Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::PyrExp Class Reference

#include <PyrExp.h>

Inheritance diagram for Nektar::LocalRegions::PyrExp:
[legend]

Public Member Functions

 PyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::PyrGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 PyrExp (const PyrExp &T)
 
 ~PyrExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdPyrExp
 StdPyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdPyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdPyrExp ()=default
 
 StdPyrExp (const StdPyrExp &T)=default
 
 ~StdPyrExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D ()=default
 
 StdExpansion3D (const StdExpansion3D &T)=default
 
 ~StdExpansion3D () override=default
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1, bool UseGLL=false) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void NodalToModal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
void PhysInterp (std::shared_ptr< StdExpansion > fromExp, const Array< OneD, const NekDouble > &fromData, Array< OneD, NekDouble > &toData)
 interpolate from one set of quadrature points available from FromExp to the set of quadrature points in the current expansion. If the points are the same this routine will just copy the data More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
 ~Expansion3D () override=default
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1) override
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray) override
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetTraceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
 ~Expansion () override
 
void SetTraceExp (const int traceid, ExpansionSharedPtr &f)
 
ExpansionSharedPtr GetTraceExp (const int traceid)
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
void AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
ExpansionSharedPtr GetLeftAdjacentElementExp () const
 
ExpansionSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementTrace () const
 
int GetRightAdjacentElementTrace () const
 
void SetAdjacentElementExp (int traceid, ExpansionSharedPtr &e)
 
StdRegions::Orientation GetTraceOrient (int trace)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights. More...
 
void GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=StdRegions::eNoOrientation)
 
void GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
void ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1)
 
const NormalVectorGetTraceNormal (const int id)
 
void ComputeTraceNormal (const int id)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
void SetUpPhysNormals (const int trace)
 
void AddRobinMassMatrix (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
void AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
const Array< OneD, const NekDouble > & GetElmtBndNormDirElmtLen (const int nbnd) const
 
void StdDerivBaseOnTraceMat (Array< OneD, DNekMatSharedPtr > &DerivMat)
 

Protected Member Functions

NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over pyramidic region and return the value. More...
 
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points. More...
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs. More...
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray: More...
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \). More...
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
 
StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const override
 
StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const override
 
void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
 
void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
 
NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble v_PhysEvalFirstDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
void v_GetTracePhysMap (const int face, Array< OneD, int > &outarray) override
 
void v_ComputeTraceNormal (const int face) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey) override
 
DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey) override
 
DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_DropLocMatrix (const MatrixKey &mkey) override
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_ComputeLaplacianMetric () override
 
void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors, Array< OneD, Array< OneD, NekDouble > > &d2factors) override
 : This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace. More...
 
- Protected Member Functions inherited from Nektar::StdRegions::StdPyrExp
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points. More...
 
void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the derivative of the physical points in a given direction. More...
 
void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 
void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Backward transformation is evaluated at the quadrature points. More...
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray. More...
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Inner product of inarray over region with respect to the expansion basis m_base[0]->GetBdata(),m_base[1]->GetBdata(), m_base[2]->GetBdata() and return in outarray. More...
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
void v_GetCoords (Array< OneD, NekDouble > &xi_x, Array< OneD, NekDouble > &xi_y, Array< OneD, NekDouble > &xi_z) override
 
void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
void v_GetTraceNumModes (const int fid, int &numModes0, int &numModes1, Orientation faceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final
 
NekDouble v_PhysEvalFirstDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
int v_GetNverts () const override
 
int v_GetNedges () const override
 
int v_GetNtraces () const override
 
LibUtilities::ShapeType v_DetShapeType () const override
 
int v_NumBndryCoeffs () const override
 
int v_NumDGBndryCoeffs () const override
 
int v_GetTraceNcoeffs (const int i) const override
 
int v_GetTraceIntNcoeffs (const int i) const override
 
int v_GetTraceNumPoints (const int i) const override
 
int v_GetEdgeNcoeffs (const int i) const override
 
int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
const LibUtilities::BasisKey v_GetTraceBasisKey (const int i, const int k, bool UseGLL=false) const override
 
int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetTraceCoeffMap (const unsigned int fid, Array< OneD, unsigned int > &maparray) override
 
void v_GetElmtTraceToTraceMap (const unsigned int fid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation faceOrient, int P, int Q) override
 
void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
void v_GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble v_PhysEvaluateInterp (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
void v_PhysInterp (std::shared_ptr< StdExpansion > fromExp, const Array< OneD, const NekDouble > &fromData, Array< OneD, NekDouble > &toData) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d) override
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) override
 
void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat) override
 
StdRegions::Orientation v_GetTraceOrient (int face) override
 
void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
 Extract the physical values along face face from inarray into outarray following the local face orientation and point distribution defined by defined in FaceExp. More...
 
void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp) override
 
void GetPhysFaceVarCoeffsFromElement (const int face, ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType) override
 
DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &transformationmatrix) override
 Build inverse and inverse transposed transformation matrix: \(\mathbf{R^{-1}}\) and \(\mathbf{R^{-T}}\). More...
 
DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd) override
 
void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p) override
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
Array< OneD, NekDoubleGetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
int v_GetCoordim () const override
 
void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual StdRegions::Orientation v_GetTraceOrient (int trace)
 
void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1=-1)
 
virtual void v_ComputeTraceNormal (const int id)
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals ()
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int id)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp)
 

Private Member Functions

void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion3D
std::map< int, NormalVectorm_faceNormals
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_indexMapManager
 
std::map< int, ExpansionWeakPtrm_traceExp
 
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 
std::map< int, NormalVectorm_traceNormals
 
ExpansionWeakPtr m_elementLeft
 
ExpansionWeakPtr m_elementRight
 
int m_elementTraceLeft = -1
 
int m_elementTraceRight = -1
 
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
 the element length in each element boundary(Vertex, edge or face) normal direction calculated based on the local m_metricinfo times the standard element length (which is 2.0) More...
 

Detailed Description

Definition at line 48 of file PyrExp.h.

Constructor & Destructor Documentation

◆ PyrExp() [1/2]

Nektar::LocalRegions::PyrExp::PyrExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::PyrGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 43 of file PyrExp.cpp.

48 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
49 3, Ba, Bb, Bc),
51 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
52 Ba, Bb, Bc),
53 StdPyrExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
55 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
56 std::string("PyrExpMatrix")),
58 this, std::placeholders::_1),
59 std::string("PyrExpStaticCondMatrix"))
60{
61}
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:59
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: Expansion.cpp:272
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:43
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PyrExp.h:174
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PyrExp.h:176
StdExpansion()
Default Constructor.
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:232

◆ PyrExp() [2/2]

Nektar::LocalRegions::PyrExp::PyrExp ( const PyrExp T)

Definition at line 63 of file PyrExp.cpp.

65 Expansion3D(T), m_matrixManager(T.m_matrixManager),
66 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
67{
68}

◆ ~PyrExp()

Nektar::LocalRegions::PyrExp::~PyrExp ( )
overridedefault

Member Function Documentation

◆ v_AlignVectorToCollapsedDir()

void Nektar::LocalRegions::PyrExp::v_AlignVectorToCollapsedDir ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 394 of file PyrExp.cpp.

397{
398 const int nquad0 = m_base[0]->GetNumPoints();
399 const int nquad1 = m_base[1]->GetNumPoints();
400 const int nquad2 = m_base[2]->GetNumPoints();
401 const int order0 = m_base[0]->GetNumModes();
402 const int order1 = m_base[1]->GetNumModes();
403 const int nqtot = nquad0 * nquad1 * nquad2;
404
405 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
406 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
407 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
408
409 Array<OneD, NekDouble> gfac0(nquad0);
410 Array<OneD, NekDouble> gfac1(nquad1);
411 Array<OneD, NekDouble> gfac2(nquad2);
412 Array<OneD, NekDouble> tmp5(nqtot);
413 Array<OneD, NekDouble> wsp(
414 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
415
416 Array<OneD, NekDouble> tmp2 = outarray[0];
417 Array<OneD, NekDouble> tmp3 = outarray[1];
418 Array<OneD, NekDouble> tmp4 = outarray[2];
419
420 const Array<TwoD, const NekDouble> &df =
421 m_metricinfo->GetDerivFactors(GetPointsKeys());
422
423 Array<OneD, NekDouble> tmp1;
424 tmp1 = inarray;
425
426 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
427 {
428 Vmath::Vmul(nqtot, &df[3 * dir][0], 1, tmp1.data(), 1, tmp2.data(), 1);
429 Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, tmp1.data(), 1, tmp3.data(),
430 1);
431 Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, tmp1.data(), 1, tmp4.data(),
432 1);
433 }
434 else
435 {
436 Vmath::Smul(nqtot, df[3 * dir][0], tmp1.data(), 1, tmp2.data(), 1);
437 Vmath::Smul(nqtot, df[3 * dir + 1][0], tmp1.data(), 1, tmp3.data(), 1);
438 Vmath::Smul(nqtot, df[3 * dir + 2][0], tmp1.data(), 1, tmp4.data(), 1);
439 }
440
441 // set up geometric factor: (1+z0)/2
442 for (int i = 0; i < nquad0; ++i)
443 {
444 gfac0[i] = 0.5 * (1 + z0[i]);
445 }
446
447 // set up geometric factor: (1+z1)/2
448 for (int i = 0; i < nquad1; ++i)
449 {
450 gfac1[i] = 0.5 * (1 + z1[i]);
451 }
452
453 // Set up geometric factor: 2/(1-z2)
454 for (int i = 0; i < nquad2; ++i)
455 {
456 gfac2[i] = 2.0 / (1 - z2[i]);
457 }
458
459 const int nq01 = nquad0 * nquad1;
460
461 for (int i = 0; i < nquad2; ++i)
462 {
463 Vmath::Smul(nq01, gfac2[i], &tmp2[0] + i * nq01, 1, &tmp2[0] + i * nq01,
464 1); // 2/(1-z2) for d/dxi_0
465 Vmath::Smul(nq01, gfac2[i], &tmp3[0] + i * nq01, 1, &tmp3[0] + i * nq01,
466 1); // 2/(1-z2) for d/dxi_1
467 Vmath::Smul(nq01, gfac2[i], &tmp4[0] + i * nq01, 1, &tmp5[0] + i * nq01,
468 1); // 2/(1-z2) for d/dxi_2
469 }
470
471 // (1+z0)/(1-z2) for d/d eta_0
472 for (int i = 0; i < nquad1 * nquad2; ++i)
473 {
474 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp5[0] + i * nquad0, 1,
475 &wsp[0] + i * nquad0, 1);
476 }
477
478 Vmath::Vadd(nqtot, &tmp2[0], 1, &wsp[0], 1, &tmp2[0], 1);
479
480 // (1+z1)/(1-z2) for d/d eta_1
481 for (int i = 0; i < nquad1 * nquad2; ++i)
482 {
483 Vmath::Smul(nquad0, gfac1[i % nquad1], &tmp5[0] + i * nquad0, 1,
484 &tmp5[0] + i * nquad0, 1);
485 }
486 Vmath::Vadd(nqtot, &tmp3[0], 1, &tmp5[0], 1, &tmp3[0], 1);
487}
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:274
const LibUtilities::PointsKeyVector GetPointsKeys() const
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ eDeformed
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase_SumFac().

◆ v_ComputeLaplacianMetric()

void Nektar::LocalRegions::PyrExp::v_ComputeLaplacianMetric ( )
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1096 of file PyrExp.cpp.

1097{
1098 if (m_metrics.count(eMetricQuadrature) == 0)
1099 {
1101 }
1102
1103 int i, j;
1104 const unsigned int nqtot = GetTotPoints();
1105 const unsigned int dim = 3;
1106 const MetricType m[3][3] = {
1110
1111 for (unsigned int i = 0; i < dim; ++i)
1112 {
1113 for (unsigned int j = i; j < dim; ++j)
1114 {
1115 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1116 }
1117 }
1118
1119 // Define shorthand synonyms for m_metrics storage
1120 Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1121 Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1122 Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1123 Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1124 Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1125 Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1126
1127 // Allocate temporary storage
1128 Array<OneD, NekDouble> alloc(9 * nqtot, 0.0);
1129 Array<OneD, NekDouble> h0(nqtot, alloc);
1130 Array<OneD, NekDouble> h1(nqtot, alloc + 1 * nqtot);
1131 Array<OneD, NekDouble> h2(nqtot, alloc + 2 * nqtot);
1132 Array<OneD, NekDouble> wsp1(nqtot, alloc + 3 * nqtot);
1133 Array<OneD, NekDouble> wsp2(nqtot, alloc + 4 * nqtot);
1134 Array<OneD, NekDouble> wsp3(nqtot, alloc + 5 * nqtot);
1135 Array<OneD, NekDouble> wsp4(nqtot, alloc + 6 * nqtot);
1136 Array<OneD, NekDouble> wsp5(nqtot, alloc + 7 * nqtot);
1137 Array<OneD, NekDouble> wsp6(nqtot, alloc + 8 * nqtot);
1138
1139 const Array<TwoD, const NekDouble> &df =
1140 m_metricinfo->GetDerivFactors(GetPointsKeys());
1141 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1142 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1143 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1144 const unsigned int nquad0 = m_base[0]->GetNumPoints();
1145 const unsigned int nquad1 = m_base[1]->GetNumPoints();
1146 const unsigned int nquad2 = m_base[2]->GetNumPoints();
1147
1148 // Populate collapsed coordinate arrays h0, h1 and h2.
1149 for (j = 0; j < nquad2; ++j)
1150 {
1151 for (i = 0; i < nquad1; ++i)
1152 {
1153 Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1154 &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1155 Vmath::Fill(nquad0, 1.0 / (1.0 - z2[j]),
1156 &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1157 Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1158 &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1159 }
1160 }
1161 for (i = 0; i < nquad0; i++)
1162 {
1163 Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1164 }
1165
1166 // Step 3. Construct combined metric terms for physical space to
1167 // collapsed coordinate system.
1168 // Order of construction optimised to minimise temporary storage
1169 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1170 {
1171 // f_{1k}
1172 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1,
1173 &wsp1[0], 1);
1174 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1,
1175 &wsp2[0], 1);
1176 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1,
1177 &wsp3[0], 1);
1178
1179 // g0
1180 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1181 1, &g0[0], 1);
1182 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1183
1184 // g4
1185 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp1[0], 1, &df[5][0], 1, &wsp2[0],
1186 1, &g4[0], 1);
1187 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1188
1189 // f_{2k}
1190 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h0[0], 1, &df[2][0], 1, &h2[0], 1,
1191 &wsp4[0], 1);
1192 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h0[0], 1, &df[5][0], 1, &h2[0], 1,
1193 &wsp5[0], 1);
1194 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h0[0], 1, &df[8][0], 1, &h2[0], 1,
1195 &wsp6[0], 1);
1196
1197 // g1
1198 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1199 1, &g1[0], 1);
1200 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1201
1202 // g3
1203 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1204 1, &g3[0], 1);
1205 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1206
1207 // g5
1208 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1209 1, &g5[0], 1);
1210 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1211
1212 // g2
1213 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1214 &df[5][0], 1, &g2[0], 1);
1215 Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1216 }
1217 else
1218 {
1219 // f_{1k}
1220 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1,
1221 &wsp1[0], 1);
1222 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1,
1223 &wsp2[0], 1);
1224 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1,
1225 &wsp3[0], 1);
1226
1227 // g0
1228 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1229 1, &g0[0], 1);
1230 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1231
1232 // g4
1233 Vmath::Svtsvtp(nqtot, df[2][0], &wsp1[0], 1, df[5][0], &wsp2[0], 1,
1234 &g4[0], 1);
1235 Vmath::Svtvp(nqtot, df[8][0], &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1236
1237 // f_{2k}
1238 Vmath::Svtsvtp(nqtot, df[1][0], &h0[0], 1, df[2][0], &h2[0], 1,
1239 &wsp4[0], 1);
1240 Vmath::Svtsvtp(nqtot, df[4][0], &h0[0], 1, df[5][0], &h2[0], 1,
1241 &wsp5[0], 1);
1242 Vmath::Svtsvtp(nqtot, df[7][0], &h0[0], 1, df[8][0], &h2[0], 1,
1243 &wsp6[0], 1);
1244
1245 // g1
1246 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1247 1, &g1[0], 1);
1248 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1249
1250 // g3
1251 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1252 1, &g3[0], 1);
1253 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1254
1255 // g5
1256 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1257 &g5[0], 1);
1258 Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1259
1260 // g2
1261 Vmath::Fill(nqtot,
1262 df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1263 df[8][0] * df[8][0],
1264 &g2[0], 1);
1265 }
1266
1267 for (unsigned int i = 0; i < dim; ++i)
1268 {
1269 for (unsigned int j = i; j < dim; ++j)
1270 {
1272 }
1273 }
1274}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:732
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
Svtsvtp (scalar times vector plus scalar times vector):
Definition: Vmath.hpp:473
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Blas::Dscal(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

◆ v_ComputeTraceNormal()

void Nektar::LocalRegions::PyrExp::v_ComputeTraceNormal ( const int  face)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 730 of file PyrExp.cpp.

731{
732 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
733 GetGeom()->GetMetricInfo();
734
736 for (int i = 0; i < ptsKeys.size(); ++i)
737 {
738 // Need at least 2 points for computing normals
739 if (ptsKeys[i].GetNumPoints() == 1)
740 {
741 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
742 ptsKeys[i] = pKey;
743 }
744 }
745
746 SpatialDomains::GeomType type = geomFactors->GetGtype();
747 const Array<TwoD, const NekDouble> &df =
748 geomFactors->GetDerivFactors(ptsKeys);
749 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
750
751 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
752 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
753
754 // Number of quadrature points in face expansion.
755 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
756
757 int vCoordDim = GetCoordim();
758 int i;
759
760 m_traceNormals[face] = Array<OneD, Array<OneD, NekDouble>>(vCoordDim);
761 Array<OneD, Array<OneD, NekDouble>> &normal = m_traceNormals[face];
762 for (i = 0; i < vCoordDim; ++i)
763 {
764 normal[i] = Array<OneD, NekDouble>(nq_face);
765 }
766
767 size_t nqb = nq_face;
768 size_t nbnd = face;
769 m_elmtBndNormDirElmtLen[nbnd] = Array<OneD, NekDouble>{nqb, 0.0};
770 Array<OneD, NekDouble> &length = m_elmtBndNormDirElmtLen[nbnd];
771
772 // Regular geometry case
773 if (type == SpatialDomains::eRegular ||
775 {
776 NekDouble fac;
777 // Set up normals
778 switch (face)
779 {
780 case 0:
781 {
782 for (i = 0; i < vCoordDim; ++i)
783 {
784 normal[i][0] = -df[3 * i + 2][0];
785 }
786 break;
787 }
788 case 1:
789 {
790 for (i = 0; i < vCoordDim; ++i)
791 {
792 normal[i][0] = -df[3 * i + 1][0];
793 }
794 break;
795 }
796 case 2:
797 {
798 for (i = 0; i < vCoordDim; ++i)
799 {
800 normal[i][0] = df[3 * i][0] + df[3 * i + 2][0];
801 }
802 break;
803 }
804 case 3:
805 {
806 for (i = 0; i < vCoordDim; ++i)
807 {
808 normal[i][0] = df[3 * i + 1][0] + df[3 * i + 2][0];
809 }
810 break;
811 }
812 case 4:
813 {
814 for (i = 0; i < vCoordDim; ++i)
815 {
816 normal[i][0] = -df[3 * i][0];
817 }
818 break;
819 }
820 default:
821 ASSERTL0(false, "face is out of range (face < 4)");
822 }
823
824 // Normalise resulting vector.
825 fac = 0.0;
826 for (i = 0; i < vCoordDim; ++i)
827 {
828 fac += normal[i][0] * normal[i][0];
829 }
830 fac = 1.0 / sqrt(fac);
831
832 Vmath::Fill(nqb, fac, length, 1);
833
834 for (i = 0; i < vCoordDim; ++i)
835 {
836 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
837 }
838 }
839 else
840 {
841 // Set up deformed normals.
842 int j, k;
843
844 int nq0 = ptsKeys[0].GetNumPoints();
845 int nq1 = ptsKeys[1].GetNumPoints();
846 int nq2 = ptsKeys[2].GetNumPoints();
847 int nq01 = nq0 * nq1;
848 int nqtot;
849
850 // Determine number of quadrature points on the face.
851 if (face == 0)
852 {
853 nqtot = nq0 * nq1;
854 }
855 else if (face == 1 || face == 3)
856 {
857 nqtot = nq0 * nq2;
858 }
859 else
860 {
861 nqtot = nq1 * nq2;
862 }
863
864 LibUtilities::PointsKey points0;
865 LibUtilities::PointsKey points1;
866
867 Array<OneD, NekDouble> faceJac(nqtot);
868 Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
869
870 // Extract Jacobian along face and recover local derivatives
871 // (dx/dr) for polynomial interpolation by multiplying m_gmat by
872 // jacobian
873 switch (face)
874 {
875 case 0:
876 {
877 for (j = 0; j < nq01; ++j)
878 {
879 normals[j] = -df[2][j] * jac[j];
880 normals[nqtot + j] = -df[5][j] * jac[j];
881 normals[2 * nqtot + j] = -df[8][j] * jac[j];
882 faceJac[j] = jac[j];
883 }
884
885 points0 = ptsKeys[0];
886 points1 = ptsKeys[1];
887 break;
888 }
889
890 case 1:
891 {
892 for (j = 0; j < nq0; ++j)
893 {
894 for (k = 0; k < nq2; ++k)
895 {
896 int tmp = j + nq01 * k;
897 normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
898 normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
899 normals[2 * nqtot + j + k * nq0] =
900 -df[7][tmp] * jac[tmp];
901 faceJac[j + k * nq0] = jac[tmp];
902 }
903 }
904
905 points0 = ptsKeys[0];
906 points1 = ptsKeys[2];
907 break;
908 }
909
910 case 2:
911 {
912 for (j = 0; j < nq1; ++j)
913 {
914 for (k = 0; k < nq2; ++k)
915 {
916 int tmp = nq0 - 1 + nq0 * j + nq01 * k;
917 normals[j + k * nq1] =
918 (df[0][tmp] + df[2][tmp]) * jac[tmp];
919 normals[nqtot + j + k * nq1] =
920 (df[3][tmp] + df[5][tmp]) * jac[tmp];
921 normals[2 * nqtot + j + k * nq1] =
922 (df[6][tmp] + df[8][tmp]) * jac[tmp];
923 faceJac[j + k * nq1] = jac[tmp];
924 }
925 }
926
927 points0 = ptsKeys[1];
928 points1 = ptsKeys[2];
929 break;
930 }
931
932 case 3:
933 {
934 for (j = 0; j < nq0; ++j)
935 {
936 for (k = 0; k < nq2; ++k)
937 {
938 int tmp = nq0 * (nq1 - 1) + j + nq01 * k;
939 normals[j + k * nq0] =
940 (df[1][tmp] + df[2][tmp]) * jac[tmp];
941 normals[nqtot + j + k * nq0] =
942 (df[4][tmp] + df[5][tmp]) * jac[tmp];
943 normals[2 * nqtot + j + k * nq0] =
944 (df[7][tmp] + df[8][tmp]) * jac[tmp];
945 faceJac[j + k * nq0] = jac[tmp];
946 }
947 }
948
949 points0 = ptsKeys[0];
950 points1 = ptsKeys[2];
951 break;
952 }
953
954 case 4:
955 {
956 for (j = 0; j < nq1; ++j)
957 {
958 for (k = 0; k < nq2; ++k)
959 {
960 int tmp = j * nq0 + nq01 * k;
961 normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
962 normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
963 normals[2 * nqtot + j + k * nq1] =
964 -df[6][tmp] * jac[tmp];
965 faceJac[j + k * nq1] = jac[tmp];
966 }
967 }
968
969 points0 = ptsKeys[1];
970 points1 = ptsKeys[2];
971 break;
972 }
973
974 default:
975 ASSERTL0(false, "face is out of range (face < 4)");
976 }
977
978 Array<OneD, NekDouble> work(nq_face, 0.0);
979 // Interpolate Jacobian and invert
980 LibUtilities::Interp2D(points0, points1, faceJac,
981 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
982 work);
983 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
984
985 // Interpolate normal and multiply by inverse Jacobian.
986 for (i = 0; i < vCoordDim; ++i)
987 {
988 LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
989 tobasis0.GetPointsKey(),
990 tobasis1.GetPointsKey(), &normal[i][0]);
991 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
992 }
993
994 // Normalise to obtain unit normals.
995 Vmath::Zero(nq_face, work, 1);
996 for (i = 0; i < GetCoordim(); ++i)
997 {
998 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
999 }
1000
1001 Vmath::Vsqrt(nq_face, work, 1, work, 1);
1002 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
1003
1004 Vmath::Vcopy(nqb, work, 1, length, 1);
1005
1006 for (i = 0; i < GetCoordim(); ++i)
1007 {
1008 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
1009 }
1010 }
1011}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:276
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:286
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:167
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1, bool UseGLL=false) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:301
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:101
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:60
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.hpp:154
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:285

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetTraceBasisKey(), Nektar::LibUtilities::Interp2D(), Nektar::LocalRegions::Expansion::m_elmtBndNormDirElmtLen, Nektar::LocalRegions::Expansion::m_traceNormals, Vmath::Sdiv(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::PyrExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 1065 of file PyrExp.cpp.

1066{
1067 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1068 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1069 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1072
1073 return tmp->GetStdMatrix(mkey);
1074}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< StdPyrExp > StdPyrExpSharedPtr
Definition: StdPyrExp.h:214

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_DropLocMatrix()

void Nektar::LocalRegions::PyrExp::v_DropLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1081 of file PyrExp.cpp.

1082{
1083 m_matrixManager.DeleteObject(mkey);
1084}

References m_matrixManager.

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::PyrExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1091 of file PyrExp.cpp.

1092{
1093 m_staticCondMatrixManager.DeleteObject(mkey);
1094}

References m_staticCondMatrixManager.

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::PyrExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 541 of file PyrExp.cpp.

545{
546 int data_order0 = nummodes[mode_offset];
547 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
548 int data_order1 = nummodes[mode_offset + 1];
549 int order1 = m_base[1]->GetNumModes();
550 int fillorder1 = min(order1, data_order1);
551 int data_order2 = nummodes[mode_offset + 2];
552 int order2 = m_base[2]->GetNumModes();
553 int fillorder2 = min(order2, data_order2);
554
555 // Check if not same order or basis and if not make temp
556 // element to read in data
557 if (fromType[0] != m_base[0]->GetBasisType() ||
558 fromType[1] != m_base[1]->GetBasisType() ||
559 fromType[2] != m_base[2]->GetBasisType() || data_order0 != fillorder0 ||
560 data_order1 != fillorder1 || data_order2 != fillorder2)
561 {
562 // Construct a pyr with the appropriate basis type at our
563 // quadrature points, and one more to do a forwards
564 // transform. We can then copy the output to coeffs.
565 StdRegions::StdPyrExp tmpPyr(
566 LibUtilities::BasisKey(fromType[0], data_order0,
567 m_base[0]->GetPointsKey()),
568 LibUtilities::BasisKey(fromType[1], data_order1,
569 m_base[1]->GetPointsKey()),
570 LibUtilities::BasisKey(fromType[2], data_order2,
571 m_base[2]->GetPointsKey()));
572
573 StdRegions::StdPyrExp tmpPyr2(m_base[0]->GetBasisKey(),
574 m_base[1]->GetBasisKey(),
575 m_base[2]->GetBasisKey());
576
577 Array<OneD, const NekDouble> tmpData(tmpPyr.GetNcoeffs(), data);
578 Array<OneD, NekDouble> tmpBwd(tmpPyr2.GetTotPoints());
579 Array<OneD, NekDouble> tmpOut(tmpPyr2.GetNcoeffs());
580
581 tmpPyr.BwdTrans(tmpData, tmpBwd);
582 tmpPyr2.FwdTrans(tmpBwd, tmpOut);
583 Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
584 }
585 else
586 {
587 Vmath::Vcopy(m_ncoeffs, &data[0], 1, coeffs, 1);
588 }
589}
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

◆ v_FwdTrans()

void Nektar::LocalRegions::PyrExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs.

Inputs:

  • inarray: array of physical quadrature points to be transformed

Outputs:

  • (this)->_coeffs: updated array of expansion coefficients.

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 221 of file PyrExp.cpp.

223{
224 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
225 m_base[2]->Collocation())
226 {
227 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
228 }
229 else
230 {
231 v_IProductWRTBase(inarray, outarray);
232
233 // get Mass matrix inverse
234 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
235 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
236
237 // copy inarray in case inarray == outarray
238 DNekVec in(m_ncoeffs, outarray);
239 DNekVec out(m_ncoeffs, outarray, eWrapper);
240
241 out = (*matsys) * in;
242 }
243}
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition: PyrExp.cpp:276
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:124
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:370
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:48

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::PyrExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 1044 of file PyrExp.cpp.

1045{
1046 DNekMatSharedPtr returnval;
1047
1048 switch (mkey.GetMatrixType())
1049 {
1056 returnval = Expansion3D::v_GenMatrix(mkey);
1057 break;
1058 default:
1059 returnval = StdPyrExp::v_GenMatrix(mkey);
1060 }
1061
1062 return returnval;
1063}
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

◆ v_GetCoord()

void Nektar::LocalRegions::PyrExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 517 of file PyrExp.cpp.

519{
520 int i;
521
522 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
523 Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
524 "Local coordinates are not in region [-1,1]");
525
526 // m_geom->FillGeom(); // TODO: implement FillGeom()
527
528 for (i = 0; i < m_geom->GetCoordim(); ++i)
529 {
530 coords[i] = m_geom->GetCoord(i, Lcoords);
531 }
532}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:273

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_GetCoords()

void Nektar::LocalRegions::PyrExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 534 of file PyrExp.cpp.

537{
538 Expansion::v_GetCoords(coords_1, coords_2, coords_3);
539}
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:534

References Nektar::LocalRegions::Expansion::v_GetCoords().

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PyrExp::v_GetLinStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 500 of file PyrExp.cpp.

501{
502 LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(), 2,
503 m_base[0]->GetPointsKey());
504 LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(), 2,
505 m_base[1]->GetPointsKey());
506 LibUtilities::BasisKey bkey2(m_base[2]->GetBasisType(), 2,
507 m_base[2]->GetPointsKey());
508
510 bkey2);
511}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::PyrExp::v_GetLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1076 of file PyrExp.cpp.

1077{
1078 return m_matrixManager[mkey];
1079}

References m_matrixManager.

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::PyrExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1086 of file PyrExp.cpp.

1087{
1088 return m_staticCondMatrixManager[mkey];
1089}

References m_staticCondMatrixManager.

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PyrExp::v_GetStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 493 of file PyrExp.cpp.

494{
496 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
497 m_base[2]->GetBasisKey());
498}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePhysMap()

void Nektar::LocalRegions::PyrExp::v_GetTracePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 632 of file PyrExp.cpp.

633{
634 int nquad0 = m_base[0]->GetNumPoints();
635 int nquad1 = m_base[1]->GetNumPoints();
636 int nquad2 = m_base[2]->GetNumPoints();
637
638 int nq0 = 0;
639 int nq1 = 0;
640
641 switch (face)
642 {
643 case 0:
644 nq0 = nquad0;
645 nq1 = nquad1;
646 if (outarray.size() != nq0 * nq1)
647 {
648 outarray = Array<OneD, int>(nq0 * nq1);
649 }
650
651 // Directions A and B positive
652 for (int i = 0; i < nquad0 * nquad1; ++i)
653 {
654 outarray[i] = i;
655 }
656
657 break;
658 case 1:
659 nq0 = nquad0;
660 nq1 = nquad2;
661 if (outarray.size() != nq0 * nq1)
662 {
663 outarray = Array<OneD, int>(nq0 * nq1);
664 }
665
666 // Direction A and B positive
667 for (int k = 0; k < nquad2; k++)
668 {
669 for (int i = 0; i < nquad0; ++i)
670 {
671 outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
672 }
673 }
674
675 break;
676 case 2:
677 nq0 = nquad1;
678 nq1 = nquad2;
679 if (outarray.size() != nq0 * nq1)
680 {
681 outarray = Array<OneD, int>(nq0 * nq1);
682 }
683
684 // Directions A and B positive
685 for (int j = 0; j < nquad1 * nquad2; ++j)
686 {
687 outarray[j] = nquad0 - 1 + j * nquad0;
688 }
689 break;
690 case 3:
691
692 nq0 = nquad0;
693 nq1 = nquad2;
694 if (outarray.size() != nq0 * nq1)
695 {
696 outarray = Array<OneD, int>(nq0 * nq1);
697 }
698
699 // Direction A and B positive
700 for (int k = 0; k < nquad2; k++)
701 {
702 for (int i = 0; i < nquad0; ++i)
703 {
704 outarray[k * nquad0 + i] =
705 nquad0 * (nquad1 - 1) + (nquad0 * nquad1 * k) + i;
706 }
707 }
708 break;
709 case 4:
710 nq0 = nquad1;
711 nq1 = nquad2;
712
713 if (outarray.size() != nq0 * nq1)
714 {
715 outarray = Array<OneD, int>(nq0 * nq1);
716 }
717
718 // Directions A and B positive
719 for (int j = 0; j < nquad1 * nquad2; ++j)
720 {
721 outarray[j] = j * nquad0;
722 }
723 break;
724 default:
725 ASSERTL0(false, "face value (> 4) is out of range");
726 break;
727 }
728}

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_Integral()

NekDouble Nektar::LocalRegions::PyrExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrate the physical point list inarray over pyramidic region and return the value.

Inputs:

  • inarray: definition of function to be returned at quadrature point of expansion.

Outputs:

  • returns \(\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1, \eta_2, \eta_3) J[i,j,k] d \bar \eta_1 d \eta_2 d \eta_3\)
    \(= \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1} u(\bar \eta_{1i}^{0,0}, \eta_{2j}^{0,0},\eta_{3k}^{2,0})w_{i}^{0,0} w_{j}^{0,0} \hat w_{k}^{2,0} \)
    where \(inarray[i,j, k] = u(\bar \eta_{1i},\eta_{2j}, \eta_{3k}) \),
    \(\hat w_{k}^{2,0} = \frac {w^{2,0}} {2} \)
    and \( J[i,j,k] \) is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 94 of file PyrExp.cpp.

95{
96 int nquad0 = m_base[0]->GetNumPoints();
97 int nquad1 = m_base[1]->GetNumPoints();
98 int nquad2 = m_base[2]->GetNumPoints();
99 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
100 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
101
102 // multiply inarray with Jacobian
103 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
104 {
105 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
106 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
107 }
108 else
109 {
110 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
111 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
112 }
113
114 // call StdPyrExp version;
115 return StdPyrExp::v_Integral(tmp);
116}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase()

void Nektar::LocalRegions::PyrExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray:

\( \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\bar \eta_{1i}) \psi_{q}^{a} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\bar \eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} \)
where

\(\phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1) \psi_{q}^a (\eta_2) \psi_{pqr}^c (\eta_3) \)
which can be implemented as
\(f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \)
\( g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} \)
\( (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} \)

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 276 of file PyrExp.cpp.

278{
279 v_IProductWRTBase_SumFac(inarray, outarray);
280}
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: PyrExp.cpp:282

References v_IProductWRTBase_SumFac().

Referenced by v_FwdTrans().

◆ v_IProductWRTBase_SumFac()

void Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 282 of file PyrExp.cpp.

285{
286 const int nquad0 = m_base[0]->GetNumPoints();
287 const int nquad1 = m_base[1]->GetNumPoints();
288 const int nquad2 = m_base[2]->GetNumPoints();
289 const int order0 = m_base[0]->GetNumModes();
290 const int order1 = m_base[1]->GetNumModes();
291
292 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
293
294 if (multiplybyweights)
295 {
296 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
297
298 MultiplyByQuadratureMetric(inarray, tmp);
299
301 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
302 tmp, outarray, wsp, true, true, true);
303 }
304 else
305 {
307 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
308 inarray, outarray, wsp, true, true, true);
309 }
310}
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \).

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product \(\phi_{pqr}(\eta_1,\eta_2,\eta_3) = \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\), this yields the result

\[ I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j} \frac{\partial \eta_j}{\partial x_i}\right) \]

In the pyramid element, we must also incorporate a second set of geometric factors which incorporate the collapsed co-ordinate system, so that

\[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3 \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial x_i} \]

These derivatives can be found on p152 of Sherwin & Karniadakis.

Parameters
dirDirection in which to take the derivative.
inarrayThe function \( u \).
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 342 of file PyrExp.cpp.

345{
346 v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
347}
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: PyrExp.cpp:349

References v_IProductWRTDerivBase_SumFac().

◆ v_IProductWRTDerivBase_SumFac()

void Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 349 of file PyrExp.cpp.

352{
353 const int nquad0 = m_base[0]->GetNumPoints();
354 const int nquad1 = m_base[1]->GetNumPoints();
355 const int nquad2 = m_base[2]->GetNumPoints();
356 const int order0 = m_base[0]->GetNumModes();
357 const int order1 = m_base[1]->GetNumModes();
358 const int nqtot = nquad0 * nquad1 * nquad2;
359
360 Array<OneD, NekDouble> tmp1(nqtot);
361 Array<OneD, NekDouble> tmp2(nqtot);
362 Array<OneD, NekDouble> tmp3(nqtot);
363 Array<OneD, NekDouble> tmp4(nqtot);
364 Array<OneD, NekDouble> tmp6(m_ncoeffs);
365 Array<OneD, NekDouble> wsp(
366 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
367
368 MultiplyByQuadratureMetric(inarray, tmp1);
369
370 Array<OneD, Array<OneD, NekDouble>> tmp2D{3};
371 tmp2D[0] = tmp2;
372 tmp2D[1] = tmp3;
373 tmp2D[2] = tmp4;
374
375 PyrExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
376
377 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
378 m_base[2]->GetBdata(), tmp2, outarray, wsp,
379 false, true, true);
380
381 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
382 m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
383 false, true);
384
385 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
386
387 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
388 m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
389 true, false);
390
391 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
392}
void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: PyrExp.cpp:394

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), v_AlignVectorToCollapsedDir(), and Vmath::Vadd().

Referenced by v_IProductWRTDerivBase().

◆ v_LaplacianMatrixOp_MatFree_Kernel()

void Nektar::LocalRegions::PyrExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
overrideprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1276 of file PyrExp.cpp.

1279{
1280 // This implementation is only valid when there are no coefficients
1281 // associated to the Laplacian operator
1282 if (m_metrics.count(eMetricLaplacian00) == 0)
1283 {
1285 }
1286
1287 int nquad0 = m_base[0]->GetNumPoints();
1288 int nquad1 = m_base[1]->GetNumPoints();
1289 int nq2 = m_base[2]->GetNumPoints();
1290 int nqtot = nquad0 * nquad1 * nq2;
1291
1292 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1293 ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1294
1295 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1296 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1297 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1298 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1299 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1300 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1301 const Array<OneD, const NekDouble> &metric00 =
1302 m_metrics[eMetricLaplacian00];
1303 const Array<OneD, const NekDouble> &metric01 =
1304 m_metrics[eMetricLaplacian01];
1305 const Array<OneD, const NekDouble> &metric02 =
1306 m_metrics[eMetricLaplacian02];
1307 const Array<OneD, const NekDouble> &metric11 =
1308 m_metrics[eMetricLaplacian11];
1309 const Array<OneD, const NekDouble> &metric12 =
1310 m_metrics[eMetricLaplacian12];
1311 const Array<OneD, const NekDouble> &metric22 =
1312 m_metrics[eMetricLaplacian22];
1313
1314 // Allocate temporary storage
1315 Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1316 Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1317 Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1318 Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1319 Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1320 Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1321
1322 // LAPLACIAN MATRIX OPERATION
1323 // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1324 // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1325 // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1326 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1327
1328 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1329 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1330 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1331 // especially for this purpose
1332 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1333 &wsp1[0], 1, &wsp3[0], 1);
1334 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1335 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1336 &wsp1[0], 1, &wsp4[0], 1);
1337 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1338 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1339 &wsp1[0], 1, &wsp5[0], 1);
1340 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1341
1342 // outarray = m = (D_xi1 * B)^T * k
1343 // wsp1 = n = (D_xi2 * B)^T * l
1344 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1345 false, true, true);
1346 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1347 false, true);
1348 Vmath::Vadd(m_ncoeffs, wsp2.data(), 1, outarray.data(), 1, outarray.data(),
1349 1);
1350 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1351 true, false);
1352 Vmath::Vadd(m_ncoeffs, wsp2.data(), 1, outarray.data(), 1, outarray.data(),
1353 1);
1354}

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::StdRegions::StdExpansion::m_base, and Nektar::LocalRegions::Expansion::m_metrics.

◆ v_NormalTraceDerivFactors()

void Nektar::LocalRegions::PyrExp::v_NormalTraceDerivFactors ( Array< OneD, Array< OneD, NekDouble > > &  d0factors,
Array< OneD, Array< OneD, NekDouble > > &  d1factors,
Array< OneD, Array< OneD, NekDouble > > &  d2factors 
)
overrideprotectedvirtual

: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1361 of file PyrExp.cpp.

1365{
1366 int nquad0 = GetNumPoints(0);
1367 int nquad1 = GetNumPoints(1);
1368 int nquad2 = GetNumPoints(2);
1369
1370 const Array<TwoD, const NekDouble> &df =
1371 m_metricinfo->GetDerivFactors(GetPointsKeys());
1372
1373 if (d0factors.size() != 5)
1374 {
1375 d0factors = Array<OneD, Array<OneD, NekDouble>>(5);
1376 d1factors = Array<OneD, Array<OneD, NekDouble>>(5);
1377 d2factors = Array<OneD, Array<OneD, NekDouble>>(5);
1378 }
1379
1380 if (d0factors[0].size() != nquad0 * nquad1)
1381 {
1382 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1383 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1384 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1385 }
1386
1387 if (d0factors[1].size() != nquad0 * nquad2)
1388 {
1389 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1390 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1391 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1392 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1393 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1394 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1395 }
1396
1397 if (d0factors[2].size() != nquad1 * nquad2)
1398 {
1399 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1400 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1401 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1402 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1403 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1404 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1405 }
1406
1407 // Outwards normals
1408 const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1409 GetTraceNormal(0);
1410 const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1411 GetTraceNormal(1);
1412 const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1413 GetTraceNormal(2);
1414 const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1415 GetTraceNormal(3);
1416 const Array<OneD, const Array<OneD, NekDouble>> &normal_4 =
1417 GetTraceNormal(4);
1418
1419 int ncoords = normal_0.size();
1420
1421 // first gather together standard cartesian inner products
1422 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1423 {
1424 // face 0
1425 for (int i = 0; i < nquad0 * nquad1; ++i)
1426 {
1427 d0factors[0][i] = df[0][i] * normal_0[0][i];
1428 d1factors[0][i] = df[1][i] * normal_0[0][i];
1429 d2factors[0][i] = df[2][i] * normal_0[0][i];
1430 }
1431
1432 for (int n = 1; n < ncoords; ++n)
1433 {
1434 for (int i = 0; i < nquad0 * nquad1; ++i)
1435 {
1436 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1437 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1438 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1439 }
1440 }
1441
1442 // faces 1 and 3
1443 for (int j = 0; j < nquad2; ++j)
1444 {
1445 for (int i = 0; i < nquad0; ++i)
1446 {
1447 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1448 normal_1[0][j * nquad0 + i];
1449 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1450 normal_1[0][j * nquad0 + i];
1451 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1452 normal_1[0][j * nquad0 + i];
1453
1454 d0factors[3][j * nquad0 + i] =
1455 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1456 normal_3[0][j * nquad0 + i];
1457 d1factors[3][j * nquad0 + i] =
1458 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1459 normal_3[0][j * nquad0 + i];
1460 d2factors[3][j * nquad0 + i] =
1461 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1462 normal_3[0][j * nquad0 + i];
1463 }
1464 }
1465
1466 for (int n = 1; n < ncoords; ++n)
1467 {
1468 for (int j = 0; j < nquad2; ++j)
1469 {
1470 for (int i = 0; i < nquad0; ++i)
1471 {
1472 d0factors[1][j * nquad0 + i] +=
1473 df[3 * n][j * nquad0 * nquad1 + i] *
1474 normal_1[0][j * nquad0 + i];
1475 d1factors[1][j * nquad0 + i] +=
1476 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1477 normal_1[0][j * nquad0 + i];
1478 d2factors[1][j * nquad0 + i] +=
1479 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1480 normal_1[0][j * nquad0 + i];
1481
1482 d0factors[3][j * nquad0 + i] +=
1483 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1484 normal_3[0][j * nquad0 + i];
1485 d1factors[3][j * nquad0 + i] +=
1486 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1487 normal_3[0][j * nquad0 + i];
1488 d2factors[3][j * nquad0 + i] +=
1489 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1490 normal_3[0][j * nquad0 + i];
1491 }
1492 }
1493 }
1494
1495 // faces 2 and 4
1496 for (int j = 0; j < nquad2; ++j)
1497 {
1498 for (int i = 0; i < nquad1; ++i)
1499 {
1500 d0factors[2][j * nquad1 + i] =
1501 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1502 normal_2[0][j * nquad1 + i];
1503 d1factors[2][j * nquad1 + i] =
1504 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1505 normal_2[0][j * nquad1 + i];
1506 d2factors[2][j * nquad1 + i] =
1507 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1508 normal_2[0][j * nquad1 + i];
1509
1510 d0factors[4][j * nquad1 + i] =
1511 df[0][j * nquad0 * nquad1 + i * nquad0] *
1512 normal_4[0][j * nquad1 + i];
1513 d1factors[4][j * nquad1 + i] =
1514 df[1][j * nquad0 * nquad1 + i * nquad0] *
1515 normal_4[0][j * nquad1 + i];
1516 d2factors[4][j * nquad1 + i] =
1517 df[2][j * nquad0 * nquad1 + i * nquad0] *
1518 normal_4[0][j * nquad1 + i];
1519 }
1520 }
1521
1522 for (int n = 1; n < ncoords; ++n)
1523 {
1524 for (int j = 0; j < nquad2; ++j)
1525 {
1526 for (int i = 0; i < nquad1; ++i)
1527 {
1528 d0factors[2][j * nquad1 + i] +=
1529 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1530 normal_2[n][j * nquad1 + i];
1531 d1factors[2][j * nquad1 + i] +=
1532 df[3 * n + 1]
1533 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1534 normal_2[n][j * nquad1 + i];
1535 d2factors[2][j * nquad1 + i] +=
1536 df[3 * n + 2]
1537 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1538 normal_2[n][j * nquad1 + i];
1539
1540 d0factors[4][j * nquad1 + i] +=
1541 df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1542 normal_4[n][j * nquad1 + i];
1543 d1factors[4][j * nquad1 + i] +=
1544 df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1545 normal_4[n][j * nquad1 + i];
1546 d2factors[4][j * nquad1 + i] +=
1547 df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1548 normal_4[n][j * nquad1 + i];
1549 }
1550 }
1551 }
1552 }
1553 else
1554 {
1555 // Face 0
1556 for (int i = 0; i < nquad0 * nquad1; ++i)
1557 {
1558 d0factors[0][i] = df[0][0] * normal_0[0][i];
1559 d1factors[0][i] = df[1][0] * normal_0[0][i];
1560 d2factors[0][i] = df[2][0] * normal_0[0][i];
1561 }
1562
1563 for (int n = 1; n < ncoords; ++n)
1564 {
1565 for (int i = 0; i < nquad0 * nquad1; ++i)
1566 {
1567 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1568 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1569 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1570 }
1571 }
1572
1573 // faces 1 and 3
1574 for (int i = 0; i < nquad0 * nquad2; ++i)
1575 {
1576 d0factors[1][i] = df[0][0] * normal_1[0][i];
1577 d0factors[3][i] = df[0][0] * normal_3[0][i];
1578
1579 d1factors[1][i] = df[1][0] * normal_1[0][i];
1580 d1factors[3][i] = df[1][0] * normal_3[0][i];
1581
1582 d2factors[1][i] = df[2][0] * normal_1[0][i];
1583 d2factors[3][i] = df[2][0] * normal_3[0][i];
1584 }
1585
1586 for (int n = 1; n < ncoords; ++n)
1587 {
1588 for (int i = 0; i < nquad0 * nquad2; ++i)
1589 {
1590 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1591 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1592
1593 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1594 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1595
1596 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1597 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1598 }
1599 }
1600
1601 // faces 2 and 4
1602 for (int i = 0; i < nquad1 * nquad2; ++i)
1603 {
1604 d0factors[2][i] = df[0][0] * normal_2[0][i];
1605 d0factors[4][i] = df[0][0] * normal_4[0][i];
1606
1607 d1factors[2][i] = df[1][0] * normal_2[0][i];
1608 d1factors[4][i] = df[1][0] * normal_4[0][i];
1609
1610 d2factors[2][i] = df[2][0] * normal_2[0][i];
1611 d2factors[4][i] = df[2][0] * normal_4[0][i];
1612 }
1613
1614 for (int n = 1; n < ncoords; ++n)
1615 {
1616 for (int i = 0; i < nquad1 * nquad2; ++i)
1617 {
1618 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1619 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1620
1621 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1622 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1623
1624 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1625 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1626 }
1627 }
1628 }
1629}
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:251

◆ v_PhysDeriv()

void Nektar::LocalRegions::PyrExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  u_physical,
Array< OneD, NekDouble > &  out_dxi1,
Array< OneD, NekDouble > &  out_dxi2,
Array< OneD, NekDouble > &  out_dxi3 
)
overrideprotectedvirtual

Calculate the derivative of the physical points.

The derivative is evaluated at the nodal physical points. Derivatives with respect to the local Cartesian coordinates.

\(\begin{Bmatrix} \frac {\partial} {\partial \xi_1} \\ \frac {\partial} {\partial \xi_2} \\ \frac {\partial} {\partial \xi_3} \end{Bmatrix} = \begin{Bmatrix} \frac 2 {(1-\eta_3)} \frac \partial {\partial \bar \eta_1} \\ \frac {\partial} {\partial \xi_2} \ \ \frac {(1 + \bar \eta_1)} {(1 - \eta_3)} \frac \partial {\partial \bar \eta_1} + \frac {\partial} {\partial \eta_3} \end{Bmatrix}\)

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 122 of file PyrExp.cpp.

126{
127 int nquad0 = m_base[0]->GetNumPoints();
128 int nquad1 = m_base[1]->GetNumPoints();
129 int nquad2 = m_base[2]->GetNumPoints();
130 Array<TwoD, const NekDouble> gmat =
131 m_metricinfo->GetDerivFactors(GetPointsKeys());
132 Array<OneD, NekDouble> diff0(nquad0 * nquad1 * nquad2);
133 Array<OneD, NekDouble> diff1(nquad0 * nquad1 * nquad2);
134 Array<OneD, NekDouble> diff2(nquad0 * nquad1 * nquad2);
135
136 StdPyrExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
137
138 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
139 {
140 if (out_d0.size())
141 {
142 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[0][0], 1, &diff0[0], 1,
143 &out_d0[0], 1);
144 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[1][0], 1, &diff1[0], 1,
145 &out_d0[0], 1, &out_d0[0], 1);
146 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[2][0], 1, &diff2[0], 1,
147 &out_d0[0], 1, &out_d0[0], 1);
148 }
149
150 if (out_d1.size())
151 {
152 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[3][0], 1, &diff0[0], 1,
153 &out_d1[0], 1);
154 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[4][0], 1, &diff1[0], 1,
155 &out_d1[0], 1, &out_d1[0], 1);
156 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[5][0], 1, &diff2[0], 1,
157 &out_d1[0], 1, &out_d1[0], 1);
158 }
159
160 if (out_d2.size())
161 {
162 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[6][0], 1, &diff0[0], 1,
163 &out_d2[0], 1);
164 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[7][0], 1, &diff1[0], 1,
165 &out_d2[0], 1, &out_d2[0], 1);
166 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[8][0], 1, &diff2[0], 1,
167 &out_d2[0], 1, &out_d2[0], 1);
168 }
169 }
170 else // regular geometry
171 {
172 if (out_d0.size())
173 {
174 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[0][0], &diff0[0], 1,
175 &out_d0[0], 1);
176 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[1][0], &diff1[0], 1,
177 &out_d0[0], 1);
178 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[2][0], &diff2[0], 1,
179 &out_d0[0], 1);
180 }
181
182 if (out_d1.size())
183 {
184 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[3][0], &diff0[0], 1,
185 &out_d1[0], 1);
186 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[4][0], &diff1[0], 1,
187 &out_d1[0], 1);
188 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[5][0], &diff2[0], 1,
189 &out_d1[0], 1);
190 }
191
192 if (out_d2.size())
193 {
194 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[6][0], &diff0[0], 1,
195 &out_d2[0], 1);
196 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[7][0], &diff1[0], 1,
197 &out_d2[0], 1);
198 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[8][0], &diff2[0], 1,
199 &out_d2[0], 1);
200 }
201 }
202}
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135

References Blas::Daxpy(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_PhysEvalFirstDeriv()

NekDouble Nektar::LocalRegions::PyrExp::v_PhysEvalFirstDeriv ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 617 of file PyrExp.cpp.

621{
622 Array<OneD, NekDouble> Lcoord(3);
623 ASSERTL0(m_geom, "m_geom not defined");
624 m_geom->GetLocCoords(coord, Lcoord);
625 return StdPyrExp::v_PhysEvalFirstDeriv(Lcoord, inarray, firstOrderDerivs);
626}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate()

NekDouble Nektar::LocalRegions::PyrExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 604 of file PyrExp.cpp.

606{
607 Array<OneD, NekDouble> Lcoord(3);
608
609 ASSERTL0(m_geom, "m_geom not defined");
610
611 // TODO: check GetLocCoords()
612 m_geom->GetLocCoords(coord, Lcoord);
613
614 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
615}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::PyrExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 596 of file PyrExp.cpp.

599{
600 // Evaluate point in local coordinates.
601 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
602}

◆ v_SVVLaplacianFilter()

void Nektar::LocalRegions::PyrExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 1013 of file PyrExp.cpp.

1015{
1016 int nq = GetTotPoints();
1017
1018 // Calculate sqrt of the Jacobian
1019 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
1020 Array<OneD, NekDouble> sqrt_jac(nq);
1021 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1022 {
1023 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1024 }
1025 else
1026 {
1027 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1028 }
1029
1030 // Multiply array by sqrt(Jac)
1031 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1032
1033 // Apply std region filter
1034 StdPyrExp::v_SVVLaplacianFilter(array, mkey);
1035
1036 // Divide by sqrt(Jac)
1037 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1038}
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, tinysimd::sqrt(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::PyrExp::m_matrixManager
private

Definition at line 174 of file PyrExp.h.

Referenced by v_DropLocMatrix(), v_FwdTrans(), and v_GetLocMatrix().

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::PyrExp::m_staticCondMatrixManager
private

Definition at line 176 of file PyrExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().