Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::TetExp Class Reference

#include <TetExp.h>

Inheritance diagram for Nektar::LocalRegions::TetExp:
[legend]

Public Member Functions

 TetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::TetGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 TetExp (const TetExp &T)
 Copy Constructor. More...
 
 ~TetExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdTetExp
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdTetExp (const StdTetExp &T)=default
 
 ~StdTetExp () override=default
 
LibUtilities::ShapeType DetShapeType () const
 
NekDouble PhysEvaluate3D (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 Single Point Evaluation. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D ()=default
 
 StdExpansion3D (const StdExpansion3D &T)=default
 
 ~StdExpansion3D () override=default
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
 ~Expansion3D () override=default
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1) override
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray) override
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetTraceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
 ~Expansion () override
 
void SetTraceExp (const int traceid, ExpansionSharedPtr &f)
 
ExpansionSharedPtr GetTraceExp (const int traceid)
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
void AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
ExpansionSharedPtr GetLeftAdjacentElementExp () const
 
ExpansionSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementTrace () const
 
int GetRightAdjacentElementTrace () const
 
void SetAdjacentElementExp (int traceid, ExpansionSharedPtr &e)
 
StdRegions::Orientation GetTraceOrient (int trace)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights. More...
 
void GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=StdRegions::eNoOrientation)
 
void GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
void ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1)
 
const NormalVectorGetTraceNormal (const int id)
 
void ComputeTraceNormal (const int id)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
void SetUpPhysNormals (const int trace)
 
void AddRobinMassMatrix (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
void AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
const Array< OneD, const NekDouble > & GetElmtBndNormDirElmtLen (const int nbnd) const
 
void StdDerivBaseOnTraceMat (Array< OneD, DNekMatSharedPtr > &DerivMat)
 

Protected Member Functions

NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over region. More...
 
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Differentiate inarray in the three coordinate directions. More...
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs. More...
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put into outarray: More...
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \). More...
 
void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
 
NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
 Get the coordinates "coords" at the local coordinates "Lcoords". More...
 
void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
LibUtilities::ShapeType v_DetShapeType () const override
 Return Shape of region, using ShapeType enum list. More...
 
StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const override
 
StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const override
 
void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
 
void v_GetTracePhysMap (const int face, Array< OneD, int > &outarray) override
 Returns the physical values at the quadrature points of a face. More...
 
void v_ComputeTraceNormal (const int face) override
 Compute the normal of a triangular face. More...
 
void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey) override
 
void v_DropLocMatrix (const MatrixKey &mkey) override
 
DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey) override
 
void SetUpInverseTransformationMatrix (const DNekMatSharedPtr &m_transformationmatrix, DNekMatSharedPtr m_inversetransformationmatrix, DNekMatSharedPtr m_inversetransposedtransformationmatrix)
 
void v_ComputeLaplacianMetric () override
 
void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors, Array< OneD, Array< OneD, NekDouble > > &d2factors) override
 : This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace. More...
 
- Protected Member Functions inherited from Nektar::StdRegions::StdTetExp
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz) override
 Calculate the derivative of the physical points. More...
 
void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 
void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
void v_GetCoords (Array< OneD, NekDouble > &coords_x, Array< OneD, NekDouble > &coords_y, Array< OneD, NekDouble > &coords_z) override
 
void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
void v_GetTraceNumModes (const int fid, int &numModes0, int &numModes1, Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
int v_GetNverts () const override
 
int v_GetNedges () const override
 
int v_GetNtraces () const override
 
LibUtilities::ShapeType v_DetShapeType () const override
 
int v_NumBndryCoeffs () const override
 
int v_NumDGBndryCoeffs () const override
 
int v_GetTraceNcoeffs (const int i) const override
 
int v_GetTraceIntNcoeffs (const int i) const override
 
int v_GetTraceNumPoints (const int i) const override
 
int v_GetEdgeNcoeffs (const int i) const override
 
LibUtilities::PointsKey v_GetTracePointsKey (const int i, const int j) const override
 
int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
const LibUtilities::BasisKey v_GetTraceBasisKey (const int i, const int k) const override
 
bool v_IsBoundaryInteriorExpansion () const override
 
int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetTraceCoeffMap (const unsigned int fid, Array< OneD, unsigned int > &maparray) override
 
void v_GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1) override
 
void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
void v_GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d) override
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) override
 
void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat) override
 
StdRegions::Orientation v_GetTraceOrient (int face) override
 
void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
 Extract the physical values along face face from inarray into outarray following the local face orientation and point distribution defined by defined in FaceExp. More...
 
void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp) override
 
void GetPhysFaceVarCoeffsFromElement (const int face, ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType) override
 
DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &transformationmatrix) override
 Build inverse and inverse transposed transformation matrix: \(\mathbf{R^{-1}}\) and \(\mathbf{R^{-T}}\). More...
 
DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd) override
 
void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p) override
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
Array< OneD, NekDoubleGetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
int v_GetCoordim () const override
 
void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual StdRegions::Orientation v_GetTraceOrient (int trace)
 
void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1=-1)
 
virtual void v_ComputeTraceNormal (const int id)
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals ()
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int id)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp)
 

Private Member Functions

void GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion3D
std::map< int, NormalVectorm_faceNormals
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_indexMapManager
 
std::map< int, ExpansionWeakPtrm_traceExp
 
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 
std::map< int, NormalVectorm_traceNormals
 
ExpansionWeakPtr m_elementLeft
 
ExpansionWeakPtr m_elementRight
 
int m_elementTraceLeft = -1
 
int m_elementTraceRight = -1
 
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
 the element length in each element boundary(Vertex, edge or face) normal direction calculated based on the local m_metricinfo times the standard element length (which is 2.0) More...
 

Detailed Description

Defines a Tetrahedral local expansion.

Definition at line 48 of file TetExp.h.

Constructor & Destructor Documentation

◆ TetExp() [1/2]

Nektar::LocalRegions::TetExp::TetExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::TetGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key for first coordinate.
BbBasis key for second coordinate.
BcBasis key for third coordinate.

Definition at line 57 of file TetExp.cpp.

62 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
63 3, Ba, Bb, Bc),
65 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
66 Ba, Bb, Bc),
67 StdTetExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
69 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
70 std::string("TetExpMatrix")),
72 this, std::placeholders::_1),
73 std::string("TetExpStaticCondMatrix"))
74{
75}
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:59
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: Expansion.cpp:272
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:43
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TetExp.h:202
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:200
StdExpansion()
Default Constructor.
StdTetExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
Definition: StdTetExp.cpp:42
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:187

◆ TetExp() [2/2]

Nektar::LocalRegions::TetExp::TetExp ( const TetExp T)

Copy Constructor.

Definition at line 80 of file TetExp.cpp.

81 : StdRegions::StdExpansion(T), StdRegions::StdExpansion3D(T),
82 StdRegions::StdTetExp(T), Expansion(T), Expansion3D(T),
83 m_matrixManager(T.m_matrixManager),
84 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
85{
86}

◆ ~TetExp()

Nektar::LocalRegions::TetExp::~TetExp ( )
overridedefault

Member Function Documentation

◆ GeneralMatrixOp_MatOp()

void Nektar::LocalRegions::TetExp::GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
private

Definition at line 1065 of file TetExp.cpp.

1068{
1070
1071 if (inarray.get() == outarray.get())
1072 {
1073 Array<OneD, NekDouble> tmp(m_ncoeffs);
1074 Vmath::Vcopy(m_ncoeffs, inarray.get(), 1, tmp.get(), 1);
1075
1076 Blas::Dgemv('N', m_ncoeffs, m_ncoeffs, mat->Scale(),
1077 (mat->GetOwnedMatrix())->GetPtr().get(), m_ncoeffs,
1078 tmp.get(), 1, 0.0, outarray.get(), 1);
1079 }
1080 else
1081 {
1082 Blas::Dgemv('N', m_ncoeffs, m_ncoeffs, mat->Scale(),
1083 (mat->GetOwnedMatrix())->GetPtr().get(), m_ncoeffs,
1084 inarray.get(), 1, 0.0, outarray.get(), 1);
1085 }
1086}
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:84
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:211
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References Blas::Dgemv(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

◆ SetUpInverseTransformationMatrix()

void Nektar::LocalRegions::TetExp::SetUpInverseTransformationMatrix ( const DNekMatSharedPtr m_transformationmatrix,
DNekMatSharedPtr  m_inversetransformationmatrix,
DNekMatSharedPtr  m_inversetransposedtransformationmatrix 
)
protected

◆ v_AlignVectorToCollapsedDir()

void Nektar::LocalRegions::TetExp::v_AlignVectorToCollapsedDir ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 386 of file TetExp.cpp.

389{
390 int i, j;
391
392 const int nquad0 = m_base[0]->GetNumPoints();
393 const int nquad1 = m_base[1]->GetNumPoints();
394 const int nquad2 = m_base[2]->GetNumPoints();
395 const int nqtot = nquad0 * nquad1 * nquad2;
396
397 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
398 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
399 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
400
401 Array<OneD, NekDouble> tmp2(nqtot);
402 Array<OneD, NekDouble> tmp3(nqtot);
403
404 const Array<TwoD, const NekDouble> &df =
405 m_metricinfo->GetDerivFactors(GetPointsKeys());
406
407 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
408 {
409 Vmath::Vmul(nqtot, &df[3 * dir][0], 1, inarray.get(), 1, tmp2.get(), 1);
410 Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, inarray.get(), 1, tmp3.get(),
411 1);
412 Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, inarray.get(), 1,
413 outarray[2].get(), 1);
414 }
415 else
416 {
417 Vmath::Smul(nqtot, df[3 * dir][0], inarray.get(), 1, tmp2.get(), 1);
418 Vmath::Smul(nqtot, df[3 * dir + 1][0], inarray.get(), 1, tmp3.get(), 1);
419 Vmath::Smul(nqtot, df[3 * dir + 2][0], inarray.get(), 1,
420 outarray[2].get(), 1);
421 }
422
423 NekDouble g0, g1, g1a, g2, g3;
424 int k, cnt;
425
426 for (cnt = 0, k = 0; k < nquad2; ++k)
427 {
428 for (j = 0; j < nquad1; ++j)
429 {
430 g2 = 2.0 / (1.0 - z2[k]);
431 g1 = g2 / (1.0 - z1[j]);
432 g0 = 2.0 * g1;
433 g3 = (1.0 + z1[j]) * g2 * 0.5;
434
435 for (i = 0; i < nquad0; ++i, ++cnt)
436 {
437 g1a = g1 * (1 + z0[i]);
438
439 outarray[0][cnt] =
440 g0 * tmp2[cnt] + g1a * (tmp3[cnt] + outarray[2][cnt]);
441
442 outarray[1][cnt] = g2 * tmp3[cnt] + g3 * outarray[2][cnt];
443 }
444 }
445 }
446}
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:274
const LibUtilities::PointsKeyVector GetPointsKeys() const
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ eDeformed
Geometry is curved or has non-constant factors.
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase().

◆ v_ComputeLaplacianMetric()

void Nektar::LocalRegions::TetExp::v_ComputeLaplacianMetric ( )
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1166 of file TetExp.cpp.

1167{
1168 if (m_metrics.count(eMetricQuadrature) == 0)
1169 {
1171 }
1172
1173 int i, j;
1174 const unsigned int nqtot = GetTotPoints();
1175 const unsigned int dim = 3;
1176 const MetricType m[3][3] = {
1180
1181 for (unsigned int i = 0; i < dim; ++i)
1182 {
1183 for (unsigned int j = i; j < dim; ++j)
1184 {
1185 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1186 }
1187 }
1188
1189 // Define shorthand synonyms for m_metrics storage
1190 Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1191 Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1192 Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1193 Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1194 Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1195 Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1196
1197 // Allocate temporary storage
1198 Array<OneD, NekDouble> alloc(7 * nqtot, 0.0);
1199 Array<OneD, NekDouble> h0(alloc); // h0
1200 Array<OneD, NekDouble> h1(alloc + 1 * nqtot); // h1
1201 Array<OneD, NekDouble> h2(alloc + 2 * nqtot); // h2
1202 Array<OneD, NekDouble> h3(alloc + 3 * nqtot); // h3
1203 Array<OneD, NekDouble> wsp4(alloc + 4 * nqtot); // wsp4
1204 Array<OneD, NekDouble> wsp5(alloc + 5 * nqtot); // wsp5
1205 Array<OneD, NekDouble> wsp6(alloc + 6 * nqtot); // wsp6
1206 // Reuse some of the storage as workspace
1207 Array<OneD, NekDouble> wsp7(alloc); // wsp7
1208 Array<OneD, NekDouble> wsp8(alloc + 1 * nqtot); // wsp8
1209 Array<OneD, NekDouble> wsp9(alloc + 2 * nqtot); // wsp9
1210
1211 const Array<TwoD, const NekDouble> &df =
1212 m_metricinfo->GetDerivFactors(GetPointsKeys());
1213 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1214 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1215 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1216 const unsigned int nquad0 = m_base[0]->GetNumPoints();
1217 const unsigned int nquad1 = m_base[1]->GetNumPoints();
1218 const unsigned int nquad2 = m_base[2]->GetNumPoints();
1219
1220 for (j = 0; j < nquad2; ++j)
1221 {
1222 for (i = 0; i < nquad1; ++i)
1223 {
1224 Vmath::Fill(nquad0, 4.0 / (1.0 - z1[i]) / (1.0 - z2[j]),
1225 &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1226 Vmath::Fill(nquad0, 2.0 / (1.0 - z1[i]) / (1.0 - z2[j]),
1227 &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1228 Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1229 &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1230 Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1231 &h3[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1232 }
1233 }
1234 for (i = 0; i < nquad0; i++)
1235 {
1236 Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1237 }
1238
1239 // Step 3. Construct combined metric terms for physical space to
1240 // collapsed coordinate system.
1241 // Order of construction optimised to minimise temporary storage
1242 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1243 {
1244 // wsp4
1245 Vmath::Vadd(nqtot, &df[1][0], 1, &df[2][0], 1, &wsp4[0], 1);
1246 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &wsp4[0], 1, &h1[0], 1,
1247 &wsp4[0], 1);
1248 // wsp5
1249 Vmath::Vadd(nqtot, &df[4][0], 1, &df[5][0], 1, &wsp5[0], 1);
1250 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &wsp5[0], 1, &h1[0], 1,
1251 &wsp5[0], 1);
1252 // wsp6
1253 Vmath::Vadd(nqtot, &df[7][0], 1, &df[8][0], 1, &wsp6[0], 1);
1254 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &wsp6[0], 1, &h1[0], 1,
1255 &wsp6[0], 1);
1256
1257 // g0
1258 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1259 1, &g0[0], 1);
1260 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1261
1262 // g4
1263 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1264 1, &g4[0], 1);
1265 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1266
1267 // overwrite h0, h1, h2
1268 // wsp7 (h2f1 + h3f2)
1269 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h2[0], 1, &df[2][0], 1, &h3[0], 1,
1270 &wsp7[0], 1);
1271 // wsp8 (h2f4 + h3f5)
1272 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h2[0], 1, &df[5][0], 1, &h3[0], 1,
1273 &wsp8[0], 1);
1274 // wsp9 (h2f7 + h3f8)
1275 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h2[0], 1, &df[8][0], 1, &h3[0], 1,
1276 &wsp9[0], 1);
1277
1278 // g3
1279 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0],
1280 1, &g3[0], 1);
1281 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1282
1283 // overwrite wsp4, wsp5, wsp6
1284 // g1
1285 Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0],
1286 1, &g1[0], 1);
1287 Vmath::Vvtvp(nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1288
1289 // g5
1290 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp7[0], 1, &df[5][0], 1, &wsp8[0],
1291 1, &g5[0], 1);
1292 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1293
1294 // g2
1295 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1296 &df[5][0], 1, &g2[0], 1);
1297 Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1298 }
1299 else
1300 {
1301 // wsp4
1302 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[1][0] + df[2][0], &h1[0],
1303 1, &wsp4[0], 1);
1304 // wsp5
1305 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[4][0] + df[5][0], &h1[0],
1306 1, &wsp5[0], 1);
1307 // wsp6
1308 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[7][0] + df[8][0], &h1[0],
1309 1, &wsp6[0], 1);
1310
1311 // g0
1312 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1313 1, &g0[0], 1);
1314 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1315
1316 // g4
1317 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1318 &g4[0], 1);
1319 Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1320
1321 // overwrite h0, h1, h2
1322 // wsp7 (h2f1 + h3f2)
1323 Vmath::Svtsvtp(nqtot, df[1][0], &h2[0], 1, df[2][0], &h3[0], 1,
1324 &wsp7[0], 1);
1325 // wsp8 (h2f4 + h3f5)
1326 Vmath::Svtsvtp(nqtot, df[4][0], &h2[0], 1, df[5][0], &h3[0], 1,
1327 &wsp8[0], 1);
1328 // wsp9 (h2f7 + h3f8)
1329 Vmath::Svtsvtp(nqtot, df[7][0], &h2[0], 1, df[8][0], &h3[0], 1,
1330 &wsp9[0], 1);
1331
1332 // g3
1333 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0],
1334 1, &g3[0], 1);
1335 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1336
1337 // overwrite wsp4, wsp5, wsp6
1338 // g1
1339 Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0],
1340 1, &g1[0], 1);
1341 Vmath::Vvtvp(nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1342
1343 // g5
1344 Vmath::Svtsvtp(nqtot, df[2][0], &wsp7[0], 1, df[5][0], &wsp8[0], 1,
1345 &g5[0], 1);
1346 Vmath::Svtvp(nqtot, df[8][0], &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1347
1348 // g2
1349 Vmath::Fill(nqtot,
1350 df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1351 df[8][0] * df[8][0],
1352 &g2[0], 1);
1353 }
1354
1355 for (unsigned int i = 0; i < dim; ++i)
1356 {
1357 for (unsigned int j = i; j < dim; ++j)
1358 {
1360 }
1361 }
1362}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:723
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
Svtsvtp (scalar times vector plus scalar times vector):
Definition: Vmath.hpp:473
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439

◆ v_ComputeTraceNormal()

void Nektar::LocalRegions::TetExp::v_ComputeTraceNormal ( const int  face)
overrideprotectedvirtual

Compute the normal of a triangular face.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 700 of file TetExp.cpp.

701{
702 int i;
703 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
704 GetGeom()->GetMetricInfo();
705
707 for (int i = 0; i < ptsKeys.size(); ++i)
708 {
709 // Need at least 2 points for computing normals
710 if (ptsKeys[i].GetNumPoints() == 1)
711 {
712 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
713 ptsKeys[i] = pKey;
714 }
715 }
716
717 SpatialDomains::GeomType type = geomFactors->GetGtype();
718 const Array<TwoD, const NekDouble> &df =
719 geomFactors->GetDerivFactors(ptsKeys);
720 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
721
722 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
723 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
724
725 // number of face quadrature points
726 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
727
728 int vCoordDim = GetCoordim();
729
730 m_traceNormals[face] = Array<OneD, Array<OneD, NekDouble>>(vCoordDim);
731 Array<OneD, Array<OneD, NekDouble>> &normal = m_traceNormals[face];
732 for (i = 0; i < vCoordDim; ++i)
733 {
734 normal[i] = Array<OneD, NekDouble>(nq_face);
735 }
736
737 size_t nqb = nq_face;
738 size_t nbnd = face;
739 m_elmtBndNormDirElmtLen[nbnd] = Array<OneD, NekDouble>{nqb, 0.0};
740 Array<OneD, NekDouble> &length = m_elmtBndNormDirElmtLen[nbnd];
741
742 // Regular geometry case
743 if (type == SpatialDomains::eRegular ||
745 {
746 NekDouble fac;
747
748 // Set up normals
749 switch (face)
750 {
751 case 0:
752 {
753 for (i = 0; i < vCoordDim; ++i)
754 {
755 normal[i][0] = -df[3 * i + 2][0];
756 }
757
758 break;
759 }
760 case 1:
761 {
762 for (i = 0; i < vCoordDim; ++i)
763 {
764 normal[i][0] = -df[3 * i + 1][0];
765 }
766
767 break;
768 }
769 case 2:
770 {
771 for (i = 0; i < vCoordDim; ++i)
772 {
773 normal[i][0] =
774 df[3 * i][0] + df[3 * i + 1][0] + df[3 * i + 2][0];
775 }
776
777 break;
778 }
779 case 3:
780 {
781 for (i = 0; i < vCoordDim; ++i)
782 {
783 normal[i][0] = -df[3 * i][0];
784 }
785 break;
786 }
787 default:
788 ASSERTL0(false, "face is out of range (edge < 3)");
789 }
790
791 // normalise
792 fac = 0.0;
793 for (i = 0; i < vCoordDim; ++i)
794 {
795 fac += normal[i][0] * normal[i][0];
796 }
797 fac = 1.0 / sqrt(fac);
798 Vmath::Fill(nqb, fac, length, 1);
799
800 for (i = 0; i < vCoordDim; ++i)
801 {
802 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
803 }
804 }
805 else
806 {
807 // Set up deformed normals
808 int j, k;
809
810 int nq0 = ptsKeys[0].GetNumPoints();
811 int nq1 = ptsKeys[1].GetNumPoints();
812 int nq2 = ptsKeys[2].GetNumPoints();
813 int nqtot;
814 int nq01 = nq0 * nq1;
815
816 // number of elemental quad points
817 if (face == 0)
818 {
819 nqtot = nq01;
820 }
821 else if (face == 1)
822 {
823 nqtot = nq0 * nq2;
824 }
825 else
826 {
827 nqtot = nq1 * nq2;
828 }
829
830 LibUtilities::PointsKey points0;
831 LibUtilities::PointsKey points1;
832
833 Array<OneD, NekDouble> faceJac(nqtot);
834 Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
835
836 // Extract Jacobian along face and recover local derivates
837 // (dx/dr) for polynomial interpolation by multiplying m_gmat by
838 // jacobian
839 switch (face)
840 {
841 case 0:
842 {
843 for (j = 0; j < nq01; ++j)
844 {
845 normals[j] = -df[2][j] * jac[j];
846 normals[nqtot + j] = -df[5][j] * jac[j];
847 normals[2 * nqtot + j] = -df[8][j] * jac[j];
848 faceJac[j] = jac[j];
849 }
850
851 points0 = ptsKeys[0];
852 points1 = ptsKeys[1];
853 break;
854 }
855
856 case 1:
857 {
858 for (j = 0; j < nq0; ++j)
859 {
860 for (k = 0; k < nq2; ++k)
861 {
862 int tmp = j + nq01 * k;
863 normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
864 normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
865 normals[2 * nqtot + j + k * nq0] =
866 -df[7][tmp] * jac[tmp];
867 faceJac[j + k * nq0] = jac[tmp];
868 }
869 }
870
871 points0 = ptsKeys[0];
872 points1 = ptsKeys[2];
873 break;
874 }
875
876 case 2:
877 {
878 for (j = 0; j < nq1; ++j)
879 {
880 for (k = 0; k < nq2; ++k)
881 {
882 int tmp = nq0 - 1 + nq0 * j + nq01 * k;
883 normals[j + k * nq1] =
884 (df[0][tmp] + df[1][tmp] + df[2][tmp]) * jac[tmp];
885 normals[nqtot + j + k * nq1] =
886 (df[3][tmp] + df[4][tmp] + df[5][tmp]) * jac[tmp];
887 normals[2 * nqtot + j + k * nq1] =
888 (df[6][tmp] + df[7][tmp] + df[8][tmp]) * jac[tmp];
889 faceJac[j + k * nq1] = jac[tmp];
890 }
891 }
892
893 points0 = ptsKeys[1];
894 points1 = ptsKeys[2];
895 break;
896 }
897
898 case 3:
899 {
900 for (j = 0; j < nq1; ++j)
901 {
902 for (k = 0; k < nq2; ++k)
903 {
904 int tmp = j * nq0 + nq01 * k;
905 normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
906 normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
907 normals[2 * nqtot + j + k * nq1] =
908 -df[6][tmp] * jac[tmp];
909 faceJac[j + k * nq1] = jac[tmp];
910 }
911 }
912
913 points0 = ptsKeys[1];
914 points1 = ptsKeys[2];
915 break;
916 }
917
918 default:
919 ASSERTL0(false, "face is out of range (face < 3)");
920 }
921
922 Array<OneD, NekDouble> work(nq_face, 0.0);
923 // Interpolate Jacobian and invert
924 LibUtilities::Interp2D(points0, points1, faceJac,
925 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
926 work);
927 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
928
929 // Interpolate normal and multiply by inverse Jacobian.
930 for (i = 0; i < vCoordDim; ++i)
931 {
932 LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
933 tobasis0.GetPointsKey(),
934 tobasis1.GetPointsKey(), &normal[i][0]);
935 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
936 }
937
938 // Normalise to obtain unit normals.
939 Vmath::Zero(nq_face, work, 1);
940 for (i = 0; i < GetCoordim(); ++i)
941 {
942 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
943 }
944
945 Vmath::Vsqrt(nq_face, work, 1, work, 1);
946 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
947
948 Vmath::Vcopy(nqb, work, 1, length, 1);
949
950 for (i = 0; i < GetCoordim(); ++i)
951 {
952 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
953 }
954 }
955}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:276
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:286
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:167
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:299
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:101
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:60
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.hpp:154
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetTraceBasisKey(), Nektar::LibUtilities::Interp2D(), Nektar::LocalRegions::Expansion::m_elmtBndNormDirElmtLen, Nektar::LocalRegions::Expansion::m_traceNormals, Vmath::Sdiv(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::TetExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 1034 of file TetExp.cpp.

1035{
1036 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1037 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1038 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1041
1042 return tmp->GetStdMatrix(mkey);
1043}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< StdTetExp > StdTetExpSharedPtr
Definition: StdTetExp.h:233

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_DetShapeType()

LibUtilities::ShapeType Nektar::LocalRegions::TetExp::v_DetShapeType ( ) const
overrideprotectedvirtual

Return Shape of region, using ShapeType enum list.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 527 of file TetExp.cpp.

528{
530}

References Nektar::LibUtilities::eTetrahedron.

◆ v_DropLocMatrix()

void Nektar::LocalRegions::TetExp::v_DropLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1050 of file TetExp.cpp.

1051{
1052 m_matrixManager.DeleteObject(mkey);
1053}

References m_matrixManager.

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::TetExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1060 of file TetExp.cpp.

1061{
1062 m_staticCondMatrixManager.DeleteObject(mkey);
1063}

References m_staticCondMatrixManager.

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::TetExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 552 of file TetExp.cpp.

556{
557 int data_order0 = nummodes[mode_offset];
558 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
559 int data_order1 = nummodes[mode_offset + 1];
560 int order1 = m_base[1]->GetNumModes();
561 int fillorder1 = min(order1, data_order1);
562 int data_order2 = nummodes[mode_offset + 2];
563 int order2 = m_base[2]->GetNumModes();
564 int fillorder2 = min(order2, data_order2);
565
566 switch (m_base[0]->GetBasisType())
567 {
569 {
570 int i, j;
571 int cnt = 0;
572 int cnt1 = 0;
573
575 "Extraction routine not set up for this basis");
577 "Extraction routine not set up for this basis");
578
579 Vmath::Zero(m_ncoeffs, coeffs, 1);
580 for (j = 0; j < fillorder0; ++j)
581 {
582 for (i = 0; i < fillorder1 - j; ++i)
583 {
584 Vmath::Vcopy(fillorder2 - j - i, &data[cnt], 1,
585 &coeffs[cnt1], 1);
586 cnt += data_order2 - j - i;
587 cnt1 += order2 - j - i;
588 }
589
590 // count out data for j iteration
591 for (i = fillorder1 - j; i < data_order1 - j; ++i)
592 {
593 cnt += data_order2 - j - i;
594 }
595
596 for (i = fillorder1 - j; i < order1 - j; ++i)
597 {
598 cnt1 += order2 - j - i;
599 }
600 }
601 }
602 break;
603 default:
604 ASSERTL0(false, "basis is either not set up or not "
605 "hierarchicial");
606 }
607}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:49
@ eModified_C
Principle Modified Functions .
Definition: BasisType.h:50
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

◆ v_FwdTrans()

void Nektar::LocalRegions::TetExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.

Parameters
inarrayArray of physical quadrature points to be transformed.
outarrayArray of coefficients to update.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 223 of file TetExp.cpp.

225{
226 if ((m_base[0]->Collocation()) && (m_base[1]->Collocation()) &&
227 (m_base[2]->Collocation()))
228 {
229 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
230 }
231 else
232 {
233 IProductWRTBase(inarray, outarray);
234
235 // get Mass matrix inverse
236 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
237 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
238
239 // copy inarray in case inarray == outarray
240 DNekVec in(m_ncoeffs, outarray);
241 DNekVec out(m_ncoeffs, outarray, eWrapper);
242
243 out = (*matsys) * in;
244 }
245}
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:124
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:528
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:56
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:48

References Nektar::StdRegions::StdTetExp::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::TetExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 1012 of file TetExp.cpp.

1013{
1014 DNekMatSharedPtr returnval;
1015
1016 switch (mkey.GetMatrixType())
1017 {
1025 returnval = Expansion3D::v_GenMatrix(mkey);
1026 break;
1027 default:
1028 returnval = StdTetExp::v_GenMatrix(mkey);
1029 }
1030
1031 return returnval;
1032}
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

◆ v_GetCoord()

void Nektar::LocalRegions::TetExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
overrideprotectedvirtual

Get the coordinates "coords" at the local coordinates "Lcoords".

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 496 of file TetExp.cpp.

498{
499 int i;
500
501 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
502 Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
503 "Local coordinates are not in region [-1,1]");
504
505 // m_geom->FillGeom(); // TODO: implement FillGeom()
506
507 for (i = 0; i < m_geom->GetCoordim(); ++i)
508 {
509 coords[i] = m_geom->GetCoord(i, Lcoords);
510 }
511}
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:273

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_GetCoords()

void Nektar::LocalRegions::TetExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 513 of file TetExp.cpp.

516{
517 Expansion::v_GetCoords(coords_0, coords_1, coords_2);
518}
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:530

References Nektar::LocalRegions::Expansion::v_GetCoords().

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TetExp::v_GetLinStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 539 of file TetExp.cpp.

540{
541 LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(), 2,
542 m_base[0]->GetPointsKey());
543 LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(), 2,
544 m_base[1]->GetPointsKey());
545 LibUtilities::BasisKey bkey2(m_base[2]->GetBasisType(), 2,
546 m_base[2]->GetPointsKey());
547
549 bkey2);
550}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::TetExp::v_GetLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1045 of file TetExp.cpp.

1046{
1047 return m_matrixManager[mkey];
1048}

References m_matrixManager.

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::TetExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1055 of file TetExp.cpp.

1056{
1057 return m_staticCondMatrixManager[mkey];
1058}

References m_staticCondMatrixManager.

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TetExp::v_GetStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 532 of file TetExp.cpp.

533{
535 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
536 m_base[2]->GetBasisKey());
537}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePhysMap()

void Nektar::LocalRegions::TetExp::v_GetTracePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
overrideprotectedvirtual

Returns the physical values at the quadrature points of a face.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 612 of file TetExp.cpp.

613{
614 int nquad0 = m_base[0]->GetNumPoints();
615 int nquad1 = m_base[1]->GetNumPoints();
616 int nquad2 = m_base[2]->GetNumPoints();
617
618 int nq0 = 0;
619 int nq1 = 0;
620
621 // get forward aligned faces.
622 switch (face)
623 {
624 case 0:
625 {
626 nq0 = nquad0;
627 nq1 = nquad1;
628 if (outarray.size() != nq0 * nq1)
629 {
630 outarray = Array<OneD, int>(nq0 * nq1);
631 }
632
633 for (int i = 0; i < nquad0 * nquad1; ++i)
634 {
635 outarray[i] = i;
636 }
637
638 break;
639 }
640 case 1:
641 {
642 nq0 = nquad0;
643 nq1 = nquad2;
644 if (outarray.size() != nq0 * nq1)
645 {
646 outarray = Array<OneD, int>(nq0 * nq1);
647 }
648
649 // Direction A and B positive
650 for (int k = 0; k < nquad2; k++)
651 {
652 for (int i = 0; i < nquad0; ++i)
653 {
654 outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
655 }
656 }
657 break;
658 }
659 case 2:
660 {
661 nq0 = nquad1;
662 nq1 = nquad2;
663 if (outarray.size() != nq0 * nq1)
664 {
665 outarray = Array<OneD, int>(nq0 * nq1);
666 }
667
668 // Directions A and B positive
669 for (int j = 0; j < nquad1 * nquad2; ++j)
670 {
671 outarray[j] = nquad0 - 1 + j * nquad0;
672 }
673 break;
674 }
675 case 3:
676 {
677 nq0 = nquad1;
678 nq1 = nquad2;
679 if (outarray.size() != nq0 * nq1)
680 {
681 outarray = Array<OneD, int>(nq0 * nq1);
682 }
683
684 // Directions A and B positive
685 for (int j = 0; j < nquad1 * nquad2; ++j)
686 {
687 outarray[j] = j * nquad0;
688 }
689 }
690 break;
691 default:
692 ASSERTL0(false, "face value (> 3) is out of range");
693 break;
694 }
695}

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_HelmholtzMatrixOp()

void Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 960 of file TetExp.cpp.

963{
964 TetExp::v_HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
965}
void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

◆ v_Integral()

NekDouble Nektar::LocalRegions::TetExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrate the physical point list inarray over region.

Parameters
inarrayDefinition of function to be returned at quadrature point of expansion.
Returns
\(\int^1_{-1}\int^1_{-1} \int^1_{-1} u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 \) where \(inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) \) and \( J[i,j,k] \) is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 102 of file TetExp.cpp.

103{
104 int nquad0 = m_base[0]->GetNumPoints();
105 int nquad1 = m_base[1]->GetNumPoints();
106 int nquad2 = m_base[2]->GetNumPoints();
107 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
108 NekDouble retrunVal;
109 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
110
111 // multiply inarray with Jacobian
112 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
113 {
114 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
115 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
116 }
117 else
118 {
119 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
120 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
121 }
122
123 // call StdTetExp version;
124 retrunVal = StdTetExp::v_Integral(tmp);
125
126 return retrunVal;
127}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase()

void Nektar::LocalRegions::TetExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put into outarray:

\( \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\eta_{1i}) \psi_{pq}^{b} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{pq}^b(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} \)
where \( \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\eta_1) \psi_{pq}^b (\eta_2) \psi_{pqr}^c (\eta_3) \) which can be implemented as
\(f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \)
\( g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{pq}^b (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} \)
\( (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} \)

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 276 of file TetExp.cpp.

278{
279 v_IProductWRTBase_SumFac(inarray, outarray);
280}
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: TetExp.cpp:282

References v_IProductWRTBase_SumFac().

◆ v_IProductWRTBase_SumFac()

void Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
overrideprotectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 282 of file TetExp.cpp.

285{
286 const int nquad0 = m_base[0]->GetNumPoints();
287 const int nquad1 = m_base[1]->GetNumPoints();
288 const int nquad2 = m_base[2]->GetNumPoints();
289 const int order0 = m_base[0]->GetNumModes();
290 const int order1 = m_base[1]->GetNumModes();
291 Array<OneD, NekDouble> wsp(nquad1 * nquad2 * order0 +
292 nquad2 * order0 * (order1 + 1) / 2);
293
294 if (multiplybyweights)
295 {
296 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
297
298 MultiplyByQuadratureMetric(inarray, tmp);
300 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
301 tmp, outarray, wsp, true, true, true);
302 }
303 else
304 {
306 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
307 inarray, outarray, wsp, true, true, true);
308 }
309}
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \).

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product \(\phi_{pqr}(\eta_1,\eta_2,\eta_3) = \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\), this yields the result

\[ I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j} \frac{\partial \eta_j}{\partial x_i}\right) \]

In the prismatic element, we must also incorporate a second set of geometric factors which incorporate the collapsed co-ordinate system, so that

\[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3 \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial x_i} \]

These derivatives can be found on p152 of Sherwin & Karniadakis.

Parameters
dirDirection in which to take the derivative.
inarrayThe function \( u \).
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 341 of file TetExp.cpp.

344{
345 const int nquad0 = m_base[0]->GetNumPoints();
346 const int nquad1 = m_base[1]->GetNumPoints();
347 const int nquad2 = m_base[2]->GetNumPoints();
348 const int order0 = m_base[0]->GetNumModes();
349 const int order1 = m_base[1]->GetNumModes();
350 const int nqtot = nquad0 * nquad1 * nquad2;
351
352 Array<OneD, NekDouble> tmp1(nqtot);
353 Array<OneD, NekDouble> tmp2(nqtot);
354 Array<OneD, NekDouble> tmp3(nqtot);
355 Array<OneD, NekDouble> tmp4(nqtot);
356 Array<OneD, NekDouble> tmp6(m_ncoeffs);
357 Array<OneD, NekDouble> wsp(nquad1 * nquad2 * order0 +
358 nquad2 * order0 * (order1 + 1) / 2);
359
360 MultiplyByQuadratureMetric(inarray, tmp1);
361
362 Array<OneD, Array<OneD, NekDouble>> tmp2D{3};
363 tmp2D[0] = tmp2;
364 tmp2D[1] = tmp3;
365 tmp2D[2] = tmp4;
366
367 TetExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
368
369 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
370 m_base[2]->GetBdata(), tmp2, outarray, wsp,
371 false, true, true);
372
373 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
374 m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
375 false, true);
376
377 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
378
379 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
380 m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
381 true, false);
382
383 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
384}
void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: TetExp.cpp:386

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), v_AlignVectorToCollapsedDir(), and Vmath::Vadd().

◆ v_LaplacianMatrixOp() [1/2]

void Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 967 of file TetExp.cpp.

970{
971 TetExp::v_LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
972}
void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override

References Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree().

◆ v_LaplacianMatrixOp() [2/2]

void Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 974 of file TetExp.cpp.

978{
979 StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
980}

◆ v_LaplacianMatrixOp_MatFree_Kernel()

void Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
overrideprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1088 of file TetExp.cpp.

1091{
1092 // This implementation is only valid when there are no
1093 // coefficients associated to the Laplacian operator
1094 if (m_metrics.count(eMetricLaplacian00) == 0)
1095 {
1097 }
1098
1099 int nquad0 = m_base[0]->GetNumPoints();
1100 int nquad1 = m_base[1]->GetNumPoints();
1101 int nquad2 = m_base[2]->GetNumPoints();
1102 int nqtot = nquad0 * nquad1 * nquad2;
1103
1104 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1105 ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1106
1107 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1108 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1109 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1110 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1111 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1112 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1113 const Array<OneD, const NekDouble> &metric00 =
1114 m_metrics[eMetricLaplacian00];
1115 const Array<OneD, const NekDouble> &metric01 =
1116 m_metrics[eMetricLaplacian01];
1117 const Array<OneD, const NekDouble> &metric02 =
1118 m_metrics[eMetricLaplacian02];
1119 const Array<OneD, const NekDouble> &metric11 =
1120 m_metrics[eMetricLaplacian11];
1121 const Array<OneD, const NekDouble> &metric12 =
1122 m_metrics[eMetricLaplacian12];
1123 const Array<OneD, const NekDouble> &metric22 =
1124 m_metrics[eMetricLaplacian22];
1125
1126 // Allocate temporary storage
1127 Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1128 Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1129 Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1130 Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1131 Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1132 Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1133
1134 // LAPLACIAN MATRIX OPERATION
1135 // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1136 // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1137 // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1138 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1139
1140 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1141 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1142 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1143 // especially for this purpose
1144 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1145 &wsp1[0], 1, &wsp3[0], 1);
1146 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1147 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1148 &wsp1[0], 1, &wsp4[0], 1);
1149 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1150 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1151 &wsp1[0], 1, &wsp5[0], 1);
1152 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1153
1154 // outarray = m = (D_xi1 * B)^T * k
1155 // wsp1 = n = (D_xi2 * B)^T * l
1156 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1157 false, true, true);
1158 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1159 false, true);
1160 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1161 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1162 true, false);
1163 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1164}

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::StdRegions::StdExpansion::m_base, and Nektar::LocalRegions::Expansion::m_metrics.

◆ v_NormalTraceDerivFactors()

void Nektar::LocalRegions::TetExp::v_NormalTraceDerivFactors ( Array< OneD, Array< OneD, NekDouble > > &  d0factors,
Array< OneD, Array< OneD, NekDouble > > &  d1factors,
Array< OneD, Array< OneD, NekDouble > > &  d2factors 
)
overrideprotectedvirtual

: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1369 of file TetExp.cpp.

1373{
1374 int nquad0 = GetNumPoints(0);
1375 int nquad1 = GetNumPoints(1);
1376 int nquad2 = GetNumPoints(2);
1377
1378 const Array<TwoD, const NekDouble> &df =
1379 m_metricinfo->GetDerivFactors(GetPointsKeys());
1380
1381 if (d0factors.size() != 4)
1382 {
1383 d0factors = Array<OneD, Array<OneD, NekDouble>>(4);
1384 d1factors = Array<OneD, Array<OneD, NekDouble>>(4);
1385 d2factors = Array<OneD, Array<OneD, NekDouble>>(4);
1386 }
1387
1388 if (d0factors[0].size() != nquad0 * nquad1)
1389 {
1390 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1391 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1392 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1393 }
1394
1395 if (d0factors[1].size() != nquad0 * nquad2)
1396 {
1397 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1398 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1399 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1400 }
1401
1402 if (d0factors[2].size() != nquad1 * nquad2)
1403 {
1404 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1405 d0factors[3] = Array<OneD, NekDouble>(nquad1 * nquad2);
1406 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1407 d1factors[3] = Array<OneD, NekDouble>(nquad1 * nquad2);
1408 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1409 d2factors[3] = Array<OneD, NekDouble>(nquad1 * nquad2);
1410 }
1411
1412 // Outwards normals
1413 const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1414 GetTraceNormal(0);
1415 const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1416 GetTraceNormal(1);
1417 const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1418 GetTraceNormal(2);
1419 const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1420 GetTraceNormal(3);
1421
1422 int ncoords = normal_0.size();
1423
1424 // first gather together standard cartesian inner products
1425 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1426 {
1427 // face 0
1428 for (int i = 0; i < nquad0 * nquad1; ++i)
1429 {
1430 d0factors[0][i] = df[0][i] * normal_0[0][i];
1431 d1factors[0][i] = df[1][i] * normal_0[0][i];
1432 d2factors[0][i] = df[2][i] * normal_0[0][i];
1433 }
1434
1435 for (int n = 1; n < ncoords; ++n)
1436 {
1437 for (int i = 0; i < nquad0 * nquad1; ++i)
1438 {
1439 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1440 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1441 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1442 }
1443 }
1444
1445 // face 1
1446 for (int j = 0; j < nquad2; ++j)
1447 {
1448 for (int i = 0; i < nquad0; ++i)
1449 {
1450 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1451 normal_1[0][j * nquad0 + i];
1452 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1453 normal_1[0][j * nquad0 + i];
1454 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1455 normal_1[0][j * nquad0 + i];
1456 }
1457 }
1458
1459 for (int n = 1; n < ncoords; ++n)
1460 {
1461 for (int j = 0; j < nquad2; ++j)
1462 {
1463 for (int i = 0; i < nquad0; ++i)
1464 {
1465 d0factors[1][j * nquad0 + i] +=
1466 df[3 * n][j * nquad0 * nquad1 + i] *
1467 normal_1[0][j * nquad0 + i];
1468 d1factors[1][j * nquad0 + i] +=
1469 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1470 normal_1[0][j * nquad0 + i];
1471 d2factors[1][j * nquad0 + i] +=
1472 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1473 normal_1[0][j * nquad0 + i];
1474 }
1475 }
1476 }
1477
1478 // faces 2 and 3
1479 for (int j = 0; j < nquad2; ++j)
1480 {
1481 for (int i = 0; i < nquad1; ++i)
1482 {
1483 d0factors[2][j * nquad1 + i] =
1484 df[0][(j * nquad1 + i + 1) * nquad0 - 1] *
1485 normal_2[0][j * nquad1 + i];
1486 d1factors[2][j * nquad1 + i] =
1487 df[1][(j * nquad1 + i + 1) * nquad0 - 1] *
1488 normal_2[0][j * nquad1 + i];
1489 d2factors[2][j * nquad1 + i] =
1490 df[2][(j * nquad1 + i + 1) * nquad0 - 1] *
1491 normal_2[0][j * nquad1 + i];
1492
1493 d0factors[3][j * nquad1 + i] =
1494 df[0][(j * nquad1 + i) * nquad0] *
1495 normal_3[0][j * nquad1 + i];
1496 d1factors[3][j * nquad1 + i] =
1497 df[1][(j * nquad1 + i) * nquad0] *
1498 normal_3[0][j * nquad1 + i];
1499 d2factors[3][j * nquad1 + i] =
1500 df[2][(j * nquad1 + i) * nquad0] *
1501 normal_3[0][j * nquad1 + i];
1502 }
1503 }
1504
1505 for (int n = 1; n < ncoords; ++n)
1506 {
1507 for (int j = 0; j < nquad2; ++j)
1508 {
1509 for (int i = 0; i < nquad1; ++i)
1510 {
1511 d0factors[2][j * nquad1 + i] +=
1512 df[3 * n][(j * nquad1 + i + 1) * nquad0 - 1] *
1513 normal_2[n][j * nquad1 + i];
1514 d1factors[2][j * nquad1 + i] +=
1515 df[3 * n + 1][(j * nquad1 + i + 1) * nquad0 - 1] *
1516 normal_2[n][j * nquad1 + i];
1517 d2factors[2][j * nquad1 + i] +=
1518 df[3 * n + 2][(j * nquad1 + i + 1) * nquad0 - 1] *
1519 normal_2[n][j * nquad1 + i];
1520
1521 d0factors[3][j * nquad1 + i] +=
1522 df[3 * n][(j * nquad1 + i) * nquad0] *
1523 normal_3[n][j * nquad1 + i];
1524 d1factors[3][j * nquad1 + i] +=
1525 df[3 * n + 1][(j * nquad1 + i) * nquad0] *
1526 normal_3[n][j * nquad1 + i];
1527 d2factors[3][j * nquad1 + i] +=
1528 df[3 * n + 2][(j * nquad1 + i) * nquad0] *
1529 normal_3[n][j * nquad1 + i];
1530 }
1531 }
1532 }
1533 }
1534 else
1535 {
1536 // Face 0
1537 for (int i = 0; i < nquad0 * nquad1; ++i)
1538 {
1539 d0factors[0][i] = df[0][0] * normal_0[0][i];
1540 d1factors[0][i] = df[1][0] * normal_0[0][i];
1541 d2factors[0][i] = df[2][0] * normal_0[0][i];
1542 }
1543
1544 for (int n = 1; n < ncoords; ++n)
1545 {
1546 for (int i = 0; i < nquad0 * nquad1; ++i)
1547 {
1548 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1549 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1550 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1551 }
1552 }
1553
1554 // face 1
1555 for (int i = 0; i < nquad0 * nquad2; ++i)
1556 {
1557 d0factors[1][i] = df[0][0] * normal_1[0][i];
1558 d1factors[1][i] = df[1][0] * normal_1[0][i];
1559 d2factors[1][i] = df[2][0] * normal_1[0][i];
1560 }
1561
1562 for (int n = 1; n < ncoords; ++n)
1563 {
1564 for (int i = 0; i < nquad0 * nquad2; ++i)
1565 {
1566 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1567 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1568 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1569 }
1570 }
1571
1572 // faces 2 and 3
1573 for (int i = 0; i < nquad1 * nquad2; ++i)
1574 {
1575 d0factors[2][i] = df[0][0] * normal_2[0][i];
1576 d0factors[3][i] = df[0][0] * normal_3[0][i];
1577
1578 d1factors[2][i] = df[1][0] * normal_2[0][i];
1579 d1factors[3][i] = df[1][0] * normal_3[0][i];
1580
1581 d2factors[2][i] = df[2][0] * normal_2[0][i];
1582 d2factors[3][i] = df[2][0] * normal_3[0][i];
1583 }
1584
1585 for (int n = 1; n < ncoords; ++n)
1586 {
1587 for (int i = 0; i < nquad1 * nquad2; ++i)
1588 {
1589 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1590 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1591
1592 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1593 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1594
1595 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1596 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1597 }
1598 }
1599 }
1600}
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:251

◆ v_PhysDeriv()

void Nektar::LocalRegions::TetExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
overrideprotectedvirtual

Differentiate inarray in the three coordinate directions.

Parameters
inarrayInput array of values at quadrature points to be differentiated.
out_d0Derivative in first coordinate direction.
out_d1Derivative in second coordinate direction.
out_d2Derivative in third coordinate direction.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 141 of file TetExp.cpp.

145{
146 int TotPts = m_base[0]->GetNumPoints() * m_base[1]->GetNumPoints() *
147 m_base[2]->GetNumPoints();
148
149 Array<TwoD, const NekDouble> df =
150 m_metricinfo->GetDerivFactors(GetPointsKeys());
151 Array<OneD, NekDouble> Diff0 = Array<OneD, NekDouble>(3 * TotPts);
152 Array<OneD, NekDouble> Diff1 = Diff0 + TotPts;
153 Array<OneD, NekDouble> Diff2 = Diff1 + TotPts;
154
155 StdTetExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
156
157 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
158 {
159 if (out_d0.size())
160 {
161 Vmath::Vmul(TotPts, &df[0][0], 1, &Diff0[0], 1, &out_d0[0], 1);
162 Vmath::Vvtvp(TotPts, &df[1][0], 1, &Diff1[0], 1, &out_d0[0], 1,
163 &out_d0[0], 1);
164 Vmath::Vvtvp(TotPts, &df[2][0], 1, &Diff2[0], 1, &out_d0[0], 1,
165 &out_d0[0], 1);
166 }
167
168 if (out_d1.size())
169 {
170 Vmath::Vmul(TotPts, &df[3][0], 1, &Diff0[0], 1, &out_d1[0], 1);
171 Vmath::Vvtvp(TotPts, &df[4][0], 1, &Diff1[0], 1, &out_d1[0], 1,
172 &out_d1[0], 1);
173 Vmath::Vvtvp(TotPts, &df[5][0], 1, &Diff2[0], 1, &out_d1[0], 1,
174 &out_d1[0], 1);
175 }
176
177 if (out_d2.size())
178 {
179 Vmath::Vmul(TotPts, &df[6][0], 1, &Diff0[0], 1, &out_d2[0], 1);
180 Vmath::Vvtvp(TotPts, &df[7][0], 1, &Diff1[0], 1, &out_d2[0], 1,
181 &out_d2[0], 1);
182 Vmath::Vvtvp(TotPts, &df[8][0], 1, &Diff2[0], 1, &out_d2[0], 1,
183 &out_d2[0], 1);
184 }
185 }
186 else // regular geometry
187 {
188 if (out_d0.size())
189 {
190 Vmath::Smul(TotPts, df[0][0], &Diff0[0], 1, &out_d0[0], 1);
191 Blas::Daxpy(TotPts, df[1][0], &Diff1[0], 1, &out_d0[0], 1);
192 Blas::Daxpy(TotPts, df[2][0], &Diff2[0], 1, &out_d0[0], 1);
193 }
194
195 if (out_d1.size())
196 {
197 Vmath::Smul(TotPts, df[3][0], &Diff0[0], 1, &out_d1[0], 1);
198 Blas::Daxpy(TotPts, df[4][0], &Diff1[0], 1, &out_d1[0], 1);
199 Blas::Daxpy(TotPts, df[5][0], &Diff2[0], 1, &out_d1[0], 1);
200 }
201
202 if (out_d2.size())
203 {
204 Vmath::Smul(TotPts, df[6][0], &Diff0[0], 1, &out_d2[0], 1);
205 Blas::Daxpy(TotPts, df[7][0], &Diff1[0], 1, &out_d2[0], 1);
206 Blas::Daxpy(TotPts, df[8][0], &Diff2[0], 1, &out_d2[0], 1);
207 }
208 }
209}
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135

References Blas::Daxpy(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::LocalRegions::TetExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual
Parameters
coordPhysical space coordinate
Returns
Evaluation of expansion at given coordinate.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 469 of file TetExp.cpp.

471{
472 ASSERTL0(m_geom, "m_geom not defined");
473
474 Array<OneD, NekDouble> Lcoord = Array<OneD, NekDouble>(3);
475
476 // Get the local (eta) coordinates of the point
477 m_geom->GetLocCoords(coord, Lcoord);
478
479 // Evaluate point in local (eta) coordinates.
480 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
481}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::LocalRegions::TetExp::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 483 of file TetExp.cpp.

486{
487 Array<OneD, NekDouble> Lcoord(3);
488 ASSERTL0(m_geom, "m_geom not defined");
489 m_geom->GetLocCoords(coord, Lcoord);
490 return StdTetExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
491}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::TetExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 457 of file TetExp.cpp.

460{
461 // Evaluate point in local (eta) coordinates.
462 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
463}

◆ v_SVVLaplacianFilter()

void Nektar::LocalRegions::TetExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 982 of file TetExp.cpp.

984{
985 int nq = GetTotPoints();
986
987 // Calculate sqrt of the Jacobian
988 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
989 Array<OneD, NekDouble> sqrt_jac(nq);
990 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
991 {
992 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
993 }
994 else
995 {
996 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
997 }
998
999 // Multiply array by sqrt(Jac)
1000 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1001
1002 // Apply std region filter
1003 StdTetExp::v_SVVLaplacianFilter(array, mkey);
1004
1005 // Divide by sqrt(Jac)
1006 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1007}
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, tinysimd::sqrt(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::TetExp::m_matrixManager
private

Definition at line 200 of file TetExp.h.

Referenced by v_DropLocMatrix(), v_FwdTrans(), and v_GetLocMatrix().

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::TetExp::m_staticCondMatrixManager
private

Definition at line 202 of file TetExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().