Nektar++
Loading...
Searching...
No Matches
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::PyrExp Class Reference

#include <PyrExp.h>

Inheritance diagram for Nektar::LocalRegions::PyrExp:
[legend]

Public Member Functions

 PyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, SpatialDomains::Geometry3D *geom)
 Constructor using BasisKey class for quadrature points and order definition.
 
 PyrExp (const PyrExp &T)
 
 ~PyrExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdPyrExp
 StdPyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdPyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdPyrExp ()=default
 
 StdPyrExp (const StdPyrExp &T)=default
 
 ~StdPyrExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D ()=default
 
 StdExpansion3D (const StdExpansion3D &T)=default
 
 ~StdExpansion3D () override=default
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge.
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor.
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor.
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor.
 
virtual ~StdExpansion ()
 Destructor.
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion.
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis.
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction.
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion.
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element.
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction.
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction.
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions.
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction.
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction.
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction.
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain.
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace.
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace.
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1, bool UseGLL=false) const
 This function returns the basis key belonging to the i-th trace.
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace.
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined.
 
int GetNtraces () const
 Returns the number of trace elements connected to this element.
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain.
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void NodalToModal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space.
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space.
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain.
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion.
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id.
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\)
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain.
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain.
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta.
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi.
 
void PhysInterp (std::shared_ptr< StdExpansion > fromExp, const Array< OneD, const NekDouble > &fromData, Array< OneD, NekDouble > &toData)
 interpolate from one set of quadrature points available from FromExp to the set of quadrature points in the current expansion. If the points are the same this routine will just copy the data
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol.
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol.
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol.
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values.
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced.
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space.
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3D *pGeom)
 
 ~Expansion3D () override=default
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation.
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation.
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DGetGeom3D () const
 
void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1) override
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray) override
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetTraceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::Geometry *pGeom)
 
 Expansion (const Expansion &pSrc)
 
 ~Expansion () override
 
void SetTraceExp (const int traceid, ExpansionSharedPtr &f)
 
ExpansionSharedPtr GetTraceExp (const int traceid)
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometryGetGeom () const
 
void Reset ()
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
void AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
ExpansionSharedPtr GetLeftAdjacentElementExp () const
 
ExpansionSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementTrace () const
 
int GetRightAdjacentElementTrace () const
 
void SetAdjacentElementExp (int traceid, ExpansionSharedPtr &e)
 
StdRegions::Orientation GetTraceOrient (int trace)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights.
 
void GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention).
 
void GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=StdRegions::eNoOrientation)
 
void GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
void ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1)
 
const NormalVectorGetTraceNormal (const int id)
 
void ComputeTraceNormal (const int id)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
void SetUpPhysNormals (const int trace)
 
void AddRobinMassMatrix (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
void AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
const Array< OneD, const NekDouble > & GetElmtBndNormDirElmtLen (const int nbnd) const
 
void StdDerivBaseOnTraceMat (Array< OneD, DNekMatSharedPtr > &DerivMat)
 
void PhysDerivBaseOnTraceMat (const int traceid, Array< OneD, DNekMatSharedPtr > &DerivMat)
 
void PhysBaseOnTraceMat (const int traceid, DNekMatSharedPtr &BdataMat)
 

Protected Member Functions

NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over pyramidic region and return the value.
 
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points.
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs.
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray:
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \).
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
 
StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const override
 
StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const override
 
void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
 
void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
 
NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvalFirstDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
void v_GetTracePhysMap (const int face, Array< OneD, int > &outarray) override
 
void v_ComputeTraceNormal (const int face) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey) override
 
DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_DropLocMatrix (const MatrixKey &mkey) override
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_ComputeLaplacianMetric () override
 
void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors, Array< OneD, Array< OneD, NekDouble > > &d2factors) override
 : This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace.
 
- Protected Member Functions inherited from Nektar::StdRegions::StdPyrExp
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points.
 
void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the derivative of the physical points in a given direction.
 
void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 
void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Backward transformation is evaluated at the quadrature points.
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Inner product of inarray over region with respect to the expansion basis m_base[0]->GetBdata(),m_base[1]->GetBdata(), m_base[2]->GetBdata() and return in outarray.
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
void v_GetCoords (Array< OneD, NekDouble > &xi_x, Array< OneD, NekDouble > &xi_y, Array< OneD, NekDouble > &xi_z) override
 
void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
void v_GetTraceNumModes (const int fid, int &numModes0, int &numModes1, Orientation faceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final
 
NekDouble v_PhysEvalFirstDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
int v_GetNverts () const override
 
int v_GetNedges () const override
 
int v_GetNtraces () const override
 
LibUtilities::ShapeType v_DetShapeType () const override
 
int v_NumBndryCoeffs () const override
 
int v_NumDGBndryCoeffs () const override
 
int v_GetTraceNcoeffs (const int i) const override
 
int v_GetTraceIntNcoeffs (const int i) const override
 
int v_GetTraceNumPoints (const int i) const override
 
int v_GetEdgeNcoeffs (const int i) const override
 
int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
const LibUtilities::BasisKey v_GetTraceBasisKey (const int i, const int k, bool UseGLL=false) const override
 
int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetTraceCoeffMap (const unsigned int fid, Array< OneD, unsigned int > &maparray) override
 
void v_GetElmtTraceToTraceMap (const unsigned int fid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation faceOrient, int P, int Q) override
 
void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
void v_GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain.
 
NekDouble v_PhysEvaluateInterp (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain.
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
void v_PhysInterp (std::shared_ptr< StdExpansion > fromExp, const Array< OneD, const NekDouble > &fromData, Array< OneD, NekDouble > &toData) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition.
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction.
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate.
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d) override
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated).
 
void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) override
 
void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat) override
 
StdRegions::Orientation v_GetTraceOrient (int face) override
 
void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
 Extract the physical values along face face from inarray into outarray following the local face orientation and point distribution defined by defined in FaceExp.
 
void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp) override
 
void GetPhysFaceVarCoeffsFromElement (const int face, ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType) override
 
DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &transformationmatrix) override
 Build inverse and inverse transposed transformation matrix: \(\mathbf{R^{-1}}\) and \(\mathbf{R^{-T}}\).
 
DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd) override
 
void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p) override
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
Array< OneD, NekDoubleGetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int v_GetCoordim () const override
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals ()
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int id)
 
virtual void v_AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 

Private Member Functions

void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion3D
std::map< int, NormalVectorm_faceNormals
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_indexMapManager
 
std::map< int, ExpansionWeakPtrm_traceExp
 
SpatialDomains::Geometrym_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 
std::map< int, NormalVectorm_traceNormals
 
ExpansionWeakPtr m_elementLeft
 
ExpansionWeakPtr m_elementRight
 
int m_elementTraceLeft = -1
 
int m_elementTraceRight = -1
 
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
 the element length in each element boundary(Vertex, edge or face) normal direction calculated based on the local m_metricinfo times the standard element length (which is 2.0)
 

Detailed Description

Definition at line 48 of file PyrExp.h.

Constructor & Destructor Documentation

◆ PyrExp() [1/2]

Nektar::LocalRegions::PyrExp::PyrExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
SpatialDomains::Geometry3D geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 43 of file PyrExp.cpp.

48 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
49 3, Ba, Bb, Bc),
51 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
52 Ba, Bb, Bc),
53 StdPyrExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
55 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
56 std::string("PyrExpMatrix")),
58 this, std::placeholders::_1),
59 std::string("PyrExpStaticCondMatrix"))
60{
61}
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Expansion3D(SpatialDomains::Geometry3D *pGeom)
Definition Expansion3D.h:59
Expansion(SpatialDomains::Geometry *pGeom)
Definition Expansion.cpp:43
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition PyrExp.h:174
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition PyrExp.h:176
StdExpansion()
Default Constructor.
int getNumberOfCoefficients(int Na, int Nb, int Nc)

◆ PyrExp() [2/2]

Nektar::LocalRegions::PyrExp::PyrExp ( const PyrExp T)

Definition at line 63 of file PyrExp.cpp.

65 Expansion3D(T), m_matrixManager(T.m_matrixManager),
66 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
67{
68}

◆ ~PyrExp()

Nektar::LocalRegions::PyrExp::~PyrExp ( )
overridedefault

Member Function Documentation

◆ v_AlignVectorToCollapsedDir()

void Nektar::LocalRegions::PyrExp::v_AlignVectorToCollapsedDir ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 394 of file PyrExp.cpp.

397{
398 const int nquad0 = m_base[0]->GetNumPoints();
399 const int nquad1 = m_base[1]->GetNumPoints();
400 const int nquad2 = m_base[2]->GetNumPoints();
401 const int nqtot = nquad0 * nquad1 * nquad2;
402
403 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
404 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
405 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
406
407 Array<OneD, NekDouble> tmp2 = outarray[0];
408 Array<OneD, NekDouble> tmp3 = outarray[1];
409 Array<OneD, NekDouble> tmp4 = outarray[2];
410
411 const Array<TwoD, const NekDouble> &df =
412 m_metricinfo->GetDerivFactors(GetPointsKeys());
413
414 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
415 {
416 Vmath::Vmul(nqtot, &df[3 * dir][0], 1, inarray.data(), 1, tmp2.data(),
417 1);
418 Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, inarray.data(), 1,
419 tmp3.data(), 1);
420 Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, inarray.data(), 1,
421 tmp4.data(), 1);
422 }
423 else
424 {
425 Vmath::Smul(nqtot, df[3 * dir][0], inarray.data(), 1, tmp2.data(), 1);
426 Vmath::Smul(nqtot, df[3 * dir + 1][0], inarray.data(), 1, tmp3.data(),
427 1);
428 Vmath::Smul(nqtot, df[3 * dir + 2][0], inarray.data(), 1, tmp4.data(),
429 1);
430 }
431
432 int i, j;
433 NekDouble g0, g1, g2, g02;
434
435 for (int k = 0, cnt = 0; k < nquad2; ++k)
436 {
437 g2 = 2.0 / (1.0 - z2[k]);
438
439 for (j = 0; j < nquad1; ++j)
440 {
441 g1 = 0.5 * (1.0 + z1[j]) * g2;
442
443 for (i = 0; i < nquad0; ++i, ++cnt)
444 {
445 g0 = 0.5 * (1.0 + z0[i]);
446 g02 = g0 * g2;
447
448 outarray[0][cnt] = g2 * tmp2[cnt] + g02 * tmp4[cnt];
449 outarray[1][cnt] = g2 * tmp3[cnt] + g1 * tmp4[cnt];
450 }
451 }
452 }
453}
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition Expansion.h:280
const LibUtilities::PointsKeyVector GetPointsKeys() const
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ eDeformed
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition Vmath.hpp:72
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition Vmath.hpp:100

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase_SumFac().

◆ v_ComputeLaplacianMetric()

void Nektar::LocalRegions::PyrExp::v_ComputeLaplacianMetric ( )
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1062 of file PyrExp.cpp.

1063{
1064 if (m_metrics.count(eMetricQuadrature) == 0)
1065 {
1067 }
1068
1069 int i, j;
1070 const unsigned int nqtot = GetTotPoints();
1071 const unsigned int dim = 3;
1072 const MetricType m[3][3] = {
1076
1077 for (unsigned int i = 0; i < dim; ++i)
1078 {
1079 for (unsigned int j = i; j < dim; ++j)
1080 {
1081 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1082 }
1083 }
1084
1085 // Define shorthand synonyms for m_metrics storage
1086 Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1087 Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1088 Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1089 Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1090 Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1091 Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1092
1093 // Allocate temporary storage
1094 Array<OneD, NekDouble> alloc(9 * nqtot, 0.0);
1095 Array<OneD, NekDouble> h0(nqtot, alloc);
1096 Array<OneD, NekDouble> h1(nqtot, alloc + 1 * nqtot);
1097 Array<OneD, NekDouble> h2(nqtot, alloc + 2 * nqtot);
1098 Array<OneD, NekDouble> wsp1(nqtot, alloc + 3 * nqtot);
1099 Array<OneD, NekDouble> wsp2(nqtot, alloc + 4 * nqtot);
1100 Array<OneD, NekDouble> wsp3(nqtot, alloc + 5 * nqtot);
1101 Array<OneD, NekDouble> wsp4(nqtot, alloc + 6 * nqtot);
1102 Array<OneD, NekDouble> wsp5(nqtot, alloc + 7 * nqtot);
1103 Array<OneD, NekDouble> wsp6(nqtot, alloc + 8 * nqtot);
1104
1105 const Array<TwoD, const NekDouble> &df =
1106 m_metricinfo->GetDerivFactors(GetPointsKeys());
1107 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1108 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1109 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1110 const unsigned int nquad0 = m_base[0]->GetNumPoints();
1111 const unsigned int nquad1 = m_base[1]->GetNumPoints();
1112 const unsigned int nquad2 = m_base[2]->GetNumPoints();
1113
1114 // Populate collapsed coordinate arrays h0, h1 and h2.
1115 for (j = 0; j < nquad2; ++j)
1116 {
1117 for (i = 0; i < nquad1; ++i)
1118 {
1119 Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1120 &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1121 Vmath::Fill(nquad0, 1.0 / (1.0 - z2[j]),
1122 &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1123 Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1124 &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1125 }
1126 }
1127 for (i = 0; i < nquad0; i++)
1128 {
1129 Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1130 }
1131
1132 // Step 3. Construct combined metric terms for physical space to
1133 // collapsed coordinate system.
1134 // Order of construction optimised to minimise temporary storage
1135 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1136 {
1137 // f_{1k}
1138 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1,
1139 &wsp1[0], 1);
1140 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1,
1141 &wsp2[0], 1);
1142 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1,
1143 &wsp3[0], 1);
1144
1145 // g0
1146 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1147 1, &g0[0], 1);
1148 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1149
1150 // g4
1151 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp1[0], 1, &df[5][0], 1, &wsp2[0],
1152 1, &g4[0], 1);
1153 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1154
1155 // f_{2k}
1156 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h0[0], 1, &df[2][0], 1, &h2[0], 1,
1157 &wsp4[0], 1);
1158 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h0[0], 1, &df[5][0], 1, &h2[0], 1,
1159 &wsp5[0], 1);
1160 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h0[0], 1, &df[8][0], 1, &h2[0], 1,
1161 &wsp6[0], 1);
1162
1163 // g1
1164 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1165 1, &g1[0], 1);
1166 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1167
1168 // g3
1169 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1170 1, &g3[0], 1);
1171 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1172
1173 // g5
1174 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1175 1, &g5[0], 1);
1176 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1177
1178 // g2
1179 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1180 &df[5][0], 1, &g2[0], 1);
1181 Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1182 }
1183 else
1184 {
1185 // f_{1k}
1186 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1,
1187 &wsp1[0], 1);
1188 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1,
1189 &wsp2[0], 1);
1190 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1,
1191 &wsp3[0], 1);
1192
1193 // g0
1194 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1195 1, &g0[0], 1);
1196 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1197
1198 // g4
1199 Vmath::Svtsvtp(nqtot, df[2][0], &wsp1[0], 1, df[5][0], &wsp2[0], 1,
1200 &g4[0], 1);
1201 Vmath::Svtvp(nqtot, df[8][0], &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1202
1203 // f_{2k}
1204 Vmath::Svtsvtp(nqtot, df[1][0], &h0[0], 1, df[2][0], &h2[0], 1,
1205 &wsp4[0], 1);
1206 Vmath::Svtsvtp(nqtot, df[4][0], &h0[0], 1, df[5][0], &h2[0], 1,
1207 &wsp5[0], 1);
1208 Vmath::Svtsvtp(nqtot, df[7][0], &h0[0], 1, df[8][0], &h2[0], 1,
1209 &wsp6[0], 1);
1210
1211 // g1
1212 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1213 1, &g1[0], 1);
1214 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1215
1216 // g3
1217 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1218 1, &g3[0], 1);
1219 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1220
1221 // g5
1222 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1223 &g5[0], 1);
1224 Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1225
1226 // g2
1227 Vmath::Fill(nqtot,
1228 df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1229 df[8][0] * df[8][0],
1230 &g2[0], 1);
1231 }
1232
1233 for (unsigned int i = 0; i < dim; ++i)
1234 {
1235 for (unsigned int j = i; j < dim; ++j)
1236 {
1238 }
1239 }
1240}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition Blas.hpp:149
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
Svtsvtp (scalar times vector plus scalar times vector):
Definition Vmath.hpp:473
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition Vmath.hpp:366
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition Vmath.hpp:54
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition Vmath.hpp:439

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Blas::Dscal(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

◆ v_ComputeTraceNormal()

void Nektar::LocalRegions::PyrExp::v_ComputeTraceNormal ( const int  face)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 696 of file PyrExp.cpp.

697{
698 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
700
702 for (int i = 0; i < ptsKeys.size(); ++i)
703 {
704 // Need at least 2 points for computing normals
705 if (ptsKeys[i].GetNumPoints() == 1)
706 {
707 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
708 ptsKeys[i] = pKey;
709 }
710 }
711
712 SpatialDomains::GeomType type = geomFactors->GetGtype();
713 const Array<TwoD, const NekDouble> &df =
714 geomFactors->GetDerivFactors(ptsKeys);
715 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
716
717 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
718 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
719
720 // Number of quadrature points in face expansion.
721 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
722
723 int vCoordDim = GetCoordim();
724 int i;
725
726 m_traceNormals[face] = Array<OneD, Array<OneD, NekDouble>>(vCoordDim);
727 Array<OneD, Array<OneD, NekDouble>> &normal = m_traceNormals[face];
728 for (i = 0; i < vCoordDim; ++i)
729 {
730 normal[i] = Array<OneD, NekDouble>(nq_face);
731 }
732
733 size_t nqb = nq_face;
734 size_t nbnd = face;
735 m_elmtBndNormDirElmtLen[nbnd] = Array<OneD, NekDouble>{nqb, 0.0};
736 Array<OneD, NekDouble> &length = m_elmtBndNormDirElmtLen[nbnd];
737
738 // Regular geometry case
739 if (type == SpatialDomains::eRegular ||
741 {
742 NekDouble fac;
743 // Set up normals
744 switch (face)
745 {
746 case 0:
747 {
748 for (i = 0; i < vCoordDim; ++i)
749 {
750 normal[i][0] = -df[3 * i + 2][0];
751 }
752 break;
753 }
754 case 1:
755 {
756 for (i = 0; i < vCoordDim; ++i)
757 {
758 normal[i][0] = -df[3 * i + 1][0];
759 }
760 break;
761 }
762 case 2:
763 {
764 for (i = 0; i < vCoordDim; ++i)
765 {
766 normal[i][0] = df[3 * i][0] + df[3 * i + 2][0];
767 }
768 break;
769 }
770 case 3:
771 {
772 for (i = 0; i < vCoordDim; ++i)
773 {
774 normal[i][0] = df[3 * i + 1][0] + df[3 * i + 2][0];
775 }
776 break;
777 }
778 case 4:
779 {
780 for (i = 0; i < vCoordDim; ++i)
781 {
782 normal[i][0] = -df[3 * i][0];
783 }
784 break;
785 }
786 default:
787 ASSERTL0(false, "face is out of range (face < 4)");
788 }
789
790 // Normalise resulting vector.
791 fac = 0.0;
792 for (i = 0; i < vCoordDim; ++i)
793 {
794 fac += normal[i][0] * normal[i][0];
795 }
796 fac = 1.0 / sqrt(fac);
797
798 Vmath::Fill(nqb, fac, length, 1);
799
800 for (i = 0; i < vCoordDim; ++i)
801 {
802 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
803 }
804 }
805 else
806 {
807 // Set up deformed normals.
808 int j, k;
809
810 int nq0 = ptsKeys[0].GetNumPoints();
811 int nq1 = ptsKeys[1].GetNumPoints();
812 int nq2 = ptsKeys[2].GetNumPoints();
813 int nq01 = nq0 * nq1;
814 int nqtot;
815
816 // Determine number of quadrature points on the face.
817 if (face == 0)
818 {
819 nqtot = nq0 * nq1;
820 }
821 else if (face == 1 || face == 3)
822 {
823 nqtot = nq0 * nq2;
824 }
825 else
826 {
827 nqtot = nq1 * nq2;
828 }
829
830 LibUtilities::PointsKey points0;
831 LibUtilities::PointsKey points1;
832
833 Array<OneD, NekDouble> faceJac(nqtot);
834 Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
835
836 // Extract Jacobian along face and recover local derivatives
837 // (dx/dr) for polynomial interpolation by multiplying m_gmat by
838 // jacobian
839 switch (face)
840 {
841 case 0:
842 {
843 for (j = 0; j < nq01; ++j)
844 {
845 normals[j] = -df[2][j] * jac[j];
846 normals[nqtot + j] = -df[5][j] * jac[j];
847 normals[2 * nqtot + j] = -df[8][j] * jac[j];
848 faceJac[j] = jac[j];
849 }
850
851 points0 = ptsKeys[0];
852 points1 = ptsKeys[1];
853 break;
854 }
855
856 case 1:
857 {
858 for (j = 0; j < nq0; ++j)
859 {
860 for (k = 0; k < nq2; ++k)
861 {
862 int tmp = j + nq01 * k;
863 normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
864 normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
865 normals[2 * nqtot + j + k * nq0] =
866 -df[7][tmp] * jac[tmp];
867 faceJac[j + k * nq0] = jac[tmp];
868 }
869 }
870
871 points0 = ptsKeys[0];
872 points1 = ptsKeys[2];
873 break;
874 }
875
876 case 2:
877 {
878 for (j = 0; j < nq1; ++j)
879 {
880 for (k = 0; k < nq2; ++k)
881 {
882 int tmp = nq0 - 1 + nq0 * j + nq01 * k;
883 normals[j + k * nq1] =
884 (df[0][tmp] + df[2][tmp]) * jac[tmp];
885 normals[nqtot + j + k * nq1] =
886 (df[3][tmp] + df[5][tmp]) * jac[tmp];
887 normals[2 * nqtot + j + k * nq1] =
888 (df[6][tmp] + df[8][tmp]) * jac[tmp];
889 faceJac[j + k * nq1] = jac[tmp];
890 }
891 }
892
893 points0 = ptsKeys[1];
894 points1 = ptsKeys[2];
895 break;
896 }
897
898 case 3:
899 {
900 for (j = 0; j < nq0; ++j)
901 {
902 for (k = 0; k < nq2; ++k)
903 {
904 int tmp = nq0 * (nq1 - 1) + j + nq01 * k;
905 normals[j + k * nq0] =
906 (df[1][tmp] + df[2][tmp]) * jac[tmp];
907 normals[nqtot + j + k * nq0] =
908 (df[4][tmp] + df[5][tmp]) * jac[tmp];
909 normals[2 * nqtot + j + k * nq0] =
910 (df[7][tmp] + df[8][tmp]) * jac[tmp];
911 faceJac[j + k * nq0] = jac[tmp];
912 }
913 }
914
915 points0 = ptsKeys[0];
916 points1 = ptsKeys[2];
917 break;
918 }
919
920 case 4:
921 {
922 for (j = 0; j < nq1; ++j)
923 {
924 for (k = 0; k < nq2; ++k)
925 {
926 int tmp = j * nq0 + nq01 * k;
927 normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
928 normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
929 normals[2 * nqtot + j + k * nq1] =
930 -df[6][tmp] * jac[tmp];
931 faceJac[j + k * nq1] = jac[tmp];
932 }
933 }
934
935 points0 = ptsKeys[1];
936 points1 = ptsKeys[2];
937 break;
938 }
939
940 default:
941 ASSERTL0(false, "face is out of range (face < 4)");
942 }
943
944 Array<OneD, NekDouble> work(nq_face, 0.0);
945 // Interpolate Jacobian and invert
946 LibUtilities::Interp2D(points0, points1, faceJac,
947 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
948 work);
949 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
950
951 // Interpolate normal and multiply by inverse Jacobian.
952 for (i = 0; i < vCoordDim; ++i)
953 {
954 LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
955 tobasis0.GetPointsKey(),
956 tobasis1.GetPointsKey(), &normal[i][0]);
957 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
958 }
959
960 // Normalise to obtain unit normals.
961 Vmath::Zero(nq_face, work, 1);
962 for (i = 0; i < GetCoordim(); ++i)
963 {
964 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
965 }
966
967 Vmath::Vsqrt(nq_face, work, 1, work, 1);
968 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
969
970 Vmath::Vcopy(nqb, work, 1, length, 1);
971
972 for (i = 0; i < GetCoordim(); ++i)
973 {
974 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
975 }
976 }
977}
#define ASSERTL0(condition, msg)
std::map< int, NormalVector > m_traceNormals
Definition Expansion.h:282
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition Expansion.h:292
SpatialDomains::Geometry * GetGeom() const
GeomFactorsSharedPtr GetMetricInfo()
Get the geometric factors for this object.
Definition Geometry.h:306
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1, bool UseGLL=false) const
This function returns the basis key belonging to the i-th trace.
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition Interp.cpp:101
std::vector< PointsKey > PointsKeyVector
Definition Points.h:231
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition GeomFactors.h:58
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition Vmath.hpp:340
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition Vmath.hpp:154
void Zero(int n, T *x, const int incx)
Zero vector.
Definition Vmath.hpp:273
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition Vmath.hpp:825
scalarT< T > sqrt(scalarT< T > in)
Definition scalar.hpp:290

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::SpatialDomains::Geometry::GetMetricInfo(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetTraceBasisKey(), Nektar::LibUtilities::Interp2D(), Nektar::LocalRegions::Expansion::m_elmtBndNormDirElmtLen, Nektar::LocalRegions::Expansion::m_traceNormals, Vmath::Sdiv(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::PyrExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1031 of file PyrExp.cpp.

1032{
1033 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1034 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1035 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1038
1039 return tmp->GetStdMatrix(mkey);
1040}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< StdPyrExp > StdPyrExpSharedPtr
Definition StdPyrExp.h:211

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_DropLocMatrix()

void Nektar::LocalRegions::PyrExp::v_DropLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1047 of file PyrExp.cpp.

1048{
1049 m_matrixManager.DeleteObject(mkey);
1050}

References m_matrixManager.

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::PyrExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1057 of file PyrExp.cpp.

1058{
1059 m_staticCondMatrixManager.DeleteObject(mkey);
1060}

References m_staticCondMatrixManager.

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::PyrExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 507 of file PyrExp.cpp.

511{
512 int data_order0 = nummodes[mode_offset];
513 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
514 int data_order1 = nummodes[mode_offset + 1];
515 int order1 = m_base[1]->GetNumModes();
516 int fillorder1 = min(order1, data_order1);
517 int data_order2 = nummodes[mode_offset + 2];
518 int order2 = m_base[2]->GetNumModes();
519 int fillorder2 = min(order2, data_order2);
520
521 // Check if not same order or basis and if not make temp
522 // element to read in data
523 if (fromType[0] != m_base[0]->GetBasisType() ||
524 fromType[1] != m_base[1]->GetBasisType() ||
525 fromType[2] != m_base[2]->GetBasisType() || data_order0 != fillorder0 ||
526 data_order1 != fillorder1 || data_order2 != fillorder2)
527 {
528 // Construct a pyr with the appropriate basis type at our
529 // quadrature points, and one more to do a forwards
530 // transform. We can then copy the output to coeffs.
531 StdRegions::StdPyrExp tmpPyr(
532 LibUtilities::BasisKey(fromType[0], data_order0,
533 m_base[0]->GetPointsKey()),
534 LibUtilities::BasisKey(fromType[1], data_order1,
535 m_base[1]->GetPointsKey()),
536 LibUtilities::BasisKey(fromType[2], data_order2,
537 m_base[2]->GetPointsKey()));
538
539 StdRegions::StdPyrExp tmpPyr2(m_base[0]->GetBasisKey(),
540 m_base[1]->GetBasisKey(),
541 m_base[2]->GetBasisKey());
542
543 Array<OneD, const NekDouble> tmpData(tmpPyr.GetNcoeffs(), data);
544 Array<OneD, NekDouble> tmpBwd(tmpPyr2.GetTotPoints());
545 Array<OneD, NekDouble> tmpOut(tmpPyr2.GetNcoeffs());
546
547 tmpPyr.BwdTrans(tmpData, tmpBwd);
548 tmpPyr2.FwdTrans(tmpBwd, tmpOut);
549 Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
550 }
551 else
552 {
553 Vmath::Vcopy(m_ncoeffs, &data[0], 1, coeffs, 1);
554 }
555}
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
scalarT< T > min(scalarT< T > lhs, scalarT< T > rhs)
Definition scalar.hpp:300

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, tinysimd::min(), and Vmath::Vcopy().

◆ v_FwdTrans()

void Nektar::LocalRegions::PyrExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs.

Inputs:

  • inarray: array of physical quadrature points to be transformed

Outputs:

  • (this)->_coeffs: updated array of expansion coefficients.

Implements Nektar::StdRegions::StdExpansion.

Definition at line 221 of file PyrExp.cpp.

223{
224 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
225 m_base[2]->Collocation())
226 {
227 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
228 }
229 else
230 {
231 v_IProductWRTBase(inarray, outarray);
232
233 // get Mass matrix inverse
234 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
235 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
236
237 // copy inarray in case inarray == outarray
238 DNekVec in(m_ncoeffs, outarray);
239 DNekVec out(m_ncoeffs, outarray, eWrapper);
240
241 out = (*matsys) * in;
242 }
243}
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition PyrExp.cpp:276
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::PyrExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1010 of file PyrExp.cpp.

1011{
1012 DNekMatSharedPtr returnval;
1013
1014 switch (mkey.GetMatrixType())
1015 {
1022 returnval = Expansion3D::v_GenMatrix(mkey);
1023 break;
1024 default:
1025 returnval = StdPyrExp::v_GenMatrix(mkey);
1026 }
1027
1028 return returnval;
1029}
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::shared_ptr< DNekMat > DNekMatSharedPtr

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

◆ v_GetCoord()

void Nektar::LocalRegions::PyrExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 483 of file PyrExp.cpp.

485{
486 int i;
487
488 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
489 Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
490 "Local coordinates are not in region [-1,1]");
491
492 // m_geom->FillGeom(); // TODO: implement FillGeom()
493
494 for (i = 0; i < m_geom->GetCoordim(); ++i)
495 {
496 coords[i] = m_geom->GetCoord(i, Lcoords);
497 }
498}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
SpatialDomains::Geometry * m_geom
Definition Expansion.h:279
NekDouble GetCoord(const int i, const Array< OneD, const NekDouble > &Lcoord)
Given local collapsed coordinate Lcoord, return the value of physical coordinate in direction i.
Definition Geometry.h:558
int GetCoordim() const
Return the coordinate dimension of this object (i.e. the dimension of the space in which this object ...
Definition Geometry.h:279

References ASSERTL1, Nektar::SpatialDomains::Geometry::GetCoord(), Nektar::SpatialDomains::Geometry::GetCoordim(), and Nektar::LocalRegions::Expansion::m_geom.

◆ v_GetCoords()

void Nektar::LocalRegions::PyrExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 500 of file PyrExp.cpp.

503{
504 Expansion::v_GetCoords(coords_1, coords_2, coords_3);
505}
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override

References Nektar::LocalRegions::Expansion::v_GetCoords().

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PyrExp::v_GetLinStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 466 of file PyrExp.cpp.

467{
468 LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(), 2,
469 m_base[0]->GetPointsKey());
470 LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(), 2,
471 m_base[1]->GetPointsKey());
472 LibUtilities::BasisKey bkey2(m_base[2]->GetBasisType(), 2,
473 m_base[2]->GetPointsKey());
474
476 bkey2);
477}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::PyrExp::v_GetLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1042 of file PyrExp.cpp.

1043{
1044 return m_matrixManager[mkey];
1045}

References m_matrixManager.

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::PyrExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1052 of file PyrExp.cpp.

1053{
1054 return m_staticCondMatrixManager[mkey];
1055}

References m_staticCondMatrixManager.

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PyrExp::v_GetStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 459 of file PyrExp.cpp.

460{
462 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
463 m_base[2]->GetBasisKey());
464}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePhysMap()

void Nektar::LocalRegions::PyrExp::v_GetTracePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 598 of file PyrExp.cpp.

599{
600 int nquad0 = m_base[0]->GetNumPoints();
601 int nquad1 = m_base[1]->GetNumPoints();
602 int nquad2 = m_base[2]->GetNumPoints();
603
604 int nq0 = 0;
605 int nq1 = 0;
606
607 switch (face)
608 {
609 case 0:
610 nq0 = nquad0;
611 nq1 = nquad1;
612 if (outarray.size() != nq0 * nq1)
613 {
614 outarray = Array<OneD, int>(nq0 * nq1);
615 }
616
617 // Directions A and B positive
618 for (int i = 0; i < nquad0 * nquad1; ++i)
619 {
620 outarray[i] = i;
621 }
622
623 break;
624 case 1:
625 nq0 = nquad0;
626 nq1 = nquad2;
627 if (outarray.size() != nq0 * nq1)
628 {
629 outarray = Array<OneD, int>(nq0 * nq1);
630 }
631
632 // Direction A and B positive
633 for (int k = 0; k < nquad2; k++)
634 {
635 for (int i = 0; i < nquad0; ++i)
636 {
637 outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
638 }
639 }
640
641 break;
642 case 2:
643 nq0 = nquad1;
644 nq1 = nquad2;
645 if (outarray.size() != nq0 * nq1)
646 {
647 outarray = Array<OneD, int>(nq0 * nq1);
648 }
649
650 // Directions A and B positive
651 for (int j = 0; j < nquad1 * nquad2; ++j)
652 {
653 outarray[j] = nquad0 - 1 + j * nquad0;
654 }
655 break;
656 case 3:
657
658 nq0 = nquad0;
659 nq1 = nquad2;
660 if (outarray.size() != nq0 * nq1)
661 {
662 outarray = Array<OneD, int>(nq0 * nq1);
663 }
664
665 // Direction A and B positive
666 for (int k = 0; k < nquad2; k++)
667 {
668 for (int i = 0; i < nquad0; ++i)
669 {
670 outarray[k * nquad0 + i] =
671 nquad0 * (nquad1 - 1) + (nquad0 * nquad1 * k) + i;
672 }
673 }
674 break;
675 case 4:
676 nq0 = nquad1;
677 nq1 = nquad2;
678
679 if (outarray.size() != nq0 * nq1)
680 {
681 outarray = Array<OneD, int>(nq0 * nq1);
682 }
683
684 // Directions A and B positive
685 for (int j = 0; j < nquad1 * nquad2; ++j)
686 {
687 outarray[j] = j * nquad0;
688 }
689 break;
690 default:
691 ASSERTL0(false, "face value (> 4) is out of range");
692 break;
693 }
694}

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_Integral()

NekDouble Nektar::LocalRegions::PyrExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrate the physical point list inarray over pyramidic region and return the value.

Inputs:

  • inarray: definition of function to be returned at quadrature point of expansion.

Outputs:

  • returns \(\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1, \eta_2, \eta_3) J[i,j,k] d \bar \eta_1 d \eta_2 d \eta_3\)
    \(= \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1} u(\bar \eta_{1i}^{0,0}, \eta_{2j}^{0,0},\eta_{3k}^{2,0})w_{i}^{0,0} w_{j}^{0,0} \hat w_{k}^{2,0} \)
    where \(inarray[i,j, k] = u(\bar \eta_{1i},\eta_{2j}, \eta_{3k}) \),
    \(\hat w_{k}^{2,0} = \frac {w^{2,0}} {2} \)
    and \( J[i,j,k] \) is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 94 of file PyrExp.cpp.

95{
96 int nquad0 = m_base[0]->GetNumPoints();
97 int nquad1 = m_base[1]->GetNumPoints();
98 int nquad2 = m_base[2]->GetNumPoints();
99 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
100 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
101
102 // multiply inarray with Jacobian
103 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
104 {
105 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
106 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
107 }
108 else
109 {
110 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
111 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
112 }
113
114 // call StdPyrExp version;
115 return StdPyrExp::v_Integral(tmp);
116}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase()

void Nektar::LocalRegions::PyrExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray:

\( \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\bar \eta_{1i}) \psi_{q}^{a} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\bar \eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} \)
where

\(\phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1) \psi_{q}^a (\eta_2) \psi_{pqr}^c (\eta_3) \)
which can be implemented as
\(f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \)
\( g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} \)
\( (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} \)

Implements Nektar::StdRegions::StdExpansion.

Definition at line 276 of file PyrExp.cpp.

278{
279 v_IProductWRTBase_SumFac(inarray, outarray);
280}
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition PyrExp.cpp:282

References v_IProductWRTBase_SumFac().

Referenced by v_FwdTrans().

◆ v_IProductWRTBase_SumFac()

void Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 282 of file PyrExp.cpp.

285{
286 const int nquad0 = m_base[0]->GetNumPoints();
287 const int nquad1 = m_base[1]->GetNumPoints();
288 const int nquad2 = m_base[2]->GetNumPoints();
289 const int order0 = m_base[0]->GetNumModes();
290 const int order1 = m_base[1]->GetNumModes();
291
292 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
293
294 if (multiplybyweights)
295 {
296 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
297
298 MultiplyByQuadratureMetric(inarray, tmp);
299
301 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
302 tmp, outarray, wsp, true, true, true);
303 }
304 else
305 {
307 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
308 inarray, outarray, wsp, true, true, true);
309 }
310}
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \).

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product \(\phi_{pqr}(\eta_1,\eta_2,\eta_3) = \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\), this yields the result

\[ I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j} \frac{\partial \eta_j}{\partial x_i}\right) \]

In the pyramid element, we must also incorporate a second set of geometric factors which incorporate the collapsed co-ordinate system, so that

\[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3 \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial x_i} \]

These derivatives can be found on p152 of Sherwin & Karniadakis.

Parameters
dirDirection in which to take the derivative.
inarrayThe function \( u \).
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 342 of file PyrExp.cpp.

345{
346 v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
347}
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition PyrExp.cpp:349

References v_IProductWRTDerivBase_SumFac().

◆ v_IProductWRTDerivBase_SumFac()

void Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 349 of file PyrExp.cpp.

352{
353 const int nquad0 = m_base[0]->GetNumPoints();
354 const int nquad1 = m_base[1]->GetNumPoints();
355 const int nquad2 = m_base[2]->GetNumPoints();
356 const int order0 = m_base[0]->GetNumModes();
357 const int order1 = m_base[1]->GetNumModes();
358 const int nqtot = nquad0 * nquad1 * nquad2;
359
360 Array<OneD, NekDouble> tmp1(nqtot);
361 Array<OneD, NekDouble> tmp2(nqtot);
362 Array<OneD, NekDouble> tmp3(nqtot);
363 Array<OneD, NekDouble> tmp4(nqtot);
364 Array<OneD, NekDouble> tmp6(m_ncoeffs);
365 Array<OneD, NekDouble> wsp(
366 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
367
368 MultiplyByQuadratureMetric(inarray, tmp1);
369
370 Array<OneD, Array<OneD, NekDouble>> tmp2D{3};
371 tmp2D[0] = tmp2;
372 tmp2D[1] = tmp3;
373 tmp2D[2] = tmp4;
374
375 PyrExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
376
377 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
378 m_base[2]->GetBdata(), tmp2, outarray, wsp,
379 false, true, true);
380
381 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
382 m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
383 false, true);
384
385 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
386
387 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
388 m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
389 true, false);
390
391 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
392}
void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition PyrExp.cpp:394
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition Vmath.hpp:180

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), v_AlignVectorToCollapsedDir(), and Vmath::Vadd().

Referenced by v_IProductWRTDerivBase().

◆ v_LaplacianMatrixOp_MatFree_Kernel()

void Nektar::LocalRegions::PyrExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
overrideprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1242 of file PyrExp.cpp.

1245{
1246 // This implementation is only valid when there are no coefficients
1247 // associated to the Laplacian operator
1248 if (m_metrics.count(eMetricLaplacian00) == 0)
1249 {
1251 }
1252
1253 int nquad0 = m_base[0]->GetNumPoints();
1254 int nquad1 = m_base[1]->GetNumPoints();
1255 int nq2 = m_base[2]->GetNumPoints();
1256 int nqtot = nquad0 * nquad1 * nq2;
1257
1258 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1259 ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1260
1261 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1262 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1263 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1264 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1265 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1266 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1267 const Array<OneD, const NekDouble> &metric00 =
1268 m_metrics[eMetricLaplacian00];
1269 const Array<OneD, const NekDouble> &metric01 =
1270 m_metrics[eMetricLaplacian01];
1271 const Array<OneD, const NekDouble> &metric02 =
1272 m_metrics[eMetricLaplacian02];
1273 const Array<OneD, const NekDouble> &metric11 =
1274 m_metrics[eMetricLaplacian11];
1275 const Array<OneD, const NekDouble> &metric12 =
1276 m_metrics[eMetricLaplacian12];
1277 const Array<OneD, const NekDouble> &metric22 =
1278 m_metrics[eMetricLaplacian22];
1279
1280 // Allocate temporary storage
1281 Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1282 Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1283 Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1284 Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1285 Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1286 Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1287
1288 // LAPLACIAN MATRIX OPERATION
1289 // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1290 // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1291 // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1292 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1293
1294 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1295 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1296 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1297 // especially for this purpose
1298 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1299 &wsp1[0], 1, &wsp3[0], 1);
1300 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1301 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1302 &wsp1[0], 1, &wsp4[0], 1);
1303 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1304 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1305 &wsp1[0], 1, &wsp5[0], 1);
1306 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1307
1308 // outarray = m = (D_xi1 * B)^T * k
1309 // wsp1 = n = (D_xi2 * B)^T * l
1310 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1311 false, true, true);
1312 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1313 false, true);
1314 Vmath::Vadd(m_ncoeffs, wsp2.data(), 1, outarray.data(), 1, outarray.data(),
1315 1);
1316 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1317 true, false);
1318 Vmath::Vadd(m_ncoeffs, wsp2.data(), 1, outarray.data(), 1, outarray.data(),
1319 1);
1320}

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::StdRegions::StdExpansion::m_base, and Nektar::LocalRegions::Expansion::m_metrics.

◆ v_NormalTraceDerivFactors()

void Nektar::LocalRegions::PyrExp::v_NormalTraceDerivFactors ( Array< OneD, Array< OneD, NekDouble > > &  d0factors,
Array< OneD, Array< OneD, NekDouble > > &  d1factors,
Array< OneD, Array< OneD, NekDouble > > &  d2factors 
)
overrideprotectedvirtual

: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1327 of file PyrExp.cpp.

1331{
1332 int nquad0 = GetNumPoints(0);
1333 int nquad1 = GetNumPoints(1);
1334 int nquad2 = GetNumPoints(2);
1335
1336 const Array<TwoD, const NekDouble> &df =
1337 m_metricinfo->GetDerivFactors(GetPointsKeys());
1338
1339 if (d0factors.size() != 5)
1340 {
1341 d0factors = Array<OneD, Array<OneD, NekDouble>>(5);
1342 d1factors = Array<OneD, Array<OneD, NekDouble>>(5);
1343 d2factors = Array<OneD, Array<OneD, NekDouble>>(5);
1344 }
1345
1346 if (d0factors[0].size() != nquad0 * nquad1)
1347 {
1348 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1349 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1350 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1351 }
1352
1353 if (d0factors[1].size() != nquad0 * nquad2)
1354 {
1355 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1356 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1357 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1358 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1359 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1360 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1361 }
1362
1363 if (d0factors[2].size() != nquad1 * nquad2)
1364 {
1365 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1366 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1367 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1368 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1369 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1370 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1371 }
1372
1373 // Outwards normals
1374 const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1375 GetTraceNormal(0);
1376 const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1377 GetTraceNormal(1);
1378 const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1379 GetTraceNormal(2);
1380 const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1381 GetTraceNormal(3);
1382 const Array<OneD, const Array<OneD, NekDouble>> &normal_4 =
1383 GetTraceNormal(4);
1384
1385 int ncoords = normal_0.size();
1386
1387 // first gather together standard cartesian inner products
1388 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1389 {
1390 // face 0
1391 for (int i = 0; i < nquad0 * nquad1; ++i)
1392 {
1393 d0factors[0][i] = df[0][i] * normal_0[0][i];
1394 d1factors[0][i] = df[1][i] * normal_0[0][i];
1395 d2factors[0][i] = df[2][i] * normal_0[0][i];
1396 }
1397
1398 for (int n = 1; n < ncoords; ++n)
1399 {
1400 for (int i = 0; i < nquad0 * nquad1; ++i)
1401 {
1402 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1403 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1404 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1405 }
1406 }
1407
1408 // faces 1 and 3
1409 for (int j = 0; j < nquad2; ++j)
1410 {
1411 for (int i = 0; i < nquad0; ++i)
1412 {
1413 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1414 normal_1[0][j * nquad0 + i];
1415 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1416 normal_1[0][j * nquad0 + i];
1417 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1418 normal_1[0][j * nquad0 + i];
1419
1420 d0factors[3][j * nquad0 + i] =
1421 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1422 normal_3[0][j * nquad0 + i];
1423 d1factors[3][j * nquad0 + i] =
1424 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1425 normal_3[0][j * nquad0 + i];
1426 d2factors[3][j * nquad0 + i] =
1427 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1428 normal_3[0][j * nquad0 + i];
1429 }
1430 }
1431
1432 for (int n = 1; n < ncoords; ++n)
1433 {
1434 for (int j = 0; j < nquad2; ++j)
1435 {
1436 for (int i = 0; i < nquad0; ++i)
1437 {
1438 d0factors[1][j * nquad0 + i] +=
1439 df[3 * n][j * nquad0 * nquad1 + i] *
1440 normal_1[0][j * nquad0 + i];
1441 d1factors[1][j * nquad0 + i] +=
1442 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1443 normal_1[0][j * nquad0 + i];
1444 d2factors[1][j * nquad0 + i] +=
1445 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1446 normal_1[0][j * nquad0 + i];
1447
1448 d0factors[3][j * nquad0 + i] +=
1449 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1450 normal_3[0][j * nquad0 + i];
1451 d1factors[3][j * nquad0 + i] +=
1452 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1453 normal_3[0][j * nquad0 + i];
1454 d2factors[3][j * nquad0 + i] +=
1455 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1456 normal_3[0][j * nquad0 + i];
1457 }
1458 }
1459 }
1460
1461 // faces 2 and 4
1462 for (int j = 0; j < nquad2; ++j)
1463 {
1464 for (int i = 0; i < nquad1; ++i)
1465 {
1466 d0factors[2][j * nquad1 + i] =
1467 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1468 normal_2[0][j * nquad1 + i];
1469 d1factors[2][j * nquad1 + i] =
1470 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1471 normal_2[0][j * nquad1 + i];
1472 d2factors[2][j * nquad1 + i] =
1473 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1474 normal_2[0][j * nquad1 + i];
1475
1476 d0factors[4][j * nquad1 + i] =
1477 df[0][j * nquad0 * nquad1 + i * nquad0] *
1478 normal_4[0][j * nquad1 + i];
1479 d1factors[4][j * nquad1 + i] =
1480 df[1][j * nquad0 * nquad1 + i * nquad0] *
1481 normal_4[0][j * nquad1 + i];
1482 d2factors[4][j * nquad1 + i] =
1483 df[2][j * nquad0 * nquad1 + i * nquad0] *
1484 normal_4[0][j * nquad1 + i];
1485 }
1486 }
1487
1488 for (int n = 1; n < ncoords; ++n)
1489 {
1490 for (int j = 0; j < nquad2; ++j)
1491 {
1492 for (int i = 0; i < nquad1; ++i)
1493 {
1494 d0factors[2][j * nquad1 + i] +=
1495 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1496 normal_2[n][j * nquad1 + i];
1497 d1factors[2][j * nquad1 + i] +=
1498 df[3 * n + 1]
1499 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1500 normal_2[n][j * nquad1 + i];
1501 d2factors[2][j * nquad1 + i] +=
1502 df[3 * n + 2]
1503 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1504 normal_2[n][j * nquad1 + i];
1505
1506 d0factors[4][j * nquad1 + i] +=
1507 df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1508 normal_4[n][j * nquad1 + i];
1509 d1factors[4][j * nquad1 + i] +=
1510 df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1511 normal_4[n][j * nquad1 + i];
1512 d2factors[4][j * nquad1 + i] +=
1513 df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1514 normal_4[n][j * nquad1 + i];
1515 }
1516 }
1517 }
1518 }
1519 else
1520 {
1521 // Face 0
1522 for (int i = 0; i < nquad0 * nquad1; ++i)
1523 {
1524 d0factors[0][i] = df[0][0] * normal_0[0][i];
1525 d1factors[0][i] = df[1][0] * normal_0[0][i];
1526 d2factors[0][i] = df[2][0] * normal_0[0][i];
1527 }
1528
1529 for (int n = 1; n < ncoords; ++n)
1530 {
1531 for (int i = 0; i < nquad0 * nquad1; ++i)
1532 {
1533 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1534 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1535 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1536 }
1537 }
1538
1539 // faces 1 and 3
1540 for (int i = 0; i < nquad0 * nquad2; ++i)
1541 {
1542 d0factors[1][i] = df[0][0] * normal_1[0][i];
1543 d0factors[3][i] = df[0][0] * normal_3[0][i];
1544
1545 d1factors[1][i] = df[1][0] * normal_1[0][i];
1546 d1factors[3][i] = df[1][0] * normal_3[0][i];
1547
1548 d2factors[1][i] = df[2][0] * normal_1[0][i];
1549 d2factors[3][i] = df[2][0] * normal_3[0][i];
1550 }
1551
1552 for (int n = 1; n < ncoords; ++n)
1553 {
1554 for (int i = 0; i < nquad0 * nquad2; ++i)
1555 {
1556 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1557 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1558
1559 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1560 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1561
1562 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1563 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1564 }
1565 }
1566
1567 // faces 2 and 4
1568 for (int i = 0; i < nquad1 * nquad2; ++i)
1569 {
1570 d0factors[2][i] = df[0][0] * normal_2[0][i];
1571 d0factors[4][i] = df[0][0] * normal_4[0][i];
1572
1573 d1factors[2][i] = df[1][0] * normal_2[0][i];
1574 d1factors[4][i] = df[1][0] * normal_4[0][i];
1575
1576 d2factors[2][i] = df[2][0] * normal_2[0][i];
1577 d2factors[4][i] = df[2][0] * normal_4[0][i];
1578 }
1579
1580 for (int n = 1; n < ncoords; ++n)
1581 {
1582 for (int i = 0; i < nquad1 * nquad2; ++i)
1583 {
1584 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1585 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1586
1587 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1588 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1589
1590 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1591 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1592 }
1593 }
1594 }
1595}
const NormalVector & GetTraceNormal(const int id)

◆ v_PhysDeriv()

void Nektar::LocalRegions::PyrExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2,
Array< OneD, NekDouble > &  out_d3 
)
overrideprotectedvirtual

Calculate the derivative of the physical points.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 122 of file PyrExp.cpp.

126{
127 int nquad0 = m_base[0]->GetNumPoints();
128 int nquad1 = m_base[1]->GetNumPoints();
129 int nquad2 = m_base[2]->GetNumPoints();
130 Array<TwoD, const NekDouble> gmat =
131 m_metricinfo->GetDerivFactors(GetPointsKeys());
132 Array<OneD, NekDouble> diff0(nquad0 * nquad1 * nquad2);
133 Array<OneD, NekDouble> diff1(nquad0 * nquad1 * nquad2);
134 Array<OneD, NekDouble> diff2(nquad0 * nquad1 * nquad2);
135
136 StdPyrExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
137
138 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
139 {
140 if (out_d0.size())
141 {
142 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[0][0], 1, &diff0[0], 1,
143 &out_d0[0], 1);
144 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[1][0], 1, &diff1[0], 1,
145 &out_d0[0], 1, &out_d0[0], 1);
146 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[2][0], 1, &diff2[0], 1,
147 &out_d0[0], 1, &out_d0[0], 1);
148 }
149
150 if (out_d1.size())
151 {
152 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[3][0], 1, &diff0[0], 1,
153 &out_d1[0], 1);
154 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[4][0], 1, &diff1[0], 1,
155 &out_d1[0], 1, &out_d1[0], 1);
156 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[5][0], 1, &diff2[0], 1,
157 &out_d1[0], 1, &out_d1[0], 1);
158 }
159
160 if (out_d2.size())
161 {
162 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[6][0], 1, &diff0[0], 1,
163 &out_d2[0], 1);
164 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[7][0], 1, &diff1[0], 1,
165 &out_d2[0], 1, &out_d2[0], 1);
166 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[8][0], 1, &diff2[0], 1,
167 &out_d2[0], 1, &out_d2[0], 1);
168 }
169 }
170 else // regular geometry
171 {
172 if (out_d0.size())
173 {
174 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[0][0], &diff0[0], 1,
175 &out_d0[0], 1);
176 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[1][0], &diff1[0], 1,
177 &out_d0[0], 1);
178 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[2][0], &diff2[0], 1,
179 &out_d0[0], 1);
180 }
181
182 if (out_d1.size())
183 {
184 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[3][0], &diff0[0], 1,
185 &out_d1[0], 1);
186 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[4][0], &diff1[0], 1,
187 &out_d1[0], 1);
188 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[5][0], &diff2[0], 1,
189 &out_d1[0], 1);
190 }
191
192 if (out_d2.size())
193 {
194 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[6][0], &diff0[0], 1,
195 &out_d2[0], 1);
196 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[7][0], &diff1[0], 1,
197 &out_d2[0], 1);
198 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[8][0], &diff2[0], 1,
199 &out_d2[0], 1);
200 }
201 }
202}
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition Blas.hpp:135

References Blas::Daxpy(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_PhysEvalFirstDeriv()

NekDouble Nektar::LocalRegions::PyrExp::v_PhysEvalFirstDeriv ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 583 of file PyrExp.cpp.

587{
588 Array<OneD, NekDouble> Lcoord(3);
589 ASSERTL0(m_geom, "m_geom not defined");
590 m_geom->GetLocCoords(coord, Lcoord);
591 return StdPyrExp::v_PhysEvalFirstDeriv(Lcoord, inarray, firstOrderDerivs);
592}
NekDouble GetLocCoords(const Array< OneD, const NekDouble > &coords, Array< OneD, NekDouble > &Lcoords)
Determine the local collapsed coordinates that correspond to a given Cartesian coordinate for this ge...
Definition Geometry.h:548

References ASSERTL0, Nektar::SpatialDomains::Geometry::GetLocCoords(), and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate()

NekDouble Nektar::LocalRegions::PyrExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 570 of file PyrExp.cpp.

572{
573 Array<OneD, NekDouble> Lcoord(3);
574
575 ASSERTL0(m_geom, "m_geom not defined");
576
577 // TODO: check GetLocCoords()
578 m_geom->GetLocCoords(coord, Lcoord);
579
580 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
581}

References ASSERTL0, Nektar::SpatialDomains::Geometry::GetLocCoords(), and Nektar::LocalRegions::Expansion::m_geom.

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::PyrExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 562 of file PyrExp.cpp.

565{
566 // Evaluate point in local coordinates.
567 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
568}

◆ v_SVVLaplacianFilter()

void Nektar::LocalRegions::PyrExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 979 of file PyrExp.cpp.

981{
982 int nq = GetTotPoints();
983
984 // Calculate sqrt of the Jacobian
985 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
986 Array<OneD, NekDouble> sqrt_jac(nq);
987 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
988 {
989 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
990 }
991 else
992 {
993 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
994 }
995
996 // Multiply array by sqrt(Jac)
997 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
998
999 // Apply std region filter
1000 StdPyrExp::v_SVVLaplacianFilter(array, mkey);
1001
1002 // Divide by sqrt(Jac)
1003 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1004}
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition Vmath.hpp:126

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, tinysimd::sqrt(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::PyrExp::m_matrixManager
private

Definition at line 174 of file PyrExp.h.

Referenced by v_DropLocMatrix(), v_FwdTrans(), and v_GetLocMatrix().

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::PyrExp::m_staticCondMatrixManager
private

Definition at line 176 of file PyrExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().