Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion3D Class Referenceabstract

#include <StdExpansion3D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion3D:
[legend]

Public Member Functions

 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D ()=default
 
 StdExpansion3D (const StdExpansion3D &T)=default
 
 ~StdExpansion3D () override=default
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1, bool UseGLL=false) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void NodalToModal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
void PhysInterp (std::shared_ptr< StdExpansion > fromExp, const Array< OneD, const NekDouble > &fromData, Array< OneD, NekDouble > &toData)
 interpolate from one set of quadrature points available from FromExp to the set of quadrature points in the current expansion. If the points are the same this routine will just copy the data More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble v_PhysEvaluateInterp (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
void v_PhysInterp (std::shared_ptr< StdExpansion > fromExp, const Array< OneD, const NekDouble > &fromData, Array< OneD, NekDouble > &toData) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 

Private Member Functions

int v_GetShapeDimension () const final
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 47 of file StdExpansion3D.h.

Constructor & Destructor Documentation

◆ StdExpansion3D() [1/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 47 of file StdExpansion3D.cpp.

52{
53}

◆ StdExpansion3D() [2/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( )
default

◆ StdExpansion3D() [3/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( const StdExpansion3D T)
default

◆ ~StdExpansion3D()

Nektar::StdRegions::StdExpansion3D::~StdExpansion3D ( )
overridedefault

Member Function Documentation

◆ BaryTensorDeriv()

NekDouble Nektar::StdRegions::StdExpansion3D::BaryTensorDeriv ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
inlineprotected

Performs tensor product evaluation in 3D to evaluate the physical and derivative values in each direction at input coordinate

Parameters
coordusing input physical values at quadrature points
inarray.Returns via reference the derivatives.
coordGlobal coordinate
inarrayPhys values
out_d0Return by reference parameter for 0th derivative
out_d1Return by reference parameter for 1st derivative
out_d2Return by reference parameter for 2nd derivative
Returns
Physical value at
Parameters
coord

Definition at line 223 of file StdExpansion3D.h.

227 {
228 const int nq0 = m_base[0]->GetNumPoints();
229 const int nq1 = m_base[1]->GetNumPoints();
230 const int nq2 = m_base[2]->GetNumPoints();
231
232 const NekDouble *ptr = &inarray[0];
233 Array<OneD, NekDouble> deriv0(nq1 * nq2, 0.0);
234 Array<OneD, NekDouble> phys0(nq1 * nq2, 0.0);
235 Array<OneD, NekDouble> deriv0phys1(nq1, 0.0);
236 Array<OneD, NekDouble> phys0deriv1(nq1, 0.0);
237 Array<OneD, NekDouble> phys0phys1(nq1, 0.0);
238
239 for (int j = 0; j < nq1 * nq2; ++j, ptr += nq0)
240 {
241 phys0[j] =
242 StdExpansion::BaryEvaluate<0, true>(coord[0], ptr, deriv0[j]);
243 }
244
245 for (int j = 0; j < nq2; ++j)
246 {
247 deriv0phys1[j] = StdExpansion::BaryEvaluate<1, false>(
248 coord[1], &deriv0[j * nq1]);
249 }
250 firstOrderDerivs[0] =
251 StdExpansion::BaryEvaluate<2, false>(coord[2], &deriv0phys1[0]);
252
253 for (int j = 0; j < nq2; ++j)
254 {
255 phys0phys1[j] = StdExpansion::BaryEvaluate<1, true>(
256 coord[1], &phys0[j * nq1], phys0deriv1[j]);
257 }
258 firstOrderDerivs[1] =
259 StdExpansion::BaryEvaluate<2, false>(coord[2], &phys0deriv1[0]);
260
261 return StdExpansion::BaryEvaluate<2, true>(coord[2], &phys0phys1[0],
262 firstOrderDerivs[2]);
263 }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
double NekDouble

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_PhysEvalFirstDeriv(), Nektar::StdRegions::StdPrismExp::v_PhysEvalFirstDeriv(), Nektar::StdRegions::StdPyrExp::v_PhysEvalFirstDeriv(), and Nektar::StdRegions::StdTetExp::v_PhysEvalFirstDeriv().

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 97 of file StdExpansion3D.cpp.

104{
105 v_BwdTrans_SumFacKernel(base0, base1, base2, inarray, outarray, wsp,
106 doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
107}
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdHexExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdPrismExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
inline

Definition at line 141 of file StdExpansion3D.h.

145 {
146 v_GetEdgeInteriorToElementMap(tid, maparray, signarray, traceOrient);
147 }
virtual void v_GetEdgeInteriorToElementMap(const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)

References v_GetEdgeInteriorToElementMap().

Referenced by Nektar::LocalRegions::Expansion3D::GetEdgeInverseBoundaryMap(), and Nektar::LocalRegions::Expansion3D::GetInverseBoundaryMaps().

◆ GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::GetEdgeNcoeffs ( const int  i) const
inline

This function returns the number of expansion coefficients belonging to the i-th edge.

This function is a wrapper around the virtual function v_GetEdgeNcoeffs()

Parameters
ispecifies which edge
Returns
returns the number of expansion coefficients belonging to the i-th edge

Definition at line 136 of file StdExpansion3D.h.

137 {
138 return v_GetEdgeNcoeffs(i);
139 }
virtual int v_GetEdgeNcoeffs(const int i) const

References v_GetEdgeNcoeffs().

Referenced by Nektar::LocalRegions::Expansion3D::GetEdgeInverseBoundaryMap(), Nektar::LocalRegions::Expansion3D::GetInverseBoundaryMaps(), Nektar::LocalRegions::Expansion3D::v_BuildInverseTransformationMatrix(), Nektar::MultiRegions::PreconditionerLowEnergy::v_BuildPreconditioner(), Nektar::LocalRegions::Expansion3D::v_BuildTransformationMatrix(), and Nektar::StdRegions::StdHexExp::v_GetEdgeInteriorToElementMap().

◆ GetNedges()

int Nektar::StdRegions::StdExpansion3D::GetNedges ( ) const
inline

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 109 of file StdExpansion3D.cpp.

116{
117 v_IProductWRTBase_SumFacKernel(base0, base1, base2, inarray, outarray, wsp,
118 doCheckCollDir0, doCheckCollDir1,
119 doCheckCollDir2);
120}
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_IProductWRTBase_SumFacKernel().

Referenced by v_GenStdMatBwdDeriv(), v_HelmholtzMatrixOp_MatFree(), Nektar::StdRegions::StdHexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase(), Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdHexExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTDirectionalDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel(), and Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp_MatFree_Kernel().

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d1,
Array< OneD, NekDouble > &  outarray_d2,
Array< OneD, NekDouble > &  outarray_d3 
)

Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
  • \( \frac{d}{d\eta_3} \rightarrow {\bf D_2 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d1the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d1 as output of the function
outarray_d2the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d2 as output of the function
outarray_d3the resulting array of derivative in the \(\eta_3\) direction will be stored in outarray_d3 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Hexahedral} & -1 \leq \xi_1,\xi_2, \xi_3 \leq 1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2, \eta_3 = \xi_3 \\ \mbox{Tetrahedral} & -1 \leq \xi_1,\xi_2,\xi_3; \xi_1+\xi_2 +\xi_3 \leq -1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{-\xi_2 -\xi_3}-1, \eta_2 = \frac{2(1+\xi_2)}{1 - \xi_3}-1, \eta_3 = \xi_3 \\ \end{array} \)

Definition at line 55 of file StdExpansion3D.cpp.

58{
59 const int nquad0 = m_base[0]->GetNumPoints();
60 const int nquad1 = m_base[1]->GetNumPoints();
61 const int nquad2 = m_base[2]->GetNumPoints();
62
63 Array<OneD, NekDouble> wsp(nquad0 * nquad1 * nquad2);
64
65 // copy inarray to wsp in case inarray is used as outarray
66 Vmath::Vcopy(nquad0 * nquad1 * nquad2, &inarray[0], 1, &wsp[0], 1);
67
68 if (out_dx.size() > 0)
69 {
70 NekDouble *D0 = &((m_base[0]->GetD())->GetPtr())[0];
71
72 Blas::Dgemm('N', 'N', nquad0, nquad1 * nquad2, nquad0, 1.0, D0, nquad0,
73 &wsp[0], nquad0, 0.0, &out_dx[0], nquad0);
74 }
75
76 if (out_dy.size() > 0)
77 {
78 NekDouble *D1 = &((m_base[1]->GetD())->GetPtr())[0];
79 for (int j = 0; j < nquad2; ++j)
80 {
81 Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0,
82 &wsp[j * nquad0 * nquad1], nquad0, D1, nquad1, 0.0,
83 &out_dy[j * nquad0 * nquad1], nquad0);
84 }
85 }
86
87 if (out_dz.size() > 0)
88 {
89 NekDouble *D2 = &((m_base[2]->GetD())->GetPtr())[0];
90
91 Blas::Dgemm('N', 'T', nquad0 * nquad1, nquad2, nquad2, 1.0, &wsp[0],
92 nquad0 * nquad1, D2, nquad2, 0.0, &out_dz[0],
93 nquad0 * nquad1);
94 }
95}
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:383
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdHexExp::v_PhysDeriv(), Nektar::StdRegions::StdPrismExp::v_PhysDeriv(), Nektar::StdRegions::StdPyrExp::v_PhysDeriv(), and Nektar::StdRegions::StdTetExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion3D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 122 of file StdExpansion3D.cpp.

123{
124 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
125
126 const int nq0 = m_base[0]->GetNumPoints();
127 const int nq1 = m_base[1]->GetNumPoints();
128 const int nq2 = m_base[2]->GetNumPoints();
129 const int nq = nq0 * nq1 * nq2;
130 const int nm0 = m_base[0]->GetNumModes();
131 const int nm1 = m_base[1]->GetNumModes();
132
133 Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1),
134 0.0);
135 Array<OneD, NekDouble> tmp1(alloc); // Quad metric
136 Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
137 Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
138 Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
139 Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
140 Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
141 switch (dir)
142 {
143 case 0:
144 for (int i = 0; i < nq; i++)
145 {
146 tmp2[i] = 1.0;
148 m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
149 m_base[2]->GetBdata(), tmp2, tmp5, wsp, false, true, true);
150
151 tmp2[i] = 0.0;
152
153 for (int j = 0; j < m_ncoeffs; j++)
154 {
155 (*mat)(j, i) = tmp5[j];
156 }
157 }
158 break;
159 case 1:
160 for (int i = 0; i < nq; i++)
161 {
162 tmp2[i] = 1.0;
164 m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
165 m_base[2]->GetBdata(), tmp2, tmp5, wsp, true, false, true);
166
167 tmp2[i] = 0.0;
168
169 for (int j = 0; j < m_ncoeffs; j++)
170 {
171 (*mat)(j, i) = tmp5[j];
172 }
173 }
174 break;
175 case 2:
176 for (int i = 0; i < nq; i++)
177 {
178 tmp2[i] = 1.0;
180 m_base[0]->GetBdata(), m_base[1]->GetBdata(),
181 m_base[2]->GetDbdata(), tmp2, tmp5, wsp, true, true, false);
182 tmp2[i] = 0.0;
183
184 for (int j = 0; j < m_ncoeffs; j++)
185 {
186 (*mat)(j, i) = tmp5[j];
187 }
188 }
189 break;
190 default:
191 NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
192 break;
193 }
194}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
protectedvirtual

Reimplemented in Nektar::StdRegions::StdHexExp, Nektar::StdRegions::StdPrismExp, Nektar::StdRegions::StdPyrExp, and Nektar::StdRegions::StdTetExp.

Definition at line 401 of file StdExpansion3D.cpp.

406{
407 NEKERROR(ErrorUtil::efatal, "Method does not exist for this shape");
408}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeInteriorToElementMap().

◆ v_GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::v_GetEdgeNcoeffs ( const int  i) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdHexExp, Nektar::StdRegions::StdPrismExp, Nektar::StdRegions::StdPyrExp, and Nektar::StdRegions::StdTetExp.

Definition at line 395 of file StdExpansion3D.cpp.

396{
397 NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
398 return 0;
399}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeNcoeffs().

◆ v_GetNedges()

int Nektar::StdRegions::StdExpansion3D::v_GetNedges ( void  ) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdHexExp, Nektar::StdRegions::StdPrismExp, Nektar::StdRegions::StdPyrExp, and Nektar::StdRegions::StdTetExp.

Definition at line 389 of file StdExpansion3D.cpp.

390{
391 NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
392 return 0;
393}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetNedges().

◆ v_GetShapeDimension()

int Nektar::StdRegions::StdExpansion3D::v_GetShapeDimension ( ) const
inlinefinalprivatevirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 283 of file StdExpansion3D.h.

284 {
285 return 3;
286 }

◆ v_GetTraceToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetTraceToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient,
int  P,
int  Q 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 410 of file StdExpansion3D.cpp.

415{
416 Array<OneD, unsigned int> map1, map2;
417 GetTraceCoeffMap(tid, map1);
418 GetElmtTraceToTraceMap(tid, map2, signarray, traceOrient, P, Q);
419
420 if (maparray.size() != map2.size())
421 {
422 maparray = Array<OneD, unsigned int>(map2.size());
423 }
424
425 for (int i = 0; i < map2.size(); ++i)
426 {
427 maparray[i] = map1[map2[i]];
428 }
429}
void GetElmtTraceToTraceMap(const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
Definition: StdExpansion.h:708
void GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray)
Definition: StdExpansion.h:702
@ P
Monomial polynomials .
Definition: BasisType.h:62

References Nektar::StdRegions::StdExpansion::GetElmtTraceToTraceMap(), Nektar::StdRegions::StdExpansion::GetTraceCoeffMap(), and Nektar::LibUtilities::P.

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 317 of file StdExpansion3D.cpp.

320{
321 if (mkey.GetNVarCoeff() == 0 &&
322 !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00))
323 {
324 using std::max;
325
326 int nquad0 = m_base[0]->GetNumPoints();
327 int nquad1 = m_base[1]->GetNumPoints();
328 int nquad2 = m_base[2]->GetNumPoints();
329 int nmodes0 = m_base[0]->GetNumModes();
330 int nmodes1 = m_base[1]->GetNumModes();
331 int nmodes2 = m_base[2]->GetNumModes();
332 int wspsize = max(nquad0 * nmodes2 * (nmodes1 + nquad1),
333 nquad0 * nquad1 * (nquad2 + nmodes0) +
334 nmodes0 * nmodes1 * nquad2);
335
336 NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
337
338 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
339 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
340 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
341 Array<OneD, NekDouble> wsp0(8 * wspsize);
342 Array<OneD, NekDouble> wsp1(wsp0 + 1 * wspsize);
343 Array<OneD, NekDouble> wsp2(wsp0 + 2 * wspsize);
344
345 if (!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
346 m_base[2]->Collocation()))
347 {
348 // MASS MATRIX OPERATION
349 // The following is being calculated:
350 // wsp0 = B * u_hat = u
351 // wsp1 = W * wsp0
352 // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
353 BwdTrans_SumFacKernel(base0, base1, base2, inarray, wsp0, wsp2,
354 true, true, true);
355 MultiplyByQuadratureMetric(wsp0, wsp1);
356 IProductWRTBase_SumFacKernel(base0, base1, base2, wsp1, outarray,
357 wsp2, true, true, true);
358 LaplacianMatrixOp_MatFree_Kernel(wsp0, wsp1, wsp2);
359 }
360 else
361 {
362 // specialised implementation for the classical spectral
363 // element method
364 MultiplyByQuadratureMetric(inarray, outarray);
365 LaplacianMatrixOp_MatFree_Kernel(inarray, wsp1, wsp2);
366 }
367
368 // outarray = lambda * outarray + wsp1
369 // = (lambda * M + L ) * u_hat
370 Vmath::Svtvp(m_ncoeffs, lambda, &outarray[0], 1, &wsp1[0], 1,
371 &outarray[0], 1);
372 }
373 else
374 {
376 mkey);
377 }
378}
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:732
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdHexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::PrismExp::v_HelmholtzMatrixOp(), and Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp().

◆ v_Integral()

NekDouble Nektar::StdRegions::StdExpansion3D::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::HexExp, Nektar::LocalRegions::PrismExp, Nektar::LocalRegions::PyrExp, and Nektar::LocalRegions::TetExp.

Definition at line 380 of file StdExpansion3D.cpp.

382{
383 const int nqtot = GetTotPoints();
384 Array<OneD, NekDouble> tmp(GetTotPoints());
386 return Vmath::Vsum(nqtot, tmp, 1);
387}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
virtual void v_MultiplyByStdQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.hpp:608

References Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::v_MultiplyByStdQuadratureMetric(), and Vmath::Vsum().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual
Parameters
inarrayInput coefficients.
outputOutput coefficients.
mkeyMatrix key

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 274 of file StdExpansion3D.cpp.

277{
278 if (mkey.GetNVarCoeff() == 0 &&
279 !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
280 !mkey.ConstFactorExists(eFactorSVVCutoffRatio))
281 {
282 // This implementation is only valid when there are no
283 // coefficients associated to the Laplacian operator
284 int nqtot = GetTotPoints();
285
286 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
287 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
288 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
289
290 // Allocate temporary storage
291 Array<OneD, NekDouble> wsp0(7 * nqtot);
292 Array<OneD, NekDouble> wsp1(wsp0 + nqtot);
293
294 if (!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
295 m_base[2]->Collocation()))
296 {
297 // LAPLACIAN MATRIX OPERATION
298 // wsp0 = u = B * u_hat
299 // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
300 // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
301 BwdTrans_SumFacKernel(base0, base1, base2, inarray, wsp0, wsp1,
302 true, true, true);
303 LaplacianMatrixOp_MatFree_Kernel(wsp0, outarray, wsp1);
304 }
305 else
306 {
307 LaplacianMatrixOp_MatFree_Kernel(inarray, outarray, wsp1);
308 }
309 }
310 else
311 {
313 mkey);
314 }
315}
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_LaplacianMatrixOp(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp(), and Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate()

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::PrismExp, Nektar::LocalRegions::PyrExp, Nektar::LocalRegions::HexExp, and Nektar::LocalRegions::TetExp.

Definition at line 196 of file StdExpansion3D.cpp.

199{
200 Array<OneD, NekDouble> eta(3);
201
202 WARNINGL2(coords[0] >= -1 - NekConstants::kNekZeroTol, "coord[0] < -1");
203 WARNINGL2(coords[0] <= 1 + NekConstants::kNekZeroTol, "coord[0] > 1");
204 WARNINGL2(coords[1] >= -1 - NekConstants::kNekZeroTol, "coord[1] < -1");
205 WARNINGL2(coords[1] <= 1 + NekConstants::kNekZeroTol, "coord[1] > 1");
206 WARNINGL2(coords[2] >= -1 - NekConstants::kNekZeroTol, "coord[2] < -1");
207 WARNINGL2(coords[2] <= 1 + NekConstants::kNekZeroTol, "coord[2] > 1");
208
209 // Obtain local collapsed coordinate from Cartesian coordinate.
210 LocCoordToLocCollapsed(coords, eta);
211
212 const int nq0 = m_base[0]->GetNumPoints();
213 const int nq1 = m_base[1]->GetNumPoints();
214 const int nq2 = m_base[2]->GetNumPoints();
215
216 Array<OneD, NekDouble> wsp1(nq1 * nq2), wsp2(nq2);
217
218 // Construct the 2D square...
219 const NekDouble *ptr = &physvals[0];
220 for (int i = 0; i < nq1 * nq2; ++i, ptr += nq0)
221 {
222 wsp1[i] = StdExpansion::BaryEvaluate<0>(eta[0], ptr);
223 }
224
225 for (int i = 0; i < nq2; ++i)
226 {
227 wsp2[i] = StdExpansion::BaryEvaluate<1>(eta[1], &wsp1[i * nq1]);
228 }
229
230 return StdExpansion::BaryEvaluate<2>(eta[2], &wsp2[0]);
231}
#define WARNINGL2(condition, msg)
Definition: ErrorUtil.hpp:266
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, and WARNINGL2.

Referenced by Nektar::StdRegions::StdNodalPrismExp::GenNBasisTransMatrix(), and Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

◆ v_PhysEvaluateInterp()

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluateInterp ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 233 of file StdExpansion3D.cpp.

236{
237 NekDouble value;
238
239 int Qx = m_base[0]->GetNumPoints();
240 int Qy = m_base[1]->GetNumPoints();
241 int Qz = m_base[2]->GetNumPoints();
242
243 Array<OneD, NekDouble> sumFactorization_qr =
244 Array<OneD, NekDouble>(Qy * Qz);
245 Array<OneD, NekDouble> sumFactorization_r = Array<OneD, NekDouble>(Qz);
246
247 // Lagrangian interpolation matrix
248 NekDouble *interpolatingNodes = nullptr;
249
250 // Interpolate first coordinate direction
251 interpolatingNodes = &I[0]->GetPtr()[0];
252
253 Blas::Dgemv('T', Qx, Qy * Qz, 1.0, &physvals[0], Qx, &interpolatingNodes[0],
254 1, 0.0, &sumFactorization_qr[0], 1);
255
256 // Interpolate in second coordinate direction
257 interpolatingNodes = &I[1]->GetPtr()[0];
258
259 Blas::Dgemv('T', Qy, Qz, 1.0, &sumFactorization_qr[0], Qy,
260 &interpolatingNodes[0], 1, 0.0, &sumFactorization_r[0], 1);
261
262 // Interpolate in third coordinate direction
263 interpolatingNodes = &I[2]->GetPtr()[0];
264 value = Blas::Ddot(Qz, interpolatingNodes, 1, &sumFactorization_r[0], 1);
265
266 return value;
267}
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:211
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:163

References Blas::Ddot(), Blas::Dgemv(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_PhysInterp()

void Nektar::StdRegions::StdExpansion3D::v_PhysInterp ( std::shared_ptr< StdExpansion fromExp,
const Array< OneD, const NekDouble > &  fromData,
Array< OneD, NekDouble > &  toData 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 607 of file StdExpansion3D.cpp.

610{
611
612 LibUtilities::Interp3D(fromExp->GetBasis(0)->GetPointsKey(),
613 fromExp->GetBasis(1)->GetPointsKey(),
614 fromExp->GetBasis(2)->GetPointsKey(), fromData,
615 m_base[0]->GetPointsKey(), m_base[1]->GetPointsKey(),
616 m_base[2]->GetPointsKey(), toData);
617}
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
Definition: Interp.cpp:162

References Nektar::LibUtilities::Interp3D(), and Nektar::StdRegions::StdExpansion::m_base.