoordToLocCollapsed(coords, coll);
653
654 // From mode we need to determine mode0 and mode1 in the (p,q)
655 // direction. mode1 can be directly inferred from mode.
656 const int nm1 = m_base[1]->GetNumModes();
657 const double c = 1 + 2 * nm1;
658 const int mode0 = floor(0.5 * (c - sqrt(c * c - 8 * mode)));
659
660 if (mode == 1 && m_base[0]->GetBasisType() == LibUtilities::eModified_A)
661 {
662 // Account for collapsed vertex.
663 return StdExpansion::BaryEvaluateBasis<1>(coll[1], 1);
664 }
665 else
666 {
667 return StdExpansion::BaryEvaluateBasis<0>(coll[0], mode0) *
668 StdExpansion::BaryEvaluateBasis<1>(coll[1], mode);
669 }
670}
671
673 const Array<OneD, const NekDouble> &inarray,
674 std::array<NekDouble, 3> &firstOrderDerivs)
675{
676 // Collapse coordinates
677 Array<OneD, NekDouble> coll(2, 0.0);
678 LocCoordToLocCollapsed(coord, coll);
679
680 // If near singularity do the old interpolation matrix method
681 if ((1 - coll[1]) < 1e-5)
682 {
683 int totPoints = GetTotPoints();
684 Array<OneD, NekDouble> EphysDeriv0(totPoints), EphysDeriv1(totPoints);
685 PhysDeriv(inarray, EphysDeriv0, EphysDeriv1);
686
688 I[0] = GetBase()[0]->GetI(coll);
689 I[1] = GetBase()[1]->GetI(coll + 1);
690
691 firstOrderDerivs[0] = PhysEvaluate(I, EphysDeriv0);
692 firstOrderDerivs[1] = PhysEvaluate(I, EphysDeriv1);
693 return PhysEvaluate(I, inarray);
694 }
695
696 // set up geometric factor: 2.0/(1.0-z1)
697 NekDouble fac0 = 2 / (1 - coll[1]);
698
699 NekDouble val = BaryTensorDeriv(coll, inarray, firstOrderDerivs);
700
701 // Copy d0 into temp for d1
702 NekDouble temp;
703 temp = firstOrderDerivs[0];
704
705 // Multiply by geometric factor
706 firstOrderDerivs[0] = firstOrderDerivs[0] * fac0;
707
708 // set up geometric factor: (1+z0)/(1-z1)
709 NekDouble fac1 = fac0 * (coll[0] + 1) / 2;
710
711 // Multiply out_d0 by geometric factor and add to out_d1
712 firstOrderDerivs[1] += fac1 * temp;
713
714 return val;
715}
716
718{
719 return 3;
720}
721
723{
724 return 3;
725}
726
728{
730}
731
733{
735 "BasisType is not a boundary interior form");
737 "BasisType is not a boundary interior form");
738
739 return 3 + (GetBasisNumModes(0) - 2) + 2 * (GetBasisNumModes(1) - 2);
740}
741
743{
745 "BasisType is not a boundary interior form");
747 "BasisType is not a boundary interior form");
748
749 return GetBasisNumModes(0) + 2 * GetBasisNumModes(1);
750}
751
752int StdTriExp::v_GetTraceNcoeffs(const int i) const
753{
754 ASSERTL2(i >= 0 && i <= 2, "edge id is out of range");
755
756 if (i == 0)
757 {
758 return GetBasisNumModes(0);
759 }
760 else
761 {
762 return GetBasisNumModes(1);
763 }
764}
765
767{
768 ASSERTL2(i >= 0 && i <= 2, "edge id is out of range");
769
770 if (i == 0)
771 {
772 return GetBasisNumModes(0) - 2;
773 }
774 else
775 {
776 return GetBasisNumModes(1) - 2;
777 }
778}
779
780int StdTriExp::v_GetTraceNumPoints(const int i) const
781{
782 ASSERTL2((i >= 0) && (i <= 2), "edge id is out of range");
783
784 if (i == 0)
785 {
786 return GetNumPoints(0);
787 }
788 else
789 {
790 return GetNumPoints(1);
791 }
792}
793
795 const std::vector<unsigned int> &nummodes, int &modes_offset)
796{
798 nummodes[modes_offset], nummodes[modes_offset + 1]);
799 modes_offset += 2;
800
801 return nmodes;
802}
803
805 Array<OneD, NekDouble> &coords_1,
806 [[maybe_unused]] Array<OneD, NekDouble> &coords_2)
807{
808 Array<OneD, const NekDouble> z0 = m_base[0]->GetZ();
809 Array<OneD, const NekDouble> z1 = m_base[1]->GetZ();
810 int nq0 = GetNumPoints(0);
811 int nq1 = GetNumPoints(1);
812 int i, j;
813
814 for (i = 0; i < nq1; ++i)
815 {
816 for (j = 0; j < nq0; ++j)
817 {
818 coords_0[i * nq0 + j] = (1 + z0[j]) * (1 - z1[i]) / 2.0 - 1.0;
819 }
820 Vmath::Fill(nq0, z1[i], &coords_1[0] + i * nq0, 1);
821 }
822}
823
825{
826 return m_base[0]->GetBasisType() == LibUtilities::eModified_A &&
827 m_base[1]->GetBasisType() == LibUtilities::eModified_B;
828}
829
831 const int i, [[maybe_unused]] const int j) const
832{
833 ASSERTL2(i >= 0 && i <= 2, "edge id is out of range");
834
835 // Get basiskey (0 or 1) according to edge id i
836 int dir = (i != 0);
837
838 switch (m_base[dir]->GetBasisType())
839 {
842 {
843 switch (m_base[dir]->GetPointsType())
844 {
846 {
847 return m_base[dir]->GetBasisKey();
848 }
849 break;
850 default:
851 {
853 "Unexpected points distribution " +
855 [m_base[dir]->GetPointsType()] +
856 " in StdTriExp::v_GetTraceBasisKey");
857 }
858 }
859 }
860 break;
862 {
863 switch (m_base[dir]->GetPointsType())
864 {
865 case LibUtilities::eGaussRadauMAlpha1Beta0:
866 {
868 m_base[dir]
869 ->GetBasisKey()
870 .GetPointsKey()
871 .GetNumPoints() +
872 1,
875 m_base[dir]->GetNumModes(),
876 pkey);
877 }
878 break;
879 // Currently this does not increase the points by
880 // 1 since when using this quadrature we are
881 // presuming it is already been increased by one
882 // when comopared to
883 // GaussRadauMAlpha1Beta0. Currently used in the
884 // GJP option
885 //
886 // Note have put down it back to numpoints +1 to
887 // test for use on tri faces and GJP.
889 {
891 m_base[dir]
892 ->GetBasisKey()
893 .GetPointsKey()
894 .GetNumPoints() +
895 1,
898 m_base[dir]->GetNumModes(),
899 pkey);
900 }
901 break;
903 {
905 m_base[dir]
906 ->GetBasisKey()
907 .GetPointsKey()
908 .GetNumPoints() +
909 1,
912 m_base[dir]->GetNumModes(),
913 pkey);
914 }
915 break;
916 default:
917 {
919 "Unexpected points distribution " +
921 [m_base[dir]->GetPointsType()] +
922 " in StdTriExp::v_GetTraceBasisKey");
923 }
924 }
925 }
926 break;
928 {
929 switch (m_base[dir]->GetPointsType())
930 {
931 case LibUtilities::eGaussRadauMAlpha1Beta0:
932 {
934 m_base[dir]
935 ->GetBasisKey()
936 .GetPointsKey()
937 .GetNumPoints() +
938 1,
941 m_base[dir]->GetNumModes(),
942 pkey);
943 }
944 break;
945 default:
946 {
948 "Unexpected points distribution " +
950 [m_base[dir]->GetPointsType()] +
951 " in StdTriExp::v_GetTraceBasisKey");
952 }
953 }
954 }
955 break;
956 default:
957 {
959 "Information not available to set edge key");
960 }
961 }
963}
964
965//--------------------------
966// Mappings
967//--------------------------
968
969int StdTriExp::v_GetVertexMap(const int localVertexId, bool useCoeffPacking)
970{
973 "Mapping not defined for this type of basis");
974
975 int localDOF = 0;
976 if (useCoeffPacking == true)
977 {
978 switch (localVertexId)
979 {
980 case 0:
981 {
982 localDOF = 0;
983 break;
984 }
985 case 1:
986 {
987 localDOF = 1;
988 break;
989 }
990 case 2:
991 {
992 localDOF = m_base[1]->GetNumModes();
993 break;
994 }
995 default:
996 {
997 ASSERTL0(false, "eid must be between 0 and 2");
998 break;
999 }
1000 }
1001 }
1002 else // follow book format for vertex indexing.
1003 {
1004 switch (localVertexId)
1005 {
1006 case 0:
1007 {
1008 localDOF = 0;
1009 break;
1010 }
1011 case 1:
1012 {
1013 localDOF = m_base[1]->GetNumModes();
1014 break;
1015 }
1016 case 2:
1017 {
1018 localDOF = 1;
1019 break;
1020 }
1021 default:
1022 {
1023 ASSERTL0(false, "eid must be between 0 and 2");
1024 break;
1025 }
1026 }
1027 }
1028
1029 return localDOF;
1030}
1031
1033{
1036 "Expansion not of a proper type");
1037
1038 int i, j;
1039 int cnt = 0;
1040 int nummodes0, nummodes1;
1041 int startvalue;
1042 if (outarray.size() != GetNcoeffs() - NumBndryCoeffs())
1043 {
1045 }
1046
1047 nummodes0 = m_base[0]->GetNumModes();
1048 nummodes1 = m_base[1]->GetNumModes();
1049
1050 startvalue = 2 * nummodes1;
1051
1052 for (i = 0; i < nummodes0 - 2; i++)
1053 {
1054 for (j = 0; j < nummodes1 - 3 - i; j++)
1055 {
1056 outarray[cnt++] = startvalue + j;
1057 }
1058 startvalue += nummodes1 - 2 - i;
1059 }
1060}
1061
1063{
1066 "Expansion not of expected type");
1067 int i;
1068 int cnt;
1069 int nummodes0, nummodes1;
1070 int value;
1071
1072 if (outarray.size() != NumBndryCoeffs())
1073 {
1075 }
1076
1077 nummodes0 = m_base[0]->GetNumModes();
1078 nummodes1 = m_base[1]->GetNumModes();
1079
1080 value = 2 * nummodes1 - 1;
1081 for (i = 0; i < value; i++)
1082 {
1083 outarray[i] = i;
1084 }
1085 cnt = value;
1086
1087 for (i = 0; i < nummodes0 - 2; i++)
1088 {
1089 outarray[cnt++] = value;
1090 value += nummodes1 - 2 - i;
1091 }
1092}
1093
1094void StdTriExp::v_GetTraceCoeffMap(const unsigned int eid,
1095 Array<OneD, unsigned int> &maparray)
1096{
1097
1100 "Mapping not defined for this type of basis");
1101
1102 ASSERTL1(eid < 3, "eid must be between 0 and 2");
1103
1104 int i;
1105 int order0 = m_base[0]->GetNumModes();
1106 int order1 = m_base[1]->GetNumModes();
1107 int numModes = (eid == 0) ? order0 : order1;
1108
1109 if (maparray.size() != numModes)
1110 {
1111 maparray = Array<OneD, unsigned int>(numModes);
1112 }
1113
1114 switch (eid)
1115 {
1116 case 0:
1117 {
1118 int cnt = 0;
1119 for (i = 0; i < numModes; cnt += order1 - i, ++i)
1120 {
1121 maparray[i] = cnt;
1122 }
1123 break;
1124 }
1125 case 1:
1126 {
1127 maparray[0] = order1;
1128 maparray[1] = 1;
1129 for (i = 2; i < numModes; i++)
1130 {
1131 maparray[i] = order1 - 1 + i;
1132 }
1133 break;
1134 }
1135 case 2:
1136 {
1137 for (i = 0; i < numModes; i++)
1138 {
1139 maparray[i] = i;
1140 }
1141 break;
1142 }
1143 default:
1144 ASSERTL0(false, "eid must be between 0 and 2");
1145 break;
1146 }
1147}
1148
1150 const int eid, Array<OneD, unsigned int> &maparray,
1151 Array<OneD, int> &signarray, const Orientation edgeOrient)
1152{
1155 "Mapping not defined for this type of basis");
1156 int i;
1157 const int nummodes1 = m_base[1]->GetNumModes();
1158 const int nEdgeIntCoeffs = GetTraceNcoeffs(eid) - 2;
1159
1160 if (maparray.size() != nEdgeIntCoeffs)
1161 {
1162 maparray = Array<OneD, unsigned int>(nEdgeIntCoeffs);
1163 }
1164
1165 if (signarray.size() != nEdgeIntCoeffs)
1166 {
1167 signarray = Array<OneD, int>(nEdgeIntCoeffs, 1);
1168 }
1169 else
1170 {
1171 fill(signarray.get(), signarray.get() + nEdgeIntCoeffs, 1);
1172 }
1173
1174 switch (eid)
1175 {
1176 case 0:
1177 {
1178 int cnt = 2 * nummodes1 - 1;
1179 for (i = 0; i < nEdgeIntCoeffs; cnt += nummodes1 - 2 - i, ++i)
1180 {
1181 maparray[i] = cnt;
1182 }
1183 break;
1184 }
1185 case 1:
1186 {
1187 for (i = 0; i < nEdgeIntCoeffs; i++)
1188 {
1189 maparray[i] = nummodes1 + 1 + i;
1190 }
1191 break;
1192 }
1193 case 2:
1194 {
1195 for (i = 0; i < nEdgeIntCoeffs; i++)
1196 {
1197 maparray[i] = 2 + i;
1198 }
1199 break;
1200 }
1201 default:
1202 {
1203 ASSERTL0(false, "eid must be between 0 and 2");
1204 break;
1205 }
1206 }
1207
1208 if (edgeOrient == eBackwards)
1209 {
1210 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1211 {
1212 signarray[i] = -1;
1213 }
1214 }
1215}
1216
1217//---------------------------------------
1218// Wrapper functions
1219//---------------------------------------
1220
1222{
1223
1224 MatrixType mtype = mkey.GetMatrixType();
1225
1226 DNekMatSharedPtr Mat;
1227
1228 switch (mtype)
1229 {
1231 {
1232 int nq0, nq1, nq;
1233
1234 nq0 = m_base[0]->GetNumPoints();
1235 nq1 = m_base[1]->GetNumPoints();
1236
1237 // take definition from key
1239 {
1240 nq = (int)mkey.GetConstFactor(eFactorConst);
1241 }
1242 else
1243 {
1244 nq = max(nq0, nq1);
1245 }
1246
1249 Array<OneD, NekDouble> coll(2);
1251 Array<OneD, NekDouble> tmp(nq0);
1252
1253 Mat = MemoryManager<DNekMat>::AllocateSharedPtr(neq, nq0 * nq1);
1254 int cnt = 0;
1255
1256 for (int i = 0; i < nq; ++i)
1257 {
1258 for (int j = 0; j < nq - i; ++j, ++cnt)
1259 {
1260 coords[cnt] = Array<OneD, NekDouble>(2);
1261 coords[cnt][0] = -1.0 + 2 * j / (NekDouble)(nq - 1);
1262 coords[cnt][1] = -1.0 + 2 * i / (NekDouble)(nq - 1);
1263 }
1264 }
1265
1266 for (int i = 0; i < neq; ++i)
1267 {
1268 LocCoordToLocCollapsed(coords[i], coll);
1269
1270 I[0] = m_base[0]->GetI(coll);
1271 I[1] = m_base[1]->GetI(coll + 1);
1272
1273 // interpolate first coordinate direction
1274 for (int j = 0; j < nq1; ++j)
1275 {
1276 NekDouble fac = (I[1]->GetPtr())[j];
1277 Vmath::Smul(nq0, fac, I[0]->GetPtr(), 1, tmp, 1);
1278
1279 Vmath::Vcopy(nq0, &tmp[0], 1,
1280 Mat->GetRawPtr() + j * nq0 * neq + i, neq);
1281 }
1282 }
1283 break;
1284 }
1285 default:
1286 {
1288 break;
1289 }
1290 }
1291
1292 return Mat;
1293}
1294
1296{
1297 return v_GenMatrix(mkey);
1298}
1299
1300//---------------------------------------
1301// Operator evaluation functions
1302//---------------------------------------
1303
1305 Array<OneD, NekDouble> &outarray,
1306 const StdMatrixKey &mkey)
1307{
1308 StdExpansion::MassMatrixOp_MatFree(inarray, outarray, mkey);
1309}
1310
1312 Array<OneD, NekDouble> &outarray,
1313 const StdMatrixKey &mkey)
1314{
1315 StdTriExp::v_LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
1316}
1317
1318void StdTriExp::v_LaplacianMatrixOp(const int k1, const int k2,
1319 const Array<OneD, const NekDouble> &inarray,
1320 Array<OneD, NekDouble> &outarray,
1321 const StdMatrixKey &mkey)
1322{
1323 StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
1324}
1325
1327 const Array<OneD, const NekDouble> &inarray,
1328 Array<OneD, NekDouble> &outarray,
1329 const StdMatrixKey &mkey)
1330{
1331 StdExpansion::WeakDerivMatrixOp_MatFree(i, inarray, outarray, mkey);
1332}
1333
1335 Array<OneD, NekDouble> &outarray,
1336 const StdMatrixKey &mkey)
1337{
1338 StdTriExp::v_HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
1339}
1340
1342 const StdMatrixKey &mkey)
1343{
1344 int qa = m_base[0]->GetNumPoints();
1345 int qb = m_base[1]->GetNumPoints();
1346 int nmodes_a = m_base[0]->GetNumModes();
1347 int nmodes_b = m_base[1]->GetNumModes();
1348
1349 // Declare orthogonal basis.
1352
1355 StdTriExp OrthoExp(Ba, Bb);
1356
1357 Array<OneD, NekDouble> orthocoeffs(OrthoExp.GetNcoeffs());
1358
1359 // project onto physical space.
1360 OrthoExp.FwdTrans(array, orthocoeffs);
1361
1362 if (mkey.ConstFactorExists(
1363 eFactorSVVPowerKerDiffCoeff)) // Rodrigo's power kern
1364 {
1366 NekDouble SvvDiffCoeff =
1369
1370 int cnt = 0;
1371 for (int j = 0; j < nmodes_a; ++j)
1372 {
1373 for (int k = 0; k < nmodes_b - j; ++k, ++cnt)
1374 {
1375 NekDouble fac = std::max(
1376 pow((1.0 * j) / (nmodes_a - 1), cutoff * nmodes_a),
1377 pow((1.0 * k) / (nmodes_b - 1), cutoff * nmodes_b));
1378
1379 orthocoeffs[cnt] *= (SvvDiffCoeff * fac);
1380 }
1381 }
1382 }
1383 else if (mkey.ConstFactorExists(
1384 eFactorSVVDGKerDiffCoeff)) // Rodrigo/mansoor's DG kernel
1385 {
1388 int max_ab = max(nmodes_a - kSVVDGFiltermodesmin,
1389 nmodes_b - kSVVDGFiltermodesmin);
1390 max_ab = max(max_ab, 0);
1391 max_ab = min(max_ab, kSVVDGFiltermodesmax - kSVVDGFiltermodesmin);
1392
1393 int cnt = 0;
1394 for (int j = 0; j < nmodes_a; ++j)
1395 {
1396 for (int k = 0; k < nmodes_b - j; ++k, ++cnt)
1397 {
1398 int maxjk = max(j, k);
1399 maxjk = min(maxjk, kSVVDGFiltermodesmax - 1);
1400
1401 orthocoeffs[cnt] *= SvvDiffCoeff * kSVVDGFilter[max_ab][maxjk];
1402 }
1403 }
1404 }
1405 else
1406 {
1407 NekDouble SvvDiffCoeff = mkey.GetConstFactor(eFactorSVVDiffCoeff);
1408
1409 int cutoff = (int)(mkey.GetConstFactor(eFactorSVVCutoffRatio) *
1410 min(nmodes_a, nmodes_b));
1411
1412 NekDouble epsilon = 1.0;
1413 int nmodes = min(nmodes_a, nmodes_b);
1414
1415 int cnt = 0;
1416
1417 // apply SVV filter (JEL)
1418 for (int j = 0; j < nmodes_a; ++j)
1419 {
1420 for (int k = 0; k < nmodes_b - j; ++k)
1421 {
1422 if (j + k >= cutoff)
1423 {
1424 orthocoeffs[cnt] *=
1425 (SvvDiffCoeff *
1426 exp(-(j + k - nmodes) * (j + k - nmodes) /
1427 ((NekDouble)((j + k - cutoff + epsilon) *
1428 (j + k - cutoff + epsilon)))));
1429 }
1430 else
1431 {
1432 orthocoeffs[cnt] *= 0.0;
1433 }
1434 cnt++;
1435 }
1436 }
1437 }
1438
1439 // backward transform to physical space
1440 OrthoExp.BwdTrans(orthocoeffs, array);
1441}
1442
1444 const Array<OneD, const NekDouble> &inarray,
1445 Array<OneD, NekDouble> &outarray)
1446{
1447 int n_coeffs = inarray.size();
1448 int nquad0 = m_base[0]->GetNumPoints();
1449 int nquad1 = m_base[1]->GetNumPoints();
1450 Array<OneD, NekDouble> coeff(n_coeffs);
1451 Array<OneD, NekDouble> coeff_tmp(n_coeffs, 0.0);
1454 int nqtot = nquad0 * nquad1;
1455 Array<OneD, NekDouble> phys_tmp(nqtot, 0.0);
1456
1457 int nmodes0 = m_base[0]->GetNumModes();
1458 int nmodes1 = m_base[1]->GetNumModes();
1459 int numMin2 = nmodes0;
1460 int i;
1461
1462 const LibUtilities::PointsKey Pkey0(nmodes0,
1464 const LibUtilities::PointsKey Pkey1(nmodes1,
1466
1467 LibUtilities::BasisKey b0(m_base[0]->GetBasisType(), nmodes0, Pkey0);
1468 LibUtilities::BasisKey b1(m_base[1]->GetBasisType(), nmodes1, Pkey1);
1469
1470 LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A, nmodes0, Pkey0);
1471 LibUtilities::BasisKey bortho1(LibUtilities::eOrtho_B, nmodes1, Pkey1);
1472
1473 StdRegions::StdTriExpSharedPtr m_OrthoTriExp;
1475
1478 bortho0, bortho1);
1479
1480 m_TriExp->BwdTrans(inarray, phys_tmp);
1481 m_OrthoTriExp->FwdTrans(phys_tmp, coeff);
1482
1483 for (i = 0; i < n_coeffs; i++)
1484 {
1485 if (i == numMin)
1486 {
1487 coeff[i] = 0.0;
1488 numMin += numMin2 - 1;
1489 numMin2 -= 1.0;
1490 }
1491 }
1492
1493 m_OrthoTriExp->BwdTrans(coeff, phys_tmp);
1494 m_TriExp->FwdTrans(phys_tmp, outarray);
1495}
1496
1497//---------------------------------------
1498// Private helper functions
1499//---------------------------------------
1500
1502 const Array<OneD, const NekDouble> &inarray,
1503 Array<OneD, NekDouble> &outarray)
1504{
1505 int i;
1506 int nquad0 = m_base[0]->GetNumPoints();
1507 int nquad1 = m_base[1]->GetNumPoints();
1508
1509 const Array<OneD, const NekDouble> &w0 = m_base[0]->GetW();
1510 const Array<OneD, const NekDouble> &w1 = m_base[1]->GetW();
1511 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1512
1513 // multiply by integration constants
1514 for (i = 0; i < nquad1; ++i)
1515 {
1516 Vmath::Vmul(nquad0, inarray.get() + i * nquad0, 1, w0.get(), 1,
1517 outarray.get() + i * nquad0, 1);
1518 }
1519
1520 switch (m_base[1]->GetPointsType())
1521 {
1522 // (1,0) Jacobi Inner product
1523 case LibUtilities::eGaussRadauMAlpha1Beta0:
1524 for (i = 0; i < nquad1; ++i)
1525 {
1526 Blas::Dscal(nquad0, 0.5 * w1[i], outarray.get() + i * nquad0,
1527 1);
1528 }
1529 break;
1530 // Legendre inner product
1531 default:
1532 for (i = 0; i < nquad1; ++i)
1533 {
1534 Blas::Dscal(nquad0, 0.5 * (1 - z1[i]) * w1[i],
1535 outarray.get() + i * nquad0, 1);
1536 }
1537 break;
1538 }
1539}
1540
1542 Array<OneD, int> &conn, [[maybe_unused]] bool standard)
1543{
1544 int np1 = m_base[0]->GetNumPoints();
1545 int np2 = m_base[1]->GetNumPoints();
1546 int np = max(np1, np2);
1547
1548 conn = Array<OneD, int>(3 * (np - 1) * (np - 1));
1549
1550 int row = 0;
1551 int rowp1 = 0;
1552 int cnt = 0;
1553 for (int i = 0; i < np - 1; ++i)
1554 {
1555 rowp1 += np - i;
1556 for (int j = 0; j < np - i - 2; ++j)
1557 {
1558 conn[cnt++] = row + j;
1559 conn[cnt++] = row + j + 1;
1560 conn[cnt++] = rowp1 + j;
1561
1562 conn[cnt++] = rowp1 + j + 1;
1563 conn[cnt++] = rowp1 + j;
1564 conn[cnt++] = row + j + 1;
1565 }
1566
1567 conn[cnt++] = row + np - i - 2;
1568 conn[cnt++] = row + np - i - 1;
1569 conn[cnt++] = rowp1 + np - i - 2;
1570
1571 row += np - i;
1572 }
1573}
1574} // namespace Nektar::StdRegions
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:265
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:47
Describes the specification for a Basis.
Definition: Basis.h:45
int GetNumModes() const
Returns the order of the basis.
Definition: Basis.h:74
Defines a specification for a set of points.
Definition: Points.h:50
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points.
void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
NekDouble BaryTensorDeriv(const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
NekDouble Integral(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
The base class for all shapes.
Definition: StdExpansion.h:65
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:124
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
void WeakDerivMatrixOp_MatFree(const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:603
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:752
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase() const
This function gets the shared point to basis.
Definition: StdExpansion.h:100
DNekMatSharedPtr CreateGeneralMatrix(const StdMatrixKey &mkey)
this function generates the mass matrix
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
NekDouble PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: StdExpansion.h:919
void GetTraceToElementMap(const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
Definition: StdExpansion.h:684
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:367
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space.
Definition: StdExpansion.h:424
int GetTraceNcoeffs(const int i) const
This function returns the number of expansion coefficients belonging to the i-th trace.
Definition: StdExpansion.h:261
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLess > m_stdStaticCondMatrixManager
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:723
int GetBasisNumModes(const int dir) const
This function returns the number of expansion modes in the dir direction.
Definition: StdExpansion.h:169
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Definition: StdExpansion.h:849
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void MassMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:83
NekDouble GetConstFactor(const ConstFactorType &factor) const
Definition: StdMatrixKey.h:124
bool ConstFactorExists(const ConstFactorType &factor) const
Definition: StdMatrixKey.h:133
void v_WeakDerivMatrixOp(const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1326
LibUtilities::ShapeType v_DetShapeType() const final
Definition: StdTriExp.cpp:727
int v_GetTraceNumPoints(const int i) const override
Definition: StdTriExp.cpp:780
void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Backward tranform for triangular elements.
Definition: StdTriExp.cpp:217
void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:491
NekDouble v_PhysEvaluate(const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
Definition: StdTriExp.cpp:672
void v_LocCollapsedToLocCoord(const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
Definition: StdTriExp.cpp:596
void v_GetCoords(Array< OneD, NekDouble > &coords_x, Array< OneD, NekDouble > &coords_y, Array< OneD, NekDouble > &coords_z) override
Definition: StdTriExp.cpp:804
int v_CalcNumberOfCoefficients(const std::vector< unsigned int > &nummodes, int &modes_offset) override
Definition: StdTriExp.cpp:794
void v_GetSimplexEquiSpacedConnectivity(Array< OneD, int > &conn, bool standard=true) override
Definition: StdTriExp.cpp:1541
void v_MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1304
void v_GetBoundaryMap(Array< OneD, unsigned int > &outarray) override
Definition: StdTriExp.cpp:1062
int v_GetNtraces() const final
Definition: StdTriExp.cpp:722
void v_StdPhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
Definition: StdTriExp.cpp:193
void v_GetTraceInteriorToElementMap(const int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation edgeOrient=eForwards) override
Definition: StdTriExp.cpp:1149
int v_GetVertexMap(int localVertexId, bool useCoeffPacking=false) override
Definition: StdTriExp.cpp:969
const LibUtilities::BasisKey v_GetTraceBasisKey(const int i, const int j) const override
Definition: StdTriExp.cpp:830
DNekMatSharedPtr v_CreateStdMatrix(const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1295
void v_BwdTrans_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:223
DNekMatSharedPtr v_GenMatrix(const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1221
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into ou...
Definition: StdTriExp.cpp:420
int v_GetTraceNcoeffs(const int i) const override
Definition: StdTriExp.cpp:752
void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
Calculate the derivative of the physical points.
Definition: StdTriExp.cpp:106
void v_GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray) override
Definition: StdTriExp.cpp:1094
void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1) override
Definition: StdTriExp.cpp:233
bool v_IsBoundaryInteriorExpansion() const override
Definition: StdTriExp.cpp:824
void v_FillMode(const int mode, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:603
void v_ReduceOrderCoeffs(int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:1443
void v_FwdTransBndConstrained(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:289
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:498
int v_GetTraceIntNcoeffs(const int i) const override
Definition: StdTriExp.cpp:766
int v_NumDGBndryCoeffs() const override
Definition: StdTriExp.cpp:742
void v_LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
Definition: StdTriExp.cpp:577
NekDouble v_PhysEvaluateBasis(const Array< OneD, const NekDouble > &coords, int mode) final
Definition: StdTriExp.cpp:648
void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1334
NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrates the specified function over the domain.
Definition: StdTriExp.cpp:58
void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Transform a given function from physical quadrature space to coefficient space.
Definition: StdTriExp.cpp:273
void v_GetInteriorMap(Array< OneD, unsigned int > &outarray) override
Definition: StdTriExp.cpp:1032
int v_GetNverts() const final
Definition: StdTriExp.cpp:717
void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1311
void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
Definition: StdTriExp.cpp:1341
void v_MultiplyByStdQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTriExp.cpp:1501
int v_NumBndryCoeffs() const override
Definition: StdTriExp.cpp:732
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: StdTriExp.cpp:426
void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1) override
Definition: StdTriExp.cpp:453
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:211
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:163
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:383
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135
int getNumberOfCoefficients(int Na, int Nb)
Definition: ShapeType.hpp:109
static const BasisKey NullBasisKey(eNoBasisType, 0, NullPointsKey)
Defines a null basis with no type or points.
const std::string kPointsTypeStr[]
Definition: Foundations.hpp:52
@ eGaussRadauMLegendre
1D Gauss-Radau-Legendre quadrature points, pinned at x=-1
Definition: PointsType.h:47
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51
@ ePolyEvenlySpaced
1D Evenly-spaced points using Lagrange polynomial
Definition: PointsType.h:73
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:49
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:42
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:56
@ eOrtho_B
Principle Orthogonal Functions .
Definition: BasisType.h:44
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48
static const NekDouble kNekZeroTol
const int kSVVDGFiltermodesmin
Definition: StdRegions.hpp:500
const int kSVVDGFiltermodesmax
Definition: StdRegions.hpp:501
const NekDouble kSVVDGFilter[9][11]
Definition: StdRegions.hpp:503
std::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:219
std::shared_ptr< StdSegExp > StdSegExpSharedPtr
Definition: StdSegExp.h:222
static Array< OneD, NekDouble > NullNekDouble1DArray
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.hpp:154
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.hpp:194
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220
STL namespace.
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294