Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Types | List of all members
Nektar::LibUtilities::NodalUtilPrism Class Reference

Specialisation of the NodalUtil class to support nodal prismatic elements. More...

#include <NodalUtil.h>

Inheritance diagram for Nektar::LibUtilities::NodalUtilPrism:
[legend]

Public Member Functions

 NodalUtilPrism (size_t degree, Array< OneD, NekDouble > r, Array< OneD, NekDouble > s, Array< OneD, NekDouble > t)
 Construct the nodal utility class for a prism. More...
 
 ~NodalUtilPrism () override
 
- Public Member Functions inherited from Nektar::LibUtilities::NodalUtil
virtual ~NodalUtil ()=default
 
NekVector< NekDoubleGetWeights ()
 Obtain the integration weights for the given nodal distribution. More...
 
SharedMatrix GetVandermonde ()
 Return the Vandermonde matrix for the nodal distribution. More...
 
SharedMatrix GetVandermondeForDeriv (size_t dir)
 Return the Vandermonde matrix of the derivative of the basis functions for the nodal distribution. More...
 
SharedMatrix GetDerivMatrix (size_t dir)
 Return the derivative matrix for the nodal distribution. More...
 
SharedMatrix GetInterpolationMatrix (Array< OneD, Array< OneD, NekDouble > > &xi)
 Construct the interpolation matrix used to evaluate the basis at the points xi inside the element. More...
 

Protected Member Functions

NekVector< NekDoublev_OrthoBasis (const size_t mode) override
 Return the value of the modal functions for the prismatic element at the nodal points m_xi for a given mode. More...
 
NekVector< NekDoublev_OrthoBasisDeriv (const size_t dir, const size_t mode) override
 Return the value of the derivative of the modal functions for the prismatic element at the nodal points m_xi for a given mode. More...
 
std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble > > &xi) override
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
NekDouble v_ModeZeroIntegral () override
 Return the value of the integral of the zero-th mode for this element. More...
 
size_t v_NumModes () override
 Calculate the number of degrees of freedom for this element. More...
 
- Protected Member Functions inherited from Nektar::LibUtilities::NodalUtil
 NodalUtil (size_t degree, size_t dim)
 Set up the NodalUtil object. More...
 
virtual NekVector< NekDoublev_OrthoBasis (const size_t mode)=0
 Return the values of the orthogonal basis at the nodal points for a given mode. More...
 
virtual NekVector< NekDoublev_OrthoBasisDeriv (const size_t dir, const size_t mode)=0
 Return the values of the derivative of the orthogonal basis at the nodal points for a given mode. More...
 
virtual std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble > > &xi)=0
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
virtual NekDouble v_ModeZeroIntegral ()=0
 Return the value of the integral of the zero-th mode for this element. More...
 
virtual size_t v_NumModes ()=0
 Calculate the number of degrees of freedom for this element. More...
 

Protected Attributes

std::vector< Modem_ordering
 Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering. More...
 
Array< OneD, Array< OneD, NekDouble > > m_eta
 Collapsed coordinates \( (\eta_1, \eta_2, \eta_3) \) of the nodal points. More...
 
- Protected Attributes inherited from Nektar::LibUtilities::NodalUtil
size_t m_dim
 Dimension of the nodal element. More...
 
size_t m_degree
 Degree of the nodal element. More...
 
size_t m_numPoints
 Total number of nodal points. More...
 
Array< OneD, Array< OneD, NekDouble > > m_xi
 Coordinates of the nodal points defining the basis. More...
 

Private Types

typedef std::tuple< int, int, int > Mode
 

Detailed Description

Specialisation of the NodalUtil class to support nodal prismatic elements.

Definition at line 259 of file NodalUtil.h.

Member Typedef Documentation

◆ Mode

typedef std::tuple<int, int, int> Nektar::LibUtilities::NodalUtilPrism::Mode
private

Definition at line 261 of file NodalUtil.h.

Constructor & Destructor Documentation

◆ NodalUtilPrism()

Nektar::LibUtilities::NodalUtilPrism::NodalUtilPrism ( size_t  degree,
Array< OneD, NekDouble r,
Array< OneD, NekDouble s,
Array< OneD, NekDouble t 
)

Construct the nodal utility class for a prism.

The constructor of this class sets up two member variables used in the evaluation of the orthogonal basis:

  • NodalUtilPrism::m_eta is used to construct the collapsed coordinate locations of the nodal points \( (\eta_1, \eta_2, \eta_3) \) inside the cube \([-1,1]^3\) on which the orthogonal basis functions are defined.
  • NodalUtilPrism::m_ordering constructs a mapping from the index set \( I = \{ (i,j,k)\ |\ 0\leq i,j,k \leq P, i+k \leq P \}\) to an ordering \( 0 \leq m(ijk) \leq (P+1)(P+1)(P+2)/2 \) that defines the monomials \( \xi_1^i \xi_2^j \xi_3^k \) that span the prismatic space. This is then used to calculate which \( (i,j,k) \) triple (represented as a tuple) corresponding to a column of the Vandermonde matrix when calculating the orthogonal polynomials.
Parameters
degreePolynomial order of this nodal tetrahedron
r\( \xi_1 \)-coordinates of nodal points in the standard element.
s\( \xi_2 \)-coordinates of nodal points in the standard element.
t\( \xi_3 \)-coordinates of nodal points in the standard element.

Definition at line 642 of file NodalUtil.cpp.

645 : NodalUtil(degree, 3), m_eta(3)
646{
647 m_numPoints = r.size();
648 m_xi[0] = r;
649 m_xi[1] = s;
650 m_xi[2] = t;
651
652 for (size_t i = 0; i <= m_degree; ++i)
653 {
654 for (size_t j = 0; j <= m_degree; ++j)
655 {
656 for (size_t k = 0; k <= m_degree - i; ++k)
657 {
658 m_ordering.push_back(Mode(i, j, k));
659 }
660 }
661 }
662
663 // Calculate collapsed coordinates from r/s values
664 m_eta[0] = Array<OneD, NekDouble>(m_numPoints);
665 m_eta[1] = Array<OneD, NekDouble>(m_numPoints);
666 m_eta[2] = Array<OneD, NekDouble>(m_numPoints);
667
668 for (size_t i = 0; i < m_numPoints; ++i)
669 {
670 if (fabs(m_xi[2][i] - 1.0) < NekConstants::kNekZeroTol)
671 {
672 // Very top point of the prism
673 m_eta[0][i] = -1.0;
674 m_eta[1][i] = m_xi[1][i];
675 m_eta[2][i] = 1.0;
676 }
677 else
678 {
679 // Third basis function collapsed to "pr" direction instead of "qr"
680 // direction
681 m_eta[0][i] = 2.0 * (1.0 + m_xi[0][i]) / (1.0 - m_xi[2][i]) - 1.0;
682 m_eta[1][i] = m_xi[1][i];
683 m_eta[2][i] = m_xi[2][i];
684 }
685 }
686}
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:107
size_t m_degree
Degree of the nodal element.
Definition: NodalUtil.h:103
size_t m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:105
NodalUtil(size_t degree, size_t dim)
Set up the NodalUtil object.
Definition: NodalUtil.h:95
Array< OneD, Array< OneD, NekDouble > > m_eta
Collapsed coordinates of the nodal points.
Definition: NodalUtil.h:279
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:275
std::tuple< int, int, int > Mode
Definition: NodalUtil.h:261
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::LibUtilities::NodalUtil::m_degree, m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

◆ ~NodalUtilPrism()

Nektar::LibUtilities::NodalUtilPrism::~NodalUtilPrism ( )
inlineoverride

Definition at line 268 of file NodalUtil.h.

269 {
270 }

Member Function Documentation

◆ v_CreateUtil()

std::shared_ptr< NodalUtil > Nektar::LibUtilities::NodalUtilPrism::v_CreateUtil ( Array< OneD, Array< OneD, NekDouble > > &  xi)
inlineoverrideprotectedvirtual

Construct a NodalUtil object of the appropriate element type for a given set of points.

This function is used inside NodalUtil::GetInterpolationMatrix so that the (potentially non-square) Vandermonde matrix can be constructed to create the interpolation matrix at an arbitrary set of points in the domain.

Parameters
xiDistribution of nodal points to create utility with.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 285 of file NodalUtil.h.

287 {
289 xi[1], xi[2]);
290 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::LibUtilities::NodalUtil::m_degree.

◆ v_ModeZeroIntegral()

NekDouble Nektar::LibUtilities::NodalUtilPrism::v_ModeZeroIntegral ( )
inlineoverrideprotectedvirtual

Return the value of the integral of the zero-th mode for this element.

Note that for the orthogonal basis under consideration, all modes integrate to zero asides from the zero-th mode. This function is used in NodalUtil::GetWeights to determine integration weights.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 292 of file NodalUtil.h.

293 {
294 return 4.0 * sqrt(2.0);
295 }
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References tinysimd::sqrt().

◆ v_NumModes()

size_t Nektar::LibUtilities::NodalUtilPrism::v_NumModes ( )
inlineoverrideprotectedvirtual

Calculate the number of degrees of freedom for this element.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 297 of file NodalUtil.h.

298 {
299 return (m_degree + 1) * (m_degree + 1) * (m_degree + 2) / 2;
300 }

References Nektar::LibUtilities::NodalUtil::m_degree.

◆ v_OrthoBasis()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasis ( const size_t  mode)
overrideprotectedvirtual

Return the value of the modal functions for the prismatic element at the nodal points m_xi for a given mode.

In a prism, we use the orthogonal basis

\[ \psi_{m(ijk)} = \sqrt{2} P^{(0,0)}_i(\xi_1) P_j^{(0,0)}(\xi_2) P_k^{(2i+1,0)}(\xi_3) (1-\xi_3)^i \]

where \( m(ijk) \) is the mapping defined in m_ordering and \( J_n^{(\alpha,\beta)}(z) \) denotes the standard Jacobi polynomial.

Parameters
modeThe mode of the orthogonal basis to evaluate.
Returns
Vector containing orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 704 of file NodalUtil.cpp.

705{
706 std::vector<NekDouble> jacA(m_numPoints), jacB(m_numPoints);
707 std::vector<NekDouble> jacC(m_numPoints);
708
709 size_t I, J, K;
710 std::tie(I, J, K) = m_ordering[mode];
711
712 // Calculate Jacobi polynomials
713 Polylib::jacobfd(m_numPoints, &m_eta[0][0], &jacA[0], nullptr, I, 0.0, 0.0);
714 Polylib::jacobfd(m_numPoints, &m_eta[1][0], &jacB[0], nullptr, J, 0.0, 0.0);
715 Polylib::jacobfd(m_numPoints, &m_eta[2][0], &jacC[0], nullptr, K,
716 2.0 * I + 1.0, 0.0);
717
718 NekVector<NekDouble> ret(m_numPoints);
719 NekDouble sqrt2 = sqrt(2.0);
720
721 for (size_t i = 0; i < m_numPoints; ++i)
722 {
723 ret[i] =
724 sqrt2 * jacA[i] * jacB[i] * jacC[i] * pow(1.0 - m_eta[2][i], I);
725 }
726
727 return ret;
728}
double NekDouble
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1248

References Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and tinysimd::sqrt().

◆ v_OrthoBasisDeriv()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasisDeriv ( const size_t  dir,
const size_t  mode 
)
overrideprotectedvirtual

Return the value of the derivative of the modal functions for the prismatic element at the nodal points m_xi for a given mode.

Note that this routine must use the chain rule combined with the collapsed coordinate derivatives as described in Sherwin & Karniadakis (2nd edition), pg 152.

Parameters
modeThe mode of the orthogonal basis to evaluate.
dirCoordinate direction in which to evaluate the derivative.
Returns
Vector containing the derivative of the orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 744 of file NodalUtil.cpp.

746{
747 std::vector<NekDouble> jacA(m_numPoints), jacB(m_numPoints);
748 std::vector<NekDouble> jacC(m_numPoints);
749 std::vector<NekDouble> jacDerivA(m_numPoints), jacDerivB(m_numPoints);
750 std::vector<NekDouble> jacDerivC(m_numPoints);
751
752 size_t I, J, K;
753 std::tie(I, J, K) = m_ordering[mode];
754
755 // Calculate Jacobi polynomials
756 Polylib::jacobfd(m_numPoints, &m_eta[0][0], &jacA[0], nullptr, I, 0.0, 0.0);
757 Polylib::jacobfd(m_numPoints, &m_eta[1][0], &jacB[0], nullptr, J, 0.0, 0.0);
758 Polylib::jacobfd(m_numPoints, &m_eta[2][0], &jacC[0], nullptr, K,
759 2.0 * I + 1.0, 0.0);
760 Polylib::jacobd(m_numPoints, &m_eta[0][0], &jacDerivA[0], I, 0.0, 0.0);
761 Polylib::jacobd(m_numPoints, &m_eta[1][0], &jacDerivB[0], J, 0.0, 0.0);
762 Polylib::jacobd(m_numPoints, &m_eta[2][0], &jacDerivC[0], K, 2.0 * I + 1.0,
763 0.0);
764
765 NekVector<NekDouble> ret(m_numPoints);
766 NekDouble sqrt2 = sqrt(2.0);
767
768 if (dir == 1)
769 {
770 for (size_t i = 0; i < m_numPoints; ++i)
771 {
772 ret[i] = sqrt2 * jacA[i] * jacDerivB[i] * jacC[i] *
773 pow(1.0 - m_eta[2][i], I);
774 }
775 }
776 else
777 {
778 for (size_t i = 0; i < m_numPoints; ++i)
779 {
780 ret[i] = 2.0 * sqrt2 * jacDerivA[i] * jacB[i] * jacC[i];
781
782 if (I > 0)
783 {
784 ret[i] *= pow(1.0 - m_eta[2][i], I - 1);
785 }
786 }
787
788 if (dir == 0)
789 {
790 return ret;
791 }
792
793 for (size_t i = 0; i < m_numPoints; ++i)
794 {
795 ret[i] *= 0.5 * (1.0 + m_eta[0][i]);
796
797 NekDouble tmp = jacDerivC[i] * pow(1.0 - m_eta[2][i], I);
798
799 if (I > 0)
800 {
801 tmp -= jacC[i] * I * pow(1.0 - m_eta[2][i], I - 1);
802 }
803
804 ret[i] += sqrt2 * jacA[i] * jacB[i] * tmp;
805 }
806 }
807
808 return ret;
809}
void jacobd(const int np, const double *z, double *polyd, const int n, const double alpha, const double beta)
Calculate the derivative of Jacobi polynomials.
Definition: Polylib.cpp:1378

References Polylib::jacobd(), Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and tinysimd::sqrt().

Member Data Documentation

◆ m_eta

Array<OneD, Array<OneD, NekDouble> > Nektar::LibUtilities::NodalUtilPrism::m_eta
protected

Collapsed coordinates \( (\eta_1, \eta_2, \eta_3) \) of the nodal points.

Definition at line 279 of file NodalUtil.h.

Referenced by NodalUtilPrism(), v_OrthoBasis(), and v_OrthoBasisDeriv().

◆ m_ordering

std::vector<Mode> Nektar::LibUtilities::NodalUtilPrism::m_ordering
protected

Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering.

Definition at line 275 of file NodalUtil.h.

Referenced by NodalUtilPrism(), v_OrthoBasis(), and v_OrthoBasisDeriv().