Nektar++
PyrExp.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: PyrExp.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: PyrExp routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
36#include <LocalRegions/PyrExp.h>
37
38using namespace std;
39
41{
42
44 const LibUtilities::BasisKey &Bb,
45 const LibUtilities::BasisKey &Bc,
47 : StdExpansion(LibUtilities::StdPyrData::getNumberOfCoefficients(
48 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
49 3, Ba, Bb, Bc),
50 StdExpansion3D(LibUtilities::StdPyrData::getNumberOfCoefficients(
51 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
52 Ba, Bb, Bc),
53 StdPyrExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
54 m_matrixManager(
55 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
56 std::string("PyrExpMatrix")),
57 m_staticCondMatrixManager(std::bind(&Expansion::CreateStaticCondMatrix,
58 this, std::placeholders::_1),
59 std::string("PyrExpStaticCondMatrix"))
60{
61}
62
64 : StdExpansion(T), StdExpansion3D(T), StdPyrExp(T), Expansion(T),
65 Expansion3D(T), m_matrixManager(T.m_matrixManager),
66 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
67{
68}
69
70//----------------------------
71// Integration Methods
72//----------------------------
73
74/**
75 * \brief Integrate the physical point list \a inarray over pyramidic
76 * region and return the value.
77 *
78 * Inputs:\n
79 *
80 * - \a inarray: definition of function to be returned at quadrature
81 * point of expansion.
82 *
83 * Outputs:\n
84 *
85 * - returns \f$\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1,
86 * \eta_2, \eta_3) J[i,j,k] d \bar \eta_1 d \eta_2 d \eta_3\f$ \n \f$=
87 * \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1}
88 * u(\bar \eta_{1i}^{0,0}, \eta_{2j}^{0,0},\eta_{3k}^{2,0})w_{i}^{0,0}
89 * w_{j}^{0,0} \hat w_{k}^{2,0} \f$ \n where \f$inarray[i,j, k] =
90 * u(\bar \eta_{1i},\eta_{2j}, \eta_{3k}) \f$, \n \f$\hat w_{k}^{2,0}
91 * = \frac {w^{2,0}} {2} \f$ \n and \f$ J[i,j,k] \f$ is the Jacobian
92 * evaluated at the quadrature point.
93 */
95{
96 int nquad0 = m_base[0]->GetNumPoints();
97 int nquad1 = m_base[1]->GetNumPoints();
98 int nquad2 = m_base[2]->GetNumPoints();
100 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
101
102 // multiply inarray with Jacobian
103 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
104 {
105 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
106 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
107 }
108 else
109 {
110 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
111 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
112 }
113
114 // call StdPyrExp version;
115 return StdPyrExp::v_Integral(tmp);
116}
117
118//----------------------------
119// Differentiation Methods
120//----------------------------
121
126{
127 int nquad0 = m_base[0]->GetNumPoints();
128 int nquad1 = m_base[1]->GetNumPoints();
129 int nquad2 = m_base[2]->GetNumPoints();
131 m_metricinfo->GetDerivFactors(GetPointsKeys());
132 Array<OneD, NekDouble> diff0(nquad0 * nquad1 * nquad2);
133 Array<OneD, NekDouble> diff1(nquad0 * nquad1 * nquad2);
134 Array<OneD, NekDouble> diff2(nquad0 * nquad1 * nquad2);
135
136 StdPyrExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
137
138 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
139 {
140 if (out_d0.size())
141 {
142 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[0][0], 1, &diff0[0], 1,
143 &out_d0[0], 1);
144 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[1][0], 1, &diff1[0], 1,
145 &out_d0[0], 1, &out_d0[0], 1);
146 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[2][0], 1, &diff2[0], 1,
147 &out_d0[0], 1, &out_d0[0], 1);
148 }
149
150 if (out_d1.size())
151 {
152 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[3][0], 1, &diff0[0], 1,
153 &out_d1[0], 1);
154 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[4][0], 1, &diff1[0], 1,
155 &out_d1[0], 1, &out_d1[0], 1);
156 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[5][0], 1, &diff2[0], 1,
157 &out_d1[0], 1, &out_d1[0], 1);
158 }
159
160 if (out_d2.size())
161 {
162 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[6][0], 1, &diff0[0], 1,
163 &out_d2[0], 1);
164 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[7][0], 1, &diff1[0], 1,
165 &out_d2[0], 1, &out_d2[0], 1);
166 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[8][0], 1, &diff2[0], 1,
167 &out_d2[0], 1, &out_d2[0], 1);
168 }
169 }
170 else // regular geometry
171 {
172 if (out_d0.size())
173 {
174 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[0][0], &diff0[0], 1,
175 &out_d0[0], 1);
176 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[1][0], &diff1[0], 1,
177 &out_d0[0], 1);
178 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[2][0], &diff2[0], 1,
179 &out_d0[0], 1);
180 }
181
182 if (out_d1.size())
183 {
184 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[3][0], &diff0[0], 1,
185 &out_d1[0], 1);
186 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[4][0], &diff1[0], 1,
187 &out_d1[0], 1);
188 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[5][0], &diff2[0], 1,
189 &out_d1[0], 1);
190 }
191
192 if (out_d2.size())
193 {
194 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[6][0], &diff0[0], 1,
195 &out_d2[0], 1);
196 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[7][0], &diff1[0], 1,
197 &out_d2[0], 1);
198 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[8][0], &diff2[0], 1,
199 &out_d2[0], 1);
200 }
201 }
202}
203
204//---------------------------------------
205// Transforms
206//---------------------------------------
207
208/**
209 * \brief Forward transform from physical quadrature space stored in
210 * \a inarray and evaluate the expansion coefficients and store in \a
211 * (this)->m_coeffs
212 *
213 * Inputs:\n
214 *
215 * - \a inarray: array of physical quadrature points to be transformed
216 *
217 * Outputs:\n
218 *
219 * - (this)->_coeffs: updated array of expansion coefficients.
220 */
222 Array<OneD, NekDouble> &outarray)
223{
224 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
225 m_base[2]->Collocation())
226 {
227 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
228 }
229 else
230 {
231 v_IProductWRTBase(inarray, outarray);
232
233 // get Mass matrix inverse
235 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
236
237 // copy inarray in case inarray == outarray
238 DNekVec in(m_ncoeffs, outarray);
239 DNekVec out(m_ncoeffs, outarray, eWrapper);
240
241 out = (*matsys) * in;
242 }
243}
244
245//---------------------------------------
246// Inner product functions
247//---------------------------------------
248
249/**
250 * \brief Calculate the inner product of inarray with respect to the
251 * basis B=base0*base1*base2 and put into outarray:
252 *
253 * \f$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = &
254 * \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a}
255 * (\bar \eta_{1i}) \psi_{q}^{a} (\eta_{2j}) \psi_{pqr}^{c}
256 * (\eta_{3k}) w_i w_j w_k u(\bar \eta_{1,i} \eta_{2,j} \eta_{3,k})
257 * J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i})
258 * \sum_{j=0}^{nq_1} \psi_{q}^a(\eta_{2,j}) \sum_{k=0}^{nq_2}
259 * \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k}
260 * \end{array} \f$ \n
261 *
262 * where
263 *
264 * \f$\phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1)
265 * \psi_{q}^a (\eta_2) \psi_{pqr}^c (\eta_3) \f$ \n
266 *
267 * which can be implemented as \n \f$f_{pqr} (\xi_{3k}) =
268 * \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\bar
269 * \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \f$ \n \f$
270 * g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pqr}
271 * (\xi_{3k}) = {\bf B_2 F} \f$ \n \f$ (\phi_{pqr}, u)_{\delta} =
272 * \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf
273 * B_1 G} \f$
274 */
275
277 Array<OneD, NekDouble> &outarray)
278{
279 v_IProductWRTBase_SumFac(inarray, outarray);
280}
281
283 const Array<OneD, const NekDouble> &inarray,
284 Array<OneD, NekDouble> &outarray, bool multiplybyweights)
285{
286 const int nquad0 = m_base[0]->GetNumPoints();
287 const int nquad1 = m_base[1]->GetNumPoints();
288 const int nquad2 = m_base[2]->GetNumPoints();
289 const int order0 = m_base[0]->GetNumModes();
290 const int order1 = m_base[1]->GetNumModes();
291
292 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
293
294 if (multiplybyweights)
295 {
296 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
297
298 MultiplyByQuadratureMetric(inarray, tmp);
299
301 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
302 tmp, outarray, wsp, true, true, true);
303 }
304 else
305 {
307 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
308 inarray, outarray, wsp, true, true, true);
309 }
310}
311
312/**
313 * @brief Calculates the inner product \f$ I_{pqr} = (u,
314 * \partial_{x_i} \phi_{pqr}) \f$.
315 *
316 * The derivative of the basis functions is performed using the chain
317 * rule in order to incorporate the geometric factors. Assuming that
318 * the basis functions are a tensor product
319 * \f$\phi_{pqr}(\eta_1,\eta_2,\eta_3) =
320 * \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\f$, this yields the
321 * result
322 *
323 * \f[
324 * I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j}
325 * \frac{\partial \eta_j}{\partial x_i}\right)
326 * \f]
327 *
328 * In the pyramid element, we must also incorporate a second set
329 * of geometric factors which incorporate the collapsed co-ordinate
330 * system, so that
331 *
332 * \f[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3
333 * \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial
334 * x_i} \f]
335 *
336 * These derivatives can be found on p152 of Sherwin & Karniadakis.
337 *
338 * @param dir Direction in which to take the derivative.
339 * @param inarray The function \f$ u \f$.
340 * @param outarray Value of the inner product.
341 */
343 const Array<OneD, const NekDouble> &inarray,
344 Array<OneD, NekDouble> &outarray)
345{
346 v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
347}
348
350 const int dir, const Array<OneD, const NekDouble> &inarray,
351 Array<OneD, NekDouble> &outarray)
352{
353 const int nquad0 = m_base[0]->GetNumPoints();
354 const int nquad1 = m_base[1]->GetNumPoints();
355 const int nquad2 = m_base[2]->GetNumPoints();
356 const int order0 = m_base[0]->GetNumModes();
357 const int order1 = m_base[1]->GetNumModes();
358 const int nqtot = nquad0 * nquad1 * nquad2;
359
360 Array<OneD, NekDouble> tmp1(nqtot);
361 Array<OneD, NekDouble> tmp2(nqtot);
362 Array<OneD, NekDouble> tmp3(nqtot);
363 Array<OneD, NekDouble> tmp4(nqtot);
366 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
367
368 MultiplyByQuadratureMetric(inarray, tmp1);
369
371 tmp2D[0] = tmp2;
372 tmp2D[1] = tmp3;
373 tmp2D[2] = tmp4;
374
375 PyrExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
376
377 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
378 m_base[2]->GetBdata(), tmp2, outarray, wsp,
379 false, true, true);
380
381 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
382 m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
383 false, true);
384
385 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
386
387 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
388 m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
389 true, false);
390
391 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
392}
393
395 const int dir, const Array<OneD, const NekDouble> &inarray,
397{
398 const int nquad0 = m_base[0]->GetNumPoints();
399 const int nquad1 = m_base[1]->GetNumPoints();
400 const int nquad2 = m_base[2]->GetNumPoints();
401 const int order0 = m_base[0]->GetNumModes();
402 const int order1 = m_base[1]->GetNumModes();
403 const int nqtot = nquad0 * nquad1 * nquad2;
404
405 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
406 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
407 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
408
409 Array<OneD, NekDouble> gfac0(nquad0);
410 Array<OneD, NekDouble> gfac1(nquad1);
411 Array<OneD, NekDouble> gfac2(nquad2);
412 Array<OneD, NekDouble> tmp5(nqtot);
414 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
415
416 Array<OneD, NekDouble> tmp2 = outarray[0];
417 Array<OneD, NekDouble> tmp3 = outarray[1];
418 Array<OneD, NekDouble> tmp4 = outarray[2];
419
421 m_metricinfo->GetDerivFactors(GetPointsKeys());
422
424 tmp1 = inarray;
425
426 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
427 {
428 Vmath::Vmul(nqtot, &df[3 * dir][0], 1, tmp1.get(), 1, tmp2.get(), 1);
429 Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, tmp1.get(), 1, tmp3.get(),
430 1);
431 Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, tmp1.get(), 1, tmp4.get(),
432 1);
433 }
434 else
435 {
436 Vmath::Smul(nqtot, df[3 * dir][0], tmp1.get(), 1, tmp2.get(), 1);
437 Vmath::Smul(nqtot, df[3 * dir + 1][0], tmp1.get(), 1, tmp3.get(), 1);
438 Vmath::Smul(nqtot, df[3 * dir + 2][0], tmp1.get(), 1, tmp4.get(), 1);
439 }
440
441 // set up geometric factor: (1+z0)/2
442 for (int i = 0; i < nquad0; ++i)
443 {
444 gfac0[i] = 0.5 * (1 + z0[i]);
445 }
446
447 // set up geometric factor: (1+z1)/2
448 for (int i = 0; i < nquad1; ++i)
449 {
450 gfac1[i] = 0.5 * (1 + z1[i]);
451 }
452
453 // Set up geometric factor: 2/(1-z2)
454 for (int i = 0; i < nquad2; ++i)
455 {
456 gfac2[i] = 2.0 / (1 - z2[i]);
457 }
458
459 const int nq01 = nquad0 * nquad1;
460
461 for (int i = 0; i < nquad2; ++i)
462 {
463 Vmath::Smul(nq01, gfac2[i], &tmp2[0] + i * nq01, 1, &tmp2[0] + i * nq01,
464 1); // 2/(1-z2) for d/dxi_0
465 Vmath::Smul(nq01, gfac2[i], &tmp3[0] + i * nq01, 1, &tmp3[0] + i * nq01,
466 1); // 2/(1-z2) for d/dxi_1
467 Vmath::Smul(nq01, gfac2[i], &tmp4[0] + i * nq01, 1, &tmp5[0] + i * nq01,
468 1); // 2/(1-z2) for d/dxi_2
469 }
470
471 // (1+z0)/(1-z2) for d/d eta_0
472 for (int i = 0; i < nquad1 * nquad2; ++i)
473 {
474 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp5[0] + i * nquad0, 1,
475 &wsp[0] + i * nquad0, 1);
476 }
477
478 Vmath::Vadd(nqtot, &tmp2[0], 1, &wsp[0], 1, &tmp2[0], 1);
479
480 // (1+z1)/(1-z2) for d/d eta_1
481 for (int i = 0; i < nquad1 * nquad2; ++i)
482 {
483 Vmath::Smul(nquad0, gfac1[i % nquad1], &tmp5[0] + i * nquad0, 1,
484 &tmp5[0] + i * nquad0, 1);
485 }
486 Vmath::Vadd(nqtot, &tmp3[0], 1, &tmp5[0], 1, &tmp3[0], 1);
487}
488
489//---------------------------------------
490// Evaluation functions
491//---------------------------------------
492
494{
496 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
497 m_base[2]->GetBasisKey());
498}
499
501{
503 m_base[0]->GetPointsKey());
505 m_base[1]->GetPointsKey());
507 m_base[2]->GetPointsKey());
508
510 bkey2);
511}
512
513/*
514 * @brief Get the coordinates #coords at the local coordinates
515 * #Lcoords
516 */
519{
520 int i;
521
522 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
523 Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
524 "Local coordinates are not in region [-1,1]");
525
526 // m_geom->FillGeom(); // TODO: implement FillGeom()
527
528 for (i = 0; i < m_geom->GetCoordim(); ++i)
529 {
530 coords[i] = m_geom->GetCoord(i, Lcoords);
531 }
532}
533
535 Array<OneD, NekDouble> &coords_2,
536 Array<OneD, NekDouble> &coords_3)
537{
538 Expansion::v_GetCoords(coords_1, coords_2, coords_3);
539}
540
542 const NekDouble *data, const std::vector<unsigned int> &nummodes,
543 const int mode_offset, NekDouble *coeffs,
544 std::vector<LibUtilities::BasisType> &fromType)
545{
546 int data_order0 = nummodes[mode_offset];
547 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
548 int data_order1 = nummodes[mode_offset + 1];
549 int order1 = m_base[1]->GetNumModes();
550 int fillorder1 = min(order1, data_order1);
551 int data_order2 = nummodes[mode_offset + 2];
552 int order2 = m_base[2]->GetNumModes();
553 int fillorder2 = min(order2, data_order2);
554
555 // Check if not same order or basis and if not make temp
556 // element to read in data
557 if (fromType[0] != m_base[0]->GetBasisType() ||
558 fromType[1] != m_base[1]->GetBasisType() ||
559 fromType[2] != m_base[2]->GetBasisType() || data_order0 != fillorder0 ||
560 data_order1 != fillorder1 || data_order2 != fillorder2)
561 {
562 // Construct a pyr with the appropriate basis type at our
563 // quadrature points, and one more to do a forwards
564 // transform. We can then copy the output to coeffs.
566 LibUtilities::BasisKey(fromType[0], data_order0,
567 m_base[0]->GetPointsKey()),
568 LibUtilities::BasisKey(fromType[1], data_order1,
569 m_base[1]->GetPointsKey()),
570 LibUtilities::BasisKey(fromType[2], data_order2,
571 m_base[2]->GetPointsKey()));
572
573 StdRegions::StdPyrExp tmpPyr2(m_base[0]->GetBasisKey(),
574 m_base[1]->GetBasisKey(),
575 m_base[2]->GetBasisKey());
576
577 Array<OneD, const NekDouble> tmpData(tmpPyr.GetNcoeffs(), data);
578 Array<OneD, NekDouble> tmpBwd(tmpPyr2.GetTotPoints());
579 Array<OneD, NekDouble> tmpOut(tmpPyr2.GetNcoeffs());
580
581 tmpPyr.BwdTrans(tmpData, tmpBwd);
582 tmpPyr2.FwdTrans(tmpBwd, tmpOut);
583 Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
584 }
585 else
586 {
587 Vmath::Vcopy(m_ncoeffs, &data[0], 1, coeffs, 1);
588 }
589}
590
591/**
592 * Given the local cartesian coordinate \a Lcoord evaluate the
593 * value of physvals at this point by calling through to the
594 * StdExpansion method
595 */
597 const Array<OneD, const NekDouble> &Lcoord,
598 const Array<OneD, const NekDouble> &physvals)
599{
600 // Evaluate point in local coordinates.
601 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
602}
603
605 const Array<OneD, const NekDouble> &physvals)
606{
607 Array<OneD, NekDouble> Lcoord(3);
608
609 ASSERTL0(m_geom, "m_geom not defined");
610
611 // TODO: check GetLocCoords()
612 m_geom->GetLocCoords(coord, Lcoord);
613
614 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
615}
616
618 const Array<OneD, const NekDouble> &inarray,
619 std::array<NekDouble, 3> &firstOrderDerivs)
620{
621 Array<OneD, NekDouble> Lcoord(3);
622 ASSERTL0(m_geom, "m_geom not defined");
623 m_geom->GetLocCoords(coord, Lcoord);
624 return StdPyrExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
625}
626
627//---------------------------------------
628// Helper functions
629//---------------------------------------
630
631void PyrExp::v_GetTracePhysMap(const int face, Array<OneD, int> &outarray)
632{
633 int nquad0 = m_base[0]->GetNumPoints();
634 int nquad1 = m_base[1]->GetNumPoints();
635 int nquad2 = m_base[2]->GetNumPoints();
636
637 int nq0 = 0;
638 int nq1 = 0;
639
640 switch (face)
641 {
642 case 0:
643 nq0 = nquad0;
644 nq1 = nquad1;
645 if (outarray.size() != nq0 * nq1)
646 {
647 outarray = Array<OneD, int>(nq0 * nq1);
648 }
649
650 // Directions A and B positive
651 for (int i = 0; i < nquad0 * nquad1; ++i)
652 {
653 outarray[i] = i;
654 }
655
656 break;
657 case 1:
658 nq0 = nquad0;
659 nq1 = nquad2;
660 if (outarray.size() != nq0 * nq1)
661 {
662 outarray = Array<OneD, int>(nq0 * nq1);
663 }
664
665 // Direction A and B positive
666 for (int k = 0; k < nquad2; k++)
667 {
668 for (int i = 0; i < nquad0; ++i)
669 {
670 outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
671 }
672 }
673
674 break;
675 case 2:
676 nq0 = nquad1;
677 nq1 = nquad2;
678 if (outarray.size() != nq0 * nq1)
679 {
680 outarray = Array<OneD, int>(nq0 * nq1);
681 }
682
683 // Directions A and B positive
684 for (int j = 0; j < nquad1 * nquad2; ++j)
685 {
686 outarray[j] = nquad0 - 1 + j * nquad0;
687 }
688 break;
689 case 3:
690
691 nq0 = nquad0;
692 nq1 = nquad2;
693 if (outarray.size() != nq0 * nq1)
694 {
695 outarray = Array<OneD, int>(nq0 * nq1);
696 }
697
698 // Direction A and B positive
699 for (int k = 0; k < nquad2; k++)
700 {
701 for (int i = 0; i < nquad0; ++i)
702 {
703 outarray[k * nquad0 + i] =
704 nquad0 * (nquad1 - 1) + (nquad0 * nquad1 * k) + i;
705 }
706 }
707 break;
708 case 4:
709 nq0 = nquad1;
710 nq1 = nquad2;
711
712 if (outarray.size() != nq0 * nq1)
713 {
714 outarray = Array<OneD, int>(nq0 * nq1);
715 }
716
717 // Directions A and B positive
718 for (int j = 0; j < nquad1 * nquad2; ++j)
719 {
720 outarray[j] = j * nquad0;
721 }
722 break;
723 default:
724 ASSERTL0(false, "face value (> 4) is out of range");
725 break;
726 }
727}
728
730{
731 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
732 GetGeom()->GetMetricInfo();
733
735 for (int i = 0; i < ptsKeys.size(); ++i)
736 {
737 // Need at least 2 points for computing normals
738 if (ptsKeys[i].GetNumPoints() == 1)
739 {
740 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
741 ptsKeys[i] = pKey;
742 }
743 }
744
745 SpatialDomains::GeomType type = geomFactors->GetGtype();
747 geomFactors->GetDerivFactors(ptsKeys);
748 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
749
750 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
751 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
752
753 // Number of quadrature points in face expansion.
754 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
755
756 int vCoordDim = GetCoordim();
757 int i;
758
761 for (i = 0; i < vCoordDim; ++i)
762 {
763 normal[i] = Array<OneD, NekDouble>(nq_face);
764 }
765
766 size_t nqb = nq_face;
767 size_t nbnd = face;
770
771 // Regular geometry case
772 if (type == SpatialDomains::eRegular ||
774 {
775 NekDouble fac;
776 // Set up normals
777 switch (face)
778 {
779 case 0:
780 {
781 for (i = 0; i < vCoordDim; ++i)
782 {
783 normal[i][0] = -df[3 * i + 2][0];
784 }
785 break;
786 }
787 case 1:
788 {
789 for (i = 0; i < vCoordDim; ++i)
790 {
791 normal[i][0] = -df[3 * i + 1][0];
792 }
793 break;
794 }
795 case 2:
796 {
797 for (i = 0; i < vCoordDim; ++i)
798 {
799 normal[i][0] = df[3 * i][0] + df[3 * i + 2][0];
800 }
801 break;
802 }
803 case 3:
804 {
805 for (i = 0; i < vCoordDim; ++i)
806 {
807 normal[i][0] = df[3 * i + 1][0] + df[3 * i + 2][0];
808 }
809 break;
810 }
811 case 4:
812 {
813 for (i = 0; i < vCoordDim; ++i)
814 {
815 normal[i][0] = -df[3 * i][0];
816 }
817 break;
818 }
819 default:
820 ASSERTL0(false, "face is out of range (face < 4)");
821 }
822
823 // Normalise resulting vector.
824 fac = 0.0;
825 for (i = 0; i < vCoordDim; ++i)
826 {
827 fac += normal[i][0] * normal[i][0];
828 }
829 fac = 1.0 / sqrt(fac);
830
831 Vmath::Fill(nqb, fac, length, 1);
832
833 for (i = 0; i < vCoordDim; ++i)
834 {
835 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
836 }
837 }
838 else
839 {
840 // Set up deformed normals.
841 int j, k;
842
843 int nq0 = ptsKeys[0].GetNumPoints();
844 int nq1 = ptsKeys[1].GetNumPoints();
845 int nq2 = ptsKeys[2].GetNumPoints();
846 int nq01 = nq0 * nq1;
847 int nqtot;
848
849 // Determine number of quadrature points on the face.
850 if (face == 0)
851 {
852 nqtot = nq0 * nq1;
853 }
854 else if (face == 1 || face == 3)
855 {
856 nqtot = nq0 * nq2;
857 }
858 else
859 {
860 nqtot = nq1 * nq2;
861 }
862
865
866 Array<OneD, NekDouble> faceJac(nqtot);
867 Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
868
869 // Extract Jacobian along face and recover local derivatives
870 // (dx/dr) for polynomial interpolation by multiplying m_gmat by
871 // jacobian
872 switch (face)
873 {
874 case 0:
875 {
876 for (j = 0; j < nq01; ++j)
877 {
878 normals[j] = -df[2][j] * jac[j];
879 normals[nqtot + j] = -df[5][j] * jac[j];
880 normals[2 * nqtot + j] = -df[8][j] * jac[j];
881 faceJac[j] = jac[j];
882 }
883
884 points0 = ptsKeys[0];
885 points1 = ptsKeys[1];
886 break;
887 }
888
889 case 1:
890 {
891 for (j = 0; j < nq0; ++j)
892 {
893 for (k = 0; k < nq2; ++k)
894 {
895 int tmp = j + nq01 * k;
896 normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
897 normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
898 normals[2 * nqtot + j + k * nq0] =
899 -df[7][tmp] * jac[tmp];
900 faceJac[j + k * nq0] = jac[tmp];
901 }
902 }
903
904 points0 = ptsKeys[0];
905 points1 = ptsKeys[2];
906 break;
907 }
908
909 case 2:
910 {
911 for (j = 0; j < nq1; ++j)
912 {
913 for (k = 0; k < nq2; ++k)
914 {
915 int tmp = nq0 - 1 + nq0 * j + nq01 * k;
916 normals[j + k * nq1] =
917 (df[0][tmp] + df[2][tmp]) * jac[tmp];
918 normals[nqtot + j + k * nq1] =
919 (df[3][tmp] + df[5][tmp]) * jac[tmp];
920 normals[2 * nqtot + j + k * nq1] =
921 (df[6][tmp] + df[8][tmp]) * jac[tmp];
922 faceJac[j + k * nq1] = jac[tmp];
923 }
924 }
925
926 points0 = ptsKeys[1];
927 points1 = ptsKeys[2];
928 break;
929 }
930
931 case 3:
932 {
933 for (j = 0; j < nq0; ++j)
934 {
935 for (k = 0; k < nq2; ++k)
936 {
937 int tmp = nq0 * (nq1 - 1) + j + nq01 * k;
938 normals[j + k * nq0] =
939 (df[1][tmp] + df[2][tmp]) * jac[tmp];
940 normals[nqtot + j + k * nq0] =
941 (df[4][tmp] + df[5][tmp]) * jac[tmp];
942 normals[2 * nqtot + j + k * nq0] =
943 (df[7][tmp] + df[8][tmp]) * jac[tmp];
944 faceJac[j + k * nq0] = jac[tmp];
945 }
946 }
947
948 points0 = ptsKeys[0];
949 points1 = ptsKeys[2];
950 break;
951 }
952
953 case 4:
954 {
955 for (j = 0; j < nq1; ++j)
956 {
957 for (k = 0; k < nq2; ++k)
958 {
959 int tmp = j * nq0 + nq01 * k;
960 normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
961 normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
962 normals[2 * nqtot + j + k * nq1] =
963 -df[6][tmp] * jac[tmp];
964 faceJac[j + k * nq1] = jac[tmp];
965 }
966 }
967
968 points0 = ptsKeys[1];
969 points1 = ptsKeys[2];
970 break;
971 }
972
973 default:
974 ASSERTL0(false, "face is out of range (face < 4)");
975 }
976
977 Array<OneD, NekDouble> work(nq_face, 0.0);
978 // Interpolate Jacobian and invert
979 LibUtilities::Interp2D(points0, points1, faceJac,
980 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
981 work);
982 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
983
984 // Interpolate normal and multiply by inverse Jacobian.
985 for (i = 0; i < vCoordDim; ++i)
986 {
987 LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
988 tobasis0.GetPointsKey(),
989 tobasis1.GetPointsKey(), &normal[i][0]);
990 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
991 }
992
993 // Normalise to obtain unit normals.
994 Vmath::Zero(nq_face, work, 1);
995 for (i = 0; i < GetCoordim(); ++i)
996 {
997 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
998 }
999
1000 Vmath::Vsqrt(nq_face, work, 1, work, 1);
1001 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
1002
1003 Vmath::Vcopy(nqb, work, 1, length, 1);
1004
1005 for (i = 0; i < GetCoordim(); ++i)
1006 {
1007 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
1008 }
1009 }
1010}
1011
1013 const StdRegions::StdMatrixKey &mkey)
1014{
1015 int nq = GetTotPoints();
1016
1017 // Calculate sqrt of the Jacobian
1019 Array<OneD, NekDouble> sqrt_jac(nq);
1020 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1021 {
1022 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1023 }
1024 else
1025 {
1026 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1027 }
1028
1029 // Multiply array by sqrt(Jac)
1030 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1031
1032 // Apply std region filter
1033 StdPyrExp::v_SVVLaplacianFilter(array, mkey);
1034
1035 // Divide by sqrt(Jac)
1036 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1037}
1038
1039//---------------------------------------
1040// Matrix creation functions
1041//---------------------------------------
1042
1044{
1045 DNekMatSharedPtr returnval;
1046
1047 switch (mkey.GetMatrixType())
1048 {
1055 returnval = Expansion3D::v_GenMatrix(mkey);
1056 break;
1057 default:
1058 returnval = StdPyrExp::v_GenMatrix(mkey);
1059 }
1060
1061 return returnval;
1062}
1063
1065{
1066 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1067 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1068 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1071
1072 return tmp->GetStdMatrix(mkey);
1073}
1074
1076{
1077 return m_matrixManager[mkey];
1078}
1079
1081{
1082 m_matrixManager.DeleteObject(mkey);
1083}
1084
1086{
1087 return m_staticCondMatrixManager[mkey];
1088}
1089
1091{
1092 m_staticCondMatrixManager.DeleteObject(mkey);
1093}
1094
1096{
1097 if (m_metrics.count(eMetricQuadrature) == 0)
1098 {
1100 }
1101
1102 int i, j;
1103 const unsigned int nqtot = GetTotPoints();
1104 const unsigned int dim = 3;
1105 const MetricType m[3][3] = {
1109
1110 for (unsigned int i = 0; i < dim; ++i)
1111 {
1112 for (unsigned int j = i; j < dim; ++j)
1113 {
1114 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1115 }
1116 }
1117
1118 // Define shorthand synonyms for m_metrics storage
1119 Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1120 Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1121 Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1122 Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1123 Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1124 Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1125
1126 // Allocate temporary storage
1127 Array<OneD, NekDouble> alloc(9 * nqtot, 0.0);
1128 Array<OneD, NekDouble> h0(nqtot, alloc);
1129 Array<OneD, NekDouble> h1(nqtot, alloc + 1 * nqtot);
1130 Array<OneD, NekDouble> h2(nqtot, alloc + 2 * nqtot);
1131 Array<OneD, NekDouble> wsp1(nqtot, alloc + 3 * nqtot);
1132 Array<OneD, NekDouble> wsp2(nqtot, alloc + 4 * nqtot);
1133 Array<OneD, NekDouble> wsp3(nqtot, alloc + 5 * nqtot);
1134 Array<OneD, NekDouble> wsp4(nqtot, alloc + 6 * nqtot);
1135 Array<OneD, NekDouble> wsp5(nqtot, alloc + 7 * nqtot);
1136 Array<OneD, NekDouble> wsp6(nqtot, alloc + 8 * nqtot);
1137
1139 m_metricinfo->GetDerivFactors(GetPointsKeys());
1140 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1141 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1142 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1143 const unsigned int nquad0 = m_base[0]->GetNumPoints();
1144 const unsigned int nquad1 = m_base[1]->GetNumPoints();
1145 const unsigned int nquad2 = m_base[2]->GetNumPoints();
1146
1147 // Populate collapsed coordinate arrays h0, h1 and h2.
1148 for (j = 0; j < nquad2; ++j)
1149 {
1150 for (i = 0; i < nquad1; ++i)
1151 {
1152 Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1153 &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1154 Vmath::Fill(nquad0, 1.0 / (1.0 - z2[j]),
1155 &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1156 Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1157 &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1158 }
1159 }
1160 for (i = 0; i < nquad0; i++)
1161 {
1162 Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1163 }
1164
1165 // Step 3. Construct combined metric terms for physical space to
1166 // collapsed coordinate system.
1167 // Order of construction optimised to minimise temporary storage
1168 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1169 {
1170 // f_{1k}
1171 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1,
1172 &wsp1[0], 1);
1173 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1,
1174 &wsp2[0], 1);
1175 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1,
1176 &wsp3[0], 1);
1177
1178 // g0
1179 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1180 1, &g0[0], 1);
1181 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1182
1183 // g4
1184 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp1[0], 1, &df[5][0], 1, &wsp2[0],
1185 1, &g4[0], 1);
1186 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1187
1188 // f_{2k}
1189 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h0[0], 1, &df[2][0], 1, &h2[0], 1,
1190 &wsp4[0], 1);
1191 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h0[0], 1, &df[5][0], 1, &h2[0], 1,
1192 &wsp5[0], 1);
1193 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h0[0], 1, &df[8][0], 1, &h2[0], 1,
1194 &wsp6[0], 1);
1195
1196 // g1
1197 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1198 1, &g1[0], 1);
1199 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1200
1201 // g3
1202 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1203 1, &g3[0], 1);
1204 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1205
1206 // g5
1207 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1208 1, &g5[0], 1);
1209 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1210
1211 // g2
1212 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1213 &df[5][0], 1, &g2[0], 1);
1214 Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1215 }
1216 else
1217 {
1218 // f_{1k}
1219 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1,
1220 &wsp1[0], 1);
1221 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1,
1222 &wsp2[0], 1);
1223 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1,
1224 &wsp3[0], 1);
1225
1226 // g0
1227 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1228 1, &g0[0], 1);
1229 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1230
1231 // g4
1232 Vmath::Svtsvtp(nqtot, df[2][0], &wsp1[0], 1, df[5][0], &wsp2[0], 1,
1233 &g4[0], 1);
1234 Vmath::Svtvp(nqtot, df[8][0], &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1235
1236 // f_{2k}
1237 Vmath::Svtsvtp(nqtot, df[1][0], &h0[0], 1, df[2][0], &h2[0], 1,
1238 &wsp4[0], 1);
1239 Vmath::Svtsvtp(nqtot, df[4][0], &h0[0], 1, df[5][0], &h2[0], 1,
1240 &wsp5[0], 1);
1241 Vmath::Svtsvtp(nqtot, df[7][0], &h0[0], 1, df[8][0], &h2[0], 1,
1242 &wsp6[0], 1);
1243
1244 // g1
1245 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1246 1, &g1[0], 1);
1247 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1248
1249 // g3
1250 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1251 1, &g3[0], 1);
1252 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1253
1254 // g5
1255 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1256 &g5[0], 1);
1257 Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1258
1259 // g2
1260 Vmath::Fill(nqtot,
1261 df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1262 df[8][0] * df[8][0],
1263 &g2[0], 1);
1264 }
1265
1266 for (unsigned int i = 0; i < dim; ++i)
1267 {
1268 for (unsigned int j = i; j < dim; ++j)
1269 {
1271 }
1272 }
1273}
1274
1276 const Array<OneD, const NekDouble> &inarray,
1278{
1279 // This implementation is only valid when there are no coefficients
1280 // associated to the Laplacian operator
1281 if (m_metrics.count(eMetricLaplacian00) == 0)
1282 {
1284 }
1285
1286 int nquad0 = m_base[0]->GetNumPoints();
1287 int nquad1 = m_base[1]->GetNumPoints();
1288 int nq2 = m_base[2]->GetNumPoints();
1289 int nqtot = nquad0 * nquad1 * nq2;
1290
1291 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1292 ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1293
1294 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1295 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1296 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1297 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1298 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1299 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1300 const Array<OneD, const NekDouble> &metric00 =
1301 m_metrics[eMetricLaplacian00];
1302 const Array<OneD, const NekDouble> &metric01 =
1303 m_metrics[eMetricLaplacian01];
1304 const Array<OneD, const NekDouble> &metric02 =
1305 m_metrics[eMetricLaplacian02];
1306 const Array<OneD, const NekDouble> &metric11 =
1307 m_metrics[eMetricLaplacian11];
1308 const Array<OneD, const NekDouble> &metric12 =
1309 m_metrics[eMetricLaplacian12];
1310 const Array<OneD, const NekDouble> &metric22 =
1311 m_metrics[eMetricLaplacian22];
1312
1313 // Allocate temporary storage
1314 Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1315 Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1316 Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1317 Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1318 Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1319 Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1320
1321 // LAPLACIAN MATRIX OPERATION
1322 // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1323 // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1324 // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1325 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1326
1327 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1328 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1329 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1330 // especially for this purpose
1331 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1332 &wsp1[0], 1, &wsp3[0], 1);
1333 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1334 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1335 &wsp1[0], 1, &wsp4[0], 1);
1336 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1337 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1338 &wsp1[0], 1, &wsp5[0], 1);
1339 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1340
1341 // outarray = m = (D_xi1 * B)^T * k
1342 // wsp1 = n = (D_xi2 * B)^T * l
1343 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1344 false, true, true);
1345 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1346 false, true);
1347 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1348 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1349 true, false);
1350 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1351}
1352
1353/** @brief: This method gets all of the factors which are
1354 required as part of the Gradient Jump Penalty
1355 stabilisation and involves the product of the normal and
1356 geometric factors along the element trace.
1357*/
1358void PyrExp::v_NormalTraceDerivFactors(
1359 Array<OneD, Array<OneD, NekDouble>> &d0factors,
1360 Array<OneD, Array<OneD, NekDouble>> &d1factors,
1361 Array<OneD, Array<OneD, NekDouble>> &d2factors)
1362{
1363 int nquad0 = GetNumPoints(0);
1364 int nquad1 = GetNumPoints(1);
1365 int nquad2 = GetNumPoints(2);
1366
1367 const Array<TwoD, const NekDouble> &df =
1368 m_metricinfo->GetDerivFactors(GetPointsKeys());
1369
1370 if (d0factors.size() != 5)
1371 {
1372 d0factors = Array<OneD, Array<OneD, NekDouble>>(5);
1373 d1factors = Array<OneD, Array<OneD, NekDouble>>(5);
1374 d2factors = Array<OneD, Array<OneD, NekDouble>>(5);
1375 }
1376
1377 if (d0factors[0].size() != nquad0 * nquad1)
1378 {
1379 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1380 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1381 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1382 }
1383
1384 if (d0factors[1].size() != nquad0 * nquad2)
1385 {
1386 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1387 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1388 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1389 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1390 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1391 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1392 }
1393
1394 if (d0factors[2].size() != nquad1 * nquad2)
1395 {
1396 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1397 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1398 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1399 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1400 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1401 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1402 }
1403
1404 // Outwards normals
1405 const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1406 GetTraceNormal(0);
1407 const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1408 GetTraceNormal(1);
1409 const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1410 GetTraceNormal(2);
1411 const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1412 GetTraceNormal(3);
1413 const Array<OneD, const Array<OneD, NekDouble>> &normal_4 =
1414 GetTraceNormal(4);
1415
1416 int ncoords = normal_0.size();
1417
1418 // first gather together standard cartesian inner products
1419 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1420 {
1421 // face 0
1422 for (int i = 0; i < nquad0 * nquad1; ++i)
1423 {
1424 d0factors[0][i] = df[0][i] * normal_0[0][i];
1425 d1factors[0][i] = df[1][i] * normal_0[0][i];
1426 d2factors[0][i] = df[2][i] * normal_0[0][i];
1427 }
1428
1429 for (int n = 1; n < ncoords; ++n)
1430 {
1431 for (int i = 0; i < nquad0 * nquad1; ++i)
1432 {
1433 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1434 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1435 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1436 }
1437 }
1438
1439 // faces 1 and 3
1440 for (int j = 0; j < nquad2; ++j)
1441 {
1442 for (int i = 0; i < nquad0; ++i)
1443 {
1444 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1445 normal_1[0][j * nquad0 + i];
1446 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1447 normal_1[0][j * nquad0 + i];
1448 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1449 normal_1[0][j * nquad0 + i];
1450
1451 d0factors[3][j * nquad0 + i] =
1452 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1453 normal_3[0][j * nquad0 + i];
1454 d1factors[3][j * nquad0 + i] =
1455 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1456 normal_3[0][j * nquad0 + i];
1457 d2factors[3][j * nquad0 + i] =
1458 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1459 normal_3[0][j * nquad0 + i];
1460 }
1461 }
1462
1463 for (int n = 1; n < ncoords; ++n)
1464 {
1465 for (int j = 0; j < nquad2; ++j)
1466 {
1467 for (int i = 0; i < nquad0; ++i)
1468 {
1469 d0factors[1][j * nquad0 + i] +=
1470 df[3 * n][j * nquad0 * nquad1 + i] *
1471 normal_1[0][j * nquad0 + i];
1472 d1factors[1][j * nquad0 + i] +=
1473 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1474 normal_1[0][j * nquad0 + i];
1475 d2factors[1][j * nquad0 + i] +=
1476 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1477 normal_1[0][j * nquad0 + i];
1478
1479 d0factors[3][j * nquad0 + i] +=
1480 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1481 normal_3[0][j * nquad0 + i];
1482 d1factors[3][j * nquad0 + i] +=
1483 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1484 normal_3[0][j * nquad0 + i];
1485 d2factors[3][j * nquad0 + i] +=
1486 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1487 normal_3[0][j * nquad0 + i];
1488 }
1489 }
1490 }
1491
1492 // faces 2 and 4
1493 for (int j = 0; j < nquad2; ++j)
1494 {
1495 for (int i = 0; i < nquad1; ++i)
1496 {
1497 d0factors[2][j * nquad1 + i] =
1498 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1499 normal_2[0][j * nquad1 + i];
1500 d1factors[2][j * nquad1 + i] =
1501 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1502 normal_2[0][j * nquad1 + i];
1503 d2factors[2][j * nquad1 + i] =
1504 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1505 normal_2[0][j * nquad1 + i];
1506
1507 d0factors[4][j * nquad1 + i] =
1508 df[0][j * nquad0 * nquad1 + i * nquad0] *
1509 normal_4[0][j * nquad1 + i];
1510 d1factors[4][j * nquad1 + i] =
1511 df[1][j * nquad0 * nquad1 + i * nquad0] *
1512 normal_4[0][j * nquad1 + i];
1513 d2factors[4][j * nquad1 + i] =
1514 df[2][j * nquad0 * nquad1 + i * nquad0] *
1515 normal_4[0][j * nquad1 + i];
1516 }
1517 }
1518
1519 for (int n = 1; n < ncoords; ++n)
1520 {
1521 for (int j = 0; j < nquad2; ++j)
1522 {
1523 for (int i = 0; i < nquad1; ++i)
1524 {
1525 d0factors[2][j * nquad1 + i] +=
1526 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1527 normal_2[n][j * nquad1 + i];
1528 d1factors[2][j * nquad1 + i] +=
1529 df[3 * n + 1]
1530 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1531 normal_2[n][j * nquad1 + i];
1532 d2factors[2][j * nquad1 + i] +=
1533 df[3 * n + 2]
1534 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1535 normal_2[n][j * nquad1 + i];
1536
1537 d0factors[4][j * nquad1 + i] +=
1538 df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1539 normal_4[n][j * nquad1 + i];
1540 d1factors[4][j * nquad1 + i] +=
1541 df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1542 normal_4[n][j * nquad1 + i];
1543 d2factors[4][j * nquad1 + i] +=
1544 df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1545 normal_4[n][j * nquad1 + i];
1546 }
1547 }
1548 }
1549 }
1550 else
1551 {
1552 // Face 0
1553 for (int i = 0; i < nquad0 * nquad1; ++i)
1554 {
1555 d0factors[0][i] = df[0][0] * normal_0[0][i];
1556 d1factors[0][i] = df[1][0] * normal_0[0][i];
1557 d2factors[0][i] = df[2][0] * normal_0[0][i];
1558 }
1559
1560 for (int n = 1; n < ncoords; ++n)
1561 {
1562 for (int i = 0; i < nquad0 * nquad1; ++i)
1563 {
1564 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1565 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1566 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1567 }
1568 }
1569
1570 // faces 1 and 3
1571 for (int i = 0; i < nquad0 * nquad2; ++i)
1572 {
1573 d0factors[1][i] = df[0][0] * normal_1[0][i];
1574 d0factors[3][i] = df[0][0] * normal_3[0][i];
1575
1576 d1factors[1][i] = df[1][0] * normal_1[0][i];
1577 d1factors[3][i] = df[1][0] * normal_3[0][i];
1578
1579 d2factors[1][i] = df[2][0] * normal_1[0][i];
1580 d2factors[3][i] = df[2][0] * normal_3[0][i];
1581 }
1582
1583 for (int n = 1; n < ncoords; ++n)
1584 {
1585 for (int i = 0; i < nquad0 * nquad2; ++i)
1586 {
1587 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1588 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1589
1590 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1591 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1592
1593 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1594 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1595 }
1596 }
1597
1598 // faces 2 and 4
1599 for (int i = 0; i < nquad1 * nquad2; ++i)
1600 {
1601 d0factors[2][i] = df[0][0] * normal_2[0][i];
1602 d0factors[4][i] = df[0][0] * normal_4[0][i];
1603
1604 d1factors[2][i] = df[1][0] * normal_2[0][i];
1605 d1factors[4][i] = df[1][0] * normal_4[0][i];
1606
1607 d2factors[2][i] = df[2][0] * normal_2[0][i];
1608 d2factors[4][i] = df[2][0] * normal_4[0][i];
1609 }
1610
1611 for (int n = 1; n < ncoords; ++n)
1612 {
1613 for (int i = 0; i < nquad1 * nquad2; ++i)
1614 {
1615 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1616 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1617
1618 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1619 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1620
1621 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1622 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1623 }
1624 }
1625 }
1626}
1627
1628} // namespace Nektar::LocalRegions
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
Describes the specification for a Basis.
Definition: Basis.h:45
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:120
PointsKey GetPointsKey() const
Return distribution of points.
Definition: Basis.h:137
Defines a specification for a set of points.
Definition: Points.h:50
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:276
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:286
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:167
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:273
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:530
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:274
void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
Definition: PyrExp.cpp:541
NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrate the physical point list inarray over pyramidic region and return the value.
Definition: PyrExp.cpp:94
void v_ComputeLaplacianMetric() override
Definition: PyrExp.cpp:1095
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PyrExp.h:174
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: PyrExp.cpp:534
DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: PyrExp.cpp:1064
void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: PyrExp.cpp:221
void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
Definition: PyrExp.cpp:1012
void v_ComputeTraceNormal(const int face) override
Definition: PyrExp.cpp:729
void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
Definition: PyrExp.cpp:517
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PyrExp.h:176
void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculates the inner product .
Definition: PyrExp.cpp:342
StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const override
Definition: PyrExp.cpp:493
void v_DropLocMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1080
void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
Definition: PyrExp.cpp:1275
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: PyrExp.cpp:349
PyrExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::PyrGeomSharedPtr &geom)
Constructor using BasisKey class for quadrature points and order definition.
Definition: PyrExp.cpp:43
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: PyrExp.cpp:1043
StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const override
Definition: PyrExp.cpp:500
DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1085
void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: PyrExp.cpp:394
void v_GetTracePhysMap(const int face, Array< OneD, int > &outarray) override
Definition: PyrExp.cpp:631
void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
Calculate the derivative of the physical points.
Definition: PyrExp.cpp:122
NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: PyrExp.cpp:604
void v_DropLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1090
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition: PyrExp.cpp:276
DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1075
NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
Definition: PyrExp.cpp:596
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: PyrExp.cpp:282
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:124
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156
const LibUtilities::PointsKeyVector GetPointsKeys() const
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:299
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:367
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space.
Definition: StdExpansion.h:424
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:723
Array< OneD, LibUtilities::BasisSharedPtr > m_base
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:83
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:101
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:60
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< PyrGeom > PyrGeomSharedPtr
Definition: PyrGeom.h:75
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::shared_ptr< StdPyrExp > StdPyrExpSharedPtr
Definition: StdPyrExp.h:214
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:79
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
Svtsvtp (scalar times vector plus scalar times vector):
Definition: Vmath.hpp:473
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.hpp:154
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
STL namespace.
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294