Nektar++
HexExp.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: HexExp.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Methods for Hex expansion in local regoins
32//
33///////////////////////////////////////////////////////////////////////////////
34
37#include <LocalRegions/HexExp.h>
39
40using namespace std;
41
43{
44/**
45 * @class HexExp
46 * Defines a hexahedral local expansion.
47 */
48
49/**
50 * \brief Constructor using BasisKey class for quadrature points and
51 * order definition
52 *
53 * @param Ba Basis key for first coordinate.
54 * @param Bb Basis key for second coordinate.
55 * @param Bc Basis key for third coordinate.
56 */
58 const LibUtilities::BasisKey &Bb,
59 const LibUtilities::BasisKey &Bc,
61 : StdExpansion(Ba.GetNumModes() * Bb.GetNumModes() * Bc.GetNumModes(), 3,
62 Ba, Bb, Bc),
63 StdExpansion3D(Ba.GetNumModes() * Bb.GetNumModes() * Bc.GetNumModes(), Ba,
64 Bb, Bc),
65 StdHexExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
66 m_matrixManager(
67 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
68 std::string("HexExpMatrix")),
69 m_staticCondMatrixManager(std::bind(&Expansion::CreateStaticCondMatrix,
70 this, std::placeholders::_1),
71 std::string("HexExpStaticCondMatrix"))
72{
73}
74
75/**
76 * \brief Copy Constructor
77 *
78 * @param T HexExp to copy.
79 */
81 : StdExpansion(T), StdExpansion3D(T), StdHexExp(T), Expansion(T),
82 Expansion3D(T), m_matrixManager(T.m_matrixManager),
83 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
84{
85}
86
87//-----------------------------
88// Integration Methods
89//-----------------------------
90/**
91 * \brief Integrate the physical point list \a inarray over region
92 *
93 * @param inarray definition of function to be returned at
94 * quadrature points of expansion.
95 * @returns \f$\int^1_{-1}\int^1_{-1} \int^1_{-1}
96 * u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 \f$
97 * where \f$inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) \f$
98 * and \f$ J[i,j,k] \f$ is the Jacobian evaluated at the quadrature
99 * point.
100 */
102{
103 int nquad0 = m_base[0]->GetNumPoints();
104 int nquad1 = m_base[1]->GetNumPoints();
105 int nquad2 = m_base[2]->GetNumPoints();
107 NekDouble returnVal;
108 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
109
110 // multiply inarray with Jacobian
111
112 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
113 {
114 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
115 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
116 }
117 else
118 {
119 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
120 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
121 }
122
123 // call StdHexExp version;
124 returnVal = StdHexExp::v_Integral(tmp);
125
126 return returnVal;
127}
128
129//-----------------------------
130// Differentiation Methods
131//-----------------------------
132/**
133 * \brief Calculate the derivative of the physical points
134 *
135 * For Hexahedral region can use the Tensor_Deriv function defined
136 * under StdExpansion.
137 * @param inarray Input array
138 * @param out_d0 Derivative of \a inarray in first direction.
139 * @param out_d1 Derivative of \a inarray in second direction.
140 * @param out_d2 Derivative of \a inarray in third direction.
141 */
146{
147 int nquad0 = m_base[0]->GetNumPoints();
148 int nquad1 = m_base[1]->GetNumPoints();
149 int nquad2 = m_base[2]->GetNumPoints();
150 int ntot = nquad0 * nquad1 * nquad2;
151
153 m_metricinfo->GetDerivFactors(GetPointsKeys());
157
158 StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
159
160 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
161 {
162 if (out_d0.size())
163 {
164 Vmath::Vmul(ntot, &df[0][0], 1, &Diff0[0], 1, &out_d0[0], 1);
165 Vmath::Vvtvp(ntot, &df[1][0], 1, &Diff1[0], 1, &out_d0[0], 1,
166 &out_d0[0], 1);
167 Vmath::Vvtvp(ntot, &df[2][0], 1, &Diff2[0], 1, &out_d0[0], 1,
168 &out_d0[0], 1);
169 }
170
171 if (out_d1.size())
172 {
173 Vmath::Vmul(ntot, &df[3][0], 1, &Diff0[0], 1, &out_d1[0], 1);
174 Vmath::Vvtvp(ntot, &df[4][0], 1, &Diff1[0], 1, &out_d1[0], 1,
175 &out_d1[0], 1);
176 Vmath::Vvtvp(ntot, &df[5][0], 1, &Diff2[0], 1, &out_d1[0], 1,
177 &out_d1[0], 1);
178 }
179
180 if (out_d2.size())
181 {
182 Vmath::Vmul(ntot, &df[6][0], 1, &Diff0[0], 1, &out_d2[0], 1);
183 Vmath::Vvtvp(ntot, &df[7][0], 1, &Diff1[0], 1, &out_d2[0], 1,
184 &out_d2[0], 1);
185 Vmath::Vvtvp(ntot, &df[8][0], 1, &Diff2[0], 1, &out_d2[0], 1,
186 &out_d2[0], 1);
187 }
188 }
189 else // regular geometry
190 {
191 if (out_d0.size())
192 {
193 Vmath::Smul(ntot, df[0][0], &Diff0[0], 1, &out_d0[0], 1);
194 Blas::Daxpy(ntot, df[1][0], &Diff1[0], 1, &out_d0[0], 1);
195 Blas::Daxpy(ntot, df[2][0], &Diff2[0], 1, &out_d0[0], 1);
196 }
197
198 if (out_d1.size())
199 {
200 Vmath::Smul(ntot, df[3][0], &Diff0[0], 1, &out_d1[0], 1);
201 Blas::Daxpy(ntot, df[4][0], &Diff1[0], 1, &out_d1[0], 1);
202 Blas::Daxpy(ntot, df[5][0], &Diff2[0], 1, &out_d1[0], 1);
203 }
204
205 if (out_d2.size())
206 {
207 Vmath::Smul(ntot, df[6][0], &Diff0[0], 1, &out_d2[0], 1);
208 Blas::Daxpy(ntot, df[7][0], &Diff1[0], 1, &out_d2[0], 1);
209 Blas::Daxpy(ntot, df[8][0], &Diff2[0], 1, &out_d2[0], 1);
210 }
211 }
212}
213
214/**
215 * \brief Calculate the derivative of the physical points in a single
216 * direction.
217 *
218 * @param dir Direction in which to compute derivative.
219 * Valid values are 0, 1, 2.
220 * @param inarray Input array.
221 * @param outarray Output array.
222 */
223void HexExp::v_PhysDeriv(const int dir,
224 const Array<OneD, const NekDouble> &inarray,
225 Array<OneD, NekDouble> &outarray)
226{
227 switch (dir)
228 {
229 case 0:
230 {
231 PhysDeriv(inarray, outarray, NullNekDouble1DArray,
233 }
234 break;
235 case 1:
236 {
237 PhysDeriv(inarray, NullNekDouble1DArray, outarray,
239 }
240 break;
241 case 2:
242 {
244 outarray);
245 }
246 break;
247 default:
248 {
249 ASSERTL1(false, "input dir is out of range");
250 }
251 break;
252 }
253}
254
256 const Array<OneD, const NekDouble> &inarray,
257 const Array<OneD, const NekDouble> &direction,
258 Array<OneD, NekDouble> &outarray)
259{
260
261 int shapedim = 3;
262 int nquad0 = m_base[0]->GetNumPoints();
263 int nquad1 = m_base[1]->GetNumPoints();
264 int nquad2 = m_base[2]->GetNumPoints();
265 int ntot = nquad0 * nquad1 * nquad2;
266
268 m_metricinfo->GetDerivFactors(GetPointsKeys());
272
273 StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
274
275 Array<OneD, Array<OneD, NekDouble>> dfdir(shapedim);
276 Expansion::ComputeGmatcdotMF(df, direction, dfdir);
277
278 Vmath::Vmul(ntot, &dfdir[0][0], 1, &Diff0[0], 1, &outarray[0], 1);
279 Vmath::Vvtvp(ntot, &dfdir[1][0], 1, &Diff1[0], 1, &outarray[0], 1,
280 &outarray[0], 1);
281 Vmath::Vvtvp(ntot, &dfdir[2][0], 1, &Diff2[0], 1, &outarray[0], 1,
282 &outarray[0], 1);
283}
284
285//-----------------------------
286// Transforms
287//-----------------------------
288
289/**
290 * \brief Forward transform from physical quadrature space stored in \a
291 * inarray and evaluate the expansion coefficients and store in
292 * \a (this)->_coeffs
293 *
294 * @param inarray Input array
295 * @param outarray Output array
296 */
298 Array<OneD, NekDouble> &outarray)
299{
300 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
301 m_base[2]->Collocation())
302 {
303 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
304 }
305 else
306 {
307 IProductWRTBase(inarray, outarray);
308
309 // get Mass matrix inverse
311 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
312
313 // copy inarray in case inarray == outarray
314 DNekVec in(m_ncoeffs, outarray);
315 DNekVec out(m_ncoeffs, outarray, eWrapper);
316
317 out = (*matsys) * in;
318 }
319}
320
321//-----------------------------
322// Inner product functions
323//-----------------------------
324
325/**
326 * \brief Calculate the inner product of inarray with respect to the
327 * elements basis.
328 *
329 * @param inarray Input array of physical space data.
330 * @param outarray Output array of data.
331 */
333 Array<OneD, NekDouble> &outarray)
334{
335 HexExp::v_IProductWRTBase_SumFac(inarray, outarray);
336}
337
338/**
339 * \brief Calculate the inner product of inarray with respect to the
340 * given basis B = base0 * base1 * base2.
341 *
342 * \f$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta}
343 * & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2}
344 * \psi_{p}^{a} (\xi_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{r}^{a}
345 * (\xi_{3k}) w_i w_j w_k u(\xi_{1,i} \xi_{2,j} \xi_{3,k})
346 * J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\xi_{1,i})
347 * \sum_{j=0}^{nq_1} \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2}
348 * \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k})
349 * J_{i,j,k} \end{array} \f$ \n
350 * where
351 * \f$ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3)
352 * = \psi_p^a ( \xi_1) \psi_{q}^a (\xi_2) \psi_{r}^a (\xi_3) \f$ \n
353 * which can be implemented as \n
354 * \f$f_{r} (\xi_{3k})
355 * = \sum_{k=0}^{nq_3} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k})
356 * J_{i,j,k} = {\bf B_3 U} \f$ \n
357 * \f$ g_{q} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j})
358 * f_{r} (\xi_{3k}) = {\bf B_2 F} \f$ \n
359 * \f$ (\phi_{pqr}, u)_{\delta}
360 * = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k})
361 * = {\bf B_1 G} \f$
362 *
363 * @param base0 Basis to integrate wrt in first dimension.
364 * @param base1 Basis to integrate wrt in second dimension.
365 * @param base2 Basis to integrate wrt in third dimension.
366 * @param inarray Input array.
367 * @param outarray Output array.
368 * @param coll_check (not used)
369 */
371 const Array<OneD, const NekDouble> &inarray,
372 Array<OneD, NekDouble> &outarray, bool multiplybyweights)
373{
374 int nquad0 = m_base[0]->GetNumPoints();
375 int nquad1 = m_base[1]->GetNumPoints();
376 int nquad2 = m_base[2]->GetNumPoints();
377 int order0 = m_base[0]->GetNumModes();
378 int order1 = m_base[1]->GetNumModes();
379
380 Array<OneD, NekDouble> wsp(nquad0 * nquad1 * (nquad2 + order0) +
381 order0 * order1 * nquad2);
382
383 if (multiplybyweights)
384 {
385 Array<OneD, NekDouble> tmp(inarray.size());
386
387 MultiplyByQuadratureMetric(inarray, tmp);
389 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
390 tmp, outarray, wsp, true, true, true);
391 }
392 else
393 {
395 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
396 inarray, outarray, wsp, true, true, true);
397 }
398}
399
401 const Array<OneD, const NekDouble> &inarray,
402 Array<OneD, NekDouble> &outarray)
403{
404 HexExp::v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
405}
406
407/**
408 * @brief Calculates the inner product \f$ I_{pqr} = (u,
409 * \partial_{x_i} \phi_{pqr}) \f$.
410 *
411 * The derivative of the basis functions is performed using the chain
412 * rule in order to incorporate the geometric factors. Assuming that
413 * the basis functions are a tensor product
414 * \f$\phi_{pqr}(\xi_1,\xi_2,\xi_3) =
415 * \phi_1(\xi_1)\phi_2(\xi_2)\phi_3(\xi_3)\f$, in the hexahedral
416 * element, this is straightforward and yields the result
417 *
418 * \f[
419 * I_{pqr} = \sum_{k=1}^3 \left(u, \frac{\partial u}{\partial \xi_k}
420 * \frac{\partial \xi_k}{\partial x_i}\right)
421 * \f]
422 *
423 * @param dir Direction in which to take the derivative.
424 * @param inarray The function \f$ u \f$.
425 * @param outarray Value of the inner product.
426 */
428 const int dir, const Array<OneD, const NekDouble> &inarray,
429 Array<OneD, NekDouble> &outarray)
430{
431 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
432
433 const int nq0 = m_base[0]->GetNumPoints();
434 const int nq1 = m_base[1]->GetNumPoints();
435 const int nq2 = m_base[2]->GetNumPoints();
436 const int nq = nq0 * nq1 * nq2;
437 const int nm0 = m_base[0]->GetNumModes();
438 const int nm1 = m_base[1]->GetNumModes();
439
440 Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1));
441 Array<OneD, NekDouble> tmp1(alloc); // Quad metric
442 Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
443 Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
444 Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
445 Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
446 Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
447
448 MultiplyByQuadratureMetric(inarray, tmp1);
449
451 tmp2D[0] = tmp2;
452 tmp2D[1] = tmp3;
453 tmp2D[2] = tmp4;
454
455 HexExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
456
457 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
458 m_base[2]->GetBdata(), tmp2, outarray, wsp,
459 false, true, true);
460
461 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
462 m_base[2]->GetBdata(), tmp3, tmp5, wsp, true,
463 false, true);
464 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
465
466 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
467 m_base[2]->GetDbdata(), tmp4, tmp5, wsp, true,
468 true, false);
469 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
470}
471
473 const int dir, const Array<OneD, const NekDouble> &inarray,
475{
476 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
477
478 const int nq0 = m_base[0]->GetNumPoints();
479 const int nq1 = m_base[1]->GetNumPoints();
480 const int nq2 = m_base[2]->GetNumPoints();
481 const int nq = nq0 * nq1 * nq2;
482
484 m_metricinfo->GetDerivFactors(GetPointsKeys());
485
486 Array<OneD, NekDouble> tmp1(nq); // Quad metric
487
488 Array<OneD, NekDouble> tmp2 = outarray[0]; // Dir1 metric
489 Array<OneD, NekDouble> tmp3 = outarray[1]; // Dir2 metric
490 Array<OneD, NekDouble> tmp4 = outarray[2];
491
492 Vmath::Vcopy(nq, inarray, 1, tmp1, 1); // Dir3 metric
493
494 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
495 {
496 Vmath::Vmul(nq, &df[3 * dir][0], 1, tmp1.get(), 1, tmp2.get(), 1);
497 Vmath::Vmul(nq, &df[3 * dir + 1][0], 1, tmp1.get(), 1, tmp3.get(), 1);
498 Vmath::Vmul(nq, &df[3 * dir + 2][0], 1, tmp1.get(), 1, tmp4.get(), 1);
499 }
500 else
501 {
502 Vmath::Smul(nq, df[3 * dir][0], tmp1.get(), 1, tmp2.get(), 1);
503 Vmath::Smul(nq, df[3 * dir + 1][0], tmp1.get(), 1, tmp3.get(), 1);
504 Vmath::Smul(nq, df[3 * dir + 2][0], tmp1.get(), 1, tmp4.get(), 1);
505 }
506}
507
508/**
509 *
510 * @param dir Vector direction in which to take the derivative.
511 * @param inarray The function \f$ u \f$.
512 * @param outarray Value of the inner product.
513 */
515 const Array<OneD, const NekDouble> &direction,
516 const Array<OneD, const NekDouble> &inarray,
517 Array<OneD, NekDouble> &outarray)
518{
519 int shapedim = 3;
520 const int nq0 = m_base[0]->GetNumPoints();
521 const int nq1 = m_base[1]->GetNumPoints();
522 const int nq2 = m_base[2]->GetNumPoints();
523 const int nq = nq0 * nq1 * nq2;
524 const int nm0 = m_base[0]->GetNumModes();
525 const int nm1 = m_base[1]->GetNumModes();
526
528 m_metricinfo->GetDerivFactors(GetPointsKeys());
529
530 Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1));
531 Array<OneD, NekDouble> tmp1(alloc); // Quad metric
532 Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
533 Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
534 Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
535 Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
536 Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
537
538 MultiplyByQuadratureMetric(inarray, tmp1);
539
540 Array<OneD, Array<OneD, NekDouble>> dfdir(shapedim);
541 Expansion::ComputeGmatcdotMF(df, direction, dfdir);
542
543 Vmath::Vmul(nq, &dfdir[0][0], 1, tmp1.get(), 1, tmp2.get(), 1);
544 Vmath::Vmul(nq, &dfdir[1][0], 1, tmp1.get(), 1, tmp3.get(), 1);
545 Vmath::Vmul(nq, &dfdir[2][0], 1, tmp1.get(), 1, tmp4.get(), 1);
546
547 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
548 m_base[2]->GetBdata(), tmp2, outarray, wsp,
549 false, true, true);
550
551 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
552 m_base[2]->GetBdata(), tmp3, tmp5, wsp, true,
553 false, true);
554
555 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
556
557 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
558 m_base[2]->GetDbdata(), tmp4, tmp5, wsp, true,
559 true, false);
560
561 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
562}
563
564//-----------------------------
565// Evaluation functions
566//-----------------------------
567
568/**
569 * Given the local cartesian coordinate \a Lcoord evaluate the
570 * value of physvals at this point by calling through to the
571 * StdExpansion method
572 */
574 const Array<OneD, const NekDouble> &Lcoord,
575 const Array<OneD, const NekDouble> &physvals)
576{
577 // Evaluate point in local coordinates.
578 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
579}
580
582 const Array<OneD, const NekDouble> &physvals)
583{
585
586 ASSERTL0(m_geom, "m_geom not defined");
587 m_geom->GetLocCoords(coord, Lcoord);
588 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
589}
590
592 const Array<OneD, const NekDouble> &inarray,
593 std::array<NekDouble, 3> &firstOrderDerivs)
594{
595 Array<OneD, NekDouble> Lcoord(3);
596 ASSERTL0(m_geom, "m_geom not defined");
597 m_geom->GetLocCoords(coord, Lcoord);
598 return StdHexExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
599}
600
602{
604 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
605 m_base[2]->GetBasisKey());
606}
607
609{
611 m_base[0]->GetPointsKey());
613 m_base[1]->GetPointsKey());
615 m_base[2]->GetPointsKey());
616
618 bkey2);
619}
620
621/**
622 * \brief Retrieves the physical coordinates of a given set of
623 * reference coordinates.
624 *
625 * @param Lcoords Local coordinates in reference space.
626 * @param coords Corresponding coordinates in physical space.
627 */
630{
631 int i;
632
633 ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[0] <= 1.0 && Lcoords[1] >= -1.0 &&
634 Lcoords[1] <= 1.0 && Lcoords[2] >= -1.0 && Lcoords[2] <= 1.0,
635 "Local coordinates are not in region [-1,1]");
636
637 m_geom->FillGeom();
638
639 for (i = 0; i < m_geom->GetCoordim(); ++i)
640 {
641 coords[i] = m_geom->GetCoord(i, Lcoords);
642 }
643}
644
646 Array<OneD, NekDouble> &coords_1,
647 Array<OneD, NekDouble> &coords_2)
648{
649 Expansion::v_GetCoords(coords_0, coords_1, coords_2);
650}
651
652//-----------------------------
653// Helper functions
654//-----------------------------
655
656/// Return the region shape using the enum-list of ShapeType
658{
660}
661
663 const NekDouble *data, const std::vector<unsigned int> &nummodes,
664 const int mode_offset, NekDouble *coeffs,
665 std::vector<LibUtilities::BasisType> &fromType)
666{
667 int data_order0 = nummodes[mode_offset];
668 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
669 int data_order1 = nummodes[mode_offset + 1];
670 int order1 = m_base[1]->GetNumModes();
671 int fillorder1 = min(order1, data_order1);
672 int data_order2 = nummodes[mode_offset + 2];
673 int order2 = m_base[2]->GetNumModes();
674 int fillorder2 = min(order2, data_order2);
675
676 // Check if same basis
677 if (fromType[0] != m_base[0]->GetBasisType() ||
678 fromType[1] != m_base[1]->GetBasisType() ||
679 fromType[2] != m_base[2]->GetBasisType())
680 {
681 // Construct a hex with the appropriate basis type at our
682 // quadrature points, and one more to do a forwards
683 // transform. We can then copy the output to coeffs.
685 LibUtilities::BasisKey(fromType[0], data_order0,
686 m_base[0]->GetPointsKey()),
687 LibUtilities::BasisKey(fromType[1], data_order1,
688 m_base[1]->GetPointsKey()),
689 LibUtilities::BasisKey(fromType[2], data_order2,
690 m_base[2]->GetPointsKey()));
691 StdRegions::StdHexExp tmpHex2(m_base[0]->GetBasisKey(),
692 m_base[1]->GetBasisKey(),
693 m_base[2]->GetBasisKey());
694
695 Array<OneD, const NekDouble> tmpData(tmpHex.GetNcoeffs(), data);
696 Array<OneD, NekDouble> tmpBwd(tmpHex2.GetTotPoints());
697 Array<OneD, NekDouble> tmpOut(tmpHex2.GetNcoeffs());
698
699 tmpHex.BwdTrans(tmpData, tmpBwd);
700 tmpHex2.FwdTrans(tmpBwd, tmpOut);
701 Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
702
703 return;
704 }
705
706 switch (m_base[0]->GetBasisType())
707 {
709 {
710 int i, j;
711 int cnt = 0;
712 int cnt1 = 0;
713
715 "Extraction routine not set up for this basis");
717 "Extraction routine not set up for this basis");
718
719 Vmath::Zero(m_ncoeffs, coeffs, 1);
720 for (j = 0; j < fillorder0; ++j)
721 {
722 for (i = 0; i < fillorder1; ++i)
723 {
724 Vmath::Vcopy(fillorder2, &data[cnt], 1, &coeffs[cnt1], 1);
725 cnt += data_order2;
726 cnt1 += order2;
727 }
728
729 // count out data for j iteration
730 for (i = fillorder1; i < data_order1; ++i)
731 {
732 cnt += data_order2;
733 }
734
735 for (i = fillorder1; i < order1; ++i)
736 {
737 cnt1 += order2;
738 }
739 }
740 break;
741 }
743 {
744 LibUtilities::PointsKey p0(nummodes[0],
746 LibUtilities::PointsKey p1(nummodes[1],
748 LibUtilities::PointsKey p2(nummodes[2],
750 LibUtilities::PointsKey t0(m_base[0]->GetNumModes(),
752 LibUtilities::PointsKey t1(m_base[1]->GetNumModes(),
754 LibUtilities::PointsKey t2(m_base[2]->GetNumModes(),
756 LibUtilities::Interp3D(p0, p1, p2, data, t0, t1, t2, coeffs);
757 }
758 break;
759 default:
760 ASSERTL0(false, "basis is either not set up or not "
761 "hierarchicial");
762 }
763}
764
765void HexExp::v_GetTracePhysMap(const int face, Array<OneD, int> &outarray)
766{
767 int nquad0 = m_base[0]->GetNumPoints();
768 int nquad1 = m_base[1]->GetNumPoints();
769 int nquad2 = m_base[2]->GetNumPoints();
770
771 int nq0 = 0;
772 int nq1 = 0;
773
774 switch (face)
775 {
776 case 0:
777 nq0 = nquad0;
778 nq1 = nquad1;
779
780 // Directions A and B positive
781 if (outarray.size() != nq0 * nq1)
782 {
783 outarray = Array<OneD, int>(nq0 * nq1);
784 }
785
786 for (int i = 0; i < nquad0 * nquad1; ++i)
787 {
788 outarray[i] = i;
789 }
790
791 break;
792 case 1:
793 nq0 = nquad0;
794 nq1 = nquad2;
795 // Direction A and B positive
796 if (outarray.size() != nq0 * nq1)
797 {
798 outarray = Array<OneD, int>(nq0 * nq1);
799 }
800
801 // Direction A and B positive
802 for (int k = 0; k < nquad2; k++)
803 {
804 for (int i = 0; i < nquad0; ++i)
805 {
806 outarray[k * nquad0 + i] = nquad0 * nquad1 * k + i;
807 }
808 }
809 break;
810 case 2:
811 nq0 = nquad1;
812 nq1 = nquad2;
813
814 // Direction A and B positive
815 if (outarray.size() != nq0 * nq1)
816 {
817 outarray = Array<OneD, int>(nq0 * nq1);
818 }
819
820 for (int i = 0; i < nquad1 * nquad2; i++)
821 {
822 outarray[i] = nquad0 - 1 + i * nquad0;
823 }
824 break;
825 case 3:
826 nq0 = nquad0;
827 nq1 = nquad2;
828
829 // Direction A and B positive
830 if (outarray.size() != nq0 * nq1)
831 {
832 outarray = Array<OneD, int>(nq0 * nq1);
833 }
834
835 for (int k = 0; k < nquad2; k++)
836 {
837 for (int i = 0; i < nquad0; i++)
838 {
839 outarray[k * nquad0 + i] =
840 (nquad0 * (nquad1 - 1)) + (k * nquad0 * nquad1) + i;
841 }
842 }
843 break;
844 case 4:
845 nq0 = nquad1;
846 nq1 = nquad2;
847
848 // Direction A and B positive
849 if (outarray.size() != nq0 * nq1)
850 {
851 outarray = Array<OneD, int>(nq0 * nq1);
852 }
853
854 for (int i = 0; i < nquad1 * nquad2; i++)
855 {
856 outarray[i] = i * nquad0;
857 }
858 break;
859 case 5:
860 nq0 = nquad0;
861 nq1 = nquad1;
862 // Directions A and B positive
863 if (outarray.size() != nq0 * nq1)
864 {
865 outarray = Array<OneD, int>(nq0 * nq1);
866 }
867
868 for (int i = 0; i < nquad0 * nquad1; i++)
869 {
870 outarray[i] = nquad0 * nquad1 * (nquad2 - 1) + i;
871 }
872
873 break;
874 default:
875 ASSERTL0(false, "face value (> 5) is out of range");
876 break;
877 }
878}
879
881{
882 int i;
883 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
884 GetGeom()->GetMetricInfo();
885 SpatialDomains::GeomType type = geomFactors->GetGtype();
886
888 for (i = 0; i < ptsKeys.size(); ++i)
889 {
890 // Need at least 2 points for computing normals
891 if (ptsKeys[i].GetNumPoints() == 1)
892 {
893 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
894 ptsKeys[i] = pKey;
895 }
896 }
897
899 geomFactors->GetDerivFactors(ptsKeys);
900 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
901
902 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
903 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
904
905 // Number of quadrature points in face expansion.
906 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
907
908 int vCoordDim = GetCoordim();
909
912 for (i = 0; i < vCoordDim; ++i)
913 {
914 normal[i] = Array<OneD, NekDouble>(nq_face);
915 }
916
917 size_t nqb = nq_face;
918 size_t nbnd = face;
921
922 // Regular geometry case
923 if ((type == SpatialDomains::eRegular) ||
925 {
926 NekDouble fac;
927 // Set up normals
928 switch (face)
929 {
930 case 0:
931 for (i = 0; i < vCoordDim; ++i)
932 {
933 normal[i][0] = -df[3 * i + 2][0];
934 }
935 break;
936 case 1:
937 for (i = 0; i < vCoordDim; ++i)
938 {
939 normal[i][0] = -df[3 * i + 1][0];
940 }
941 break;
942 case 2:
943 for (i = 0; i < vCoordDim; ++i)
944 {
945 normal[i][0] = df[3 * i][0];
946 }
947 break;
948 case 3:
949 for (i = 0; i < vCoordDim; ++i)
950 {
951 normal[i][0] = df[3 * i + 1][0];
952 }
953 break;
954 case 4:
955 for (i = 0; i < vCoordDim; ++i)
956 {
957 normal[i][0] = -df[3 * i][0];
958 }
959 break;
960 case 5:
961 for (i = 0; i < vCoordDim; ++i)
962 {
963 normal[i][0] = df[3 * i + 2][0];
964 }
965 break;
966 default:
967 ASSERTL0(false, "face is out of range (edge < 5)");
968 }
969
970 // normalise
971 fac = 0.0;
972 for (i = 0; i < vCoordDim; ++i)
973 {
974 fac += normal[i][0] * normal[i][0];
975 }
976 fac = 1.0 / sqrt(fac);
977
978 Vmath::Fill(nqb, fac, length, 1);
979 for (i = 0; i < vCoordDim; ++i)
980 {
981 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
982 }
983 }
984 else // Set up deformed normals
985 {
986 int j, k;
987
988 int nqe0 = ptsKeys[0].GetNumPoints();
989 int nqe1 = ptsKeys[1].GetNumPoints();
990 int nqe2 = ptsKeys[2].GetNumPoints();
991 int nqe01 = nqe0 * nqe1;
992 int nqe02 = nqe0 * nqe2;
993 int nqe12 = nqe1 * nqe2;
994
995 int nqe;
996 if (face == 0 || face == 5)
997 {
998 nqe = nqe01;
999 }
1000 else if (face == 1 || face == 3)
1001 {
1002 nqe = nqe02;
1003 }
1004 else
1005 {
1006 nqe = nqe12;
1007 }
1008
1011
1012 Array<OneD, NekDouble> faceJac(nqe);
1013 Array<OneD, NekDouble> normals(vCoordDim * nqe, 0.0);
1014
1015 // Extract Jacobian along face and recover local
1016 // derivates (dx/dr) for polynomial interpolation by
1017 // multiplying m_gmat by jacobian
1018 switch (face)
1019 {
1020 case 0:
1021 for (j = 0; j < nqe; ++j)
1022 {
1023 normals[j] = -df[2][j] * jac[j];
1024 normals[nqe + j] = -df[5][j] * jac[j];
1025 normals[2 * nqe + j] = -df[8][j] * jac[j];
1026 faceJac[j] = jac[j];
1027 }
1028
1029 points0 = ptsKeys[0];
1030 points1 = ptsKeys[1];
1031 break;
1032 case 1:
1033 for (j = 0; j < nqe0; ++j)
1034 {
1035 for (k = 0; k < nqe2; ++k)
1036 {
1037 int idx = j + nqe01 * k;
1038 normals[j + k * nqe0] = -df[1][idx] * jac[idx];
1039 normals[nqe + j + k * nqe0] = -df[4][idx] * jac[idx];
1040 normals[2 * nqe + j + k * nqe0] =
1041 -df[7][idx] * jac[idx];
1042 faceJac[j + k * nqe0] = jac[idx];
1043 }
1044 }
1045 points0 = ptsKeys[0];
1046 points1 = ptsKeys[2];
1047 break;
1048 case 2:
1049 for (j = 0; j < nqe1; ++j)
1050 {
1051 for (k = 0; k < nqe2; ++k)
1052 {
1053 int idx = nqe0 - 1 + nqe0 * j + nqe01 * k;
1054 normals[j + k * nqe1] = df[0][idx] * jac[idx];
1055 normals[nqe + j + k * nqe1] = df[3][idx] * jac[idx];
1056 normals[2 * nqe + j + k * nqe1] = df[6][idx] * jac[idx];
1057 faceJac[j + k * nqe1] = jac[idx];
1058 }
1059 }
1060 points0 = ptsKeys[1];
1061 points1 = ptsKeys[2];
1062 break;
1063 case 3:
1064 for (j = 0; j < nqe0; ++j)
1065 {
1066 for (k = 0; k < nqe2; ++k)
1067 {
1068 int idx = nqe0 * (nqe1 - 1) + j + nqe01 * k;
1069 normals[j + k * nqe0] = df[1][idx] * jac[idx];
1070 normals[nqe + j + k * nqe0] = df[4][idx] * jac[idx];
1071 normals[2 * nqe + j + k * nqe0] = df[7][idx] * jac[idx];
1072 faceJac[j + k * nqe0] = jac[idx];
1073 }
1074 }
1075 points0 = ptsKeys[0];
1076 points1 = ptsKeys[2];
1077 break;
1078 case 4:
1079 for (j = 0; j < nqe1; ++j)
1080 {
1081 for (k = 0; k < nqe2; ++k)
1082 {
1083 int idx = j * nqe0 + nqe01 * k;
1084 normals[j + k * nqe1] = -df[0][idx] * jac[idx];
1085 normals[nqe + j + k * nqe1] = -df[3][idx] * jac[idx];
1086 normals[2 * nqe + j + k * nqe1] =
1087 -df[6][idx] * jac[idx];
1088 faceJac[j + k * nqe1] = jac[idx];
1089 }
1090 }
1091 points0 = ptsKeys[1];
1092 points1 = ptsKeys[2];
1093 break;
1094 case 5:
1095 for (j = 0; j < nqe01; ++j)
1096 {
1097 int idx = j + nqe01 * (nqe2 - 1);
1098 normals[j] = df[2][idx] * jac[idx];
1099 normals[nqe + j] = df[5][idx] * jac[idx];
1100 normals[2 * nqe + j] = df[8][idx] * jac[idx];
1101 faceJac[j] = jac[idx];
1102 }
1103 points0 = ptsKeys[0];
1104 points1 = ptsKeys[1];
1105 break;
1106 default:
1107 ASSERTL0(false, "face is out of range (face < 5)");
1108 }
1109
1110 Array<OneD, NekDouble> work(nq_face, 0.0);
1111 // Interpolate Jacobian and invert
1112 LibUtilities::Interp2D(points0, points1, faceJac,
1113 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
1114 work);
1115
1116 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
1117
1118 // interpolate
1119 for (i = 0; i < GetCoordim(); ++i)
1120 {
1121 LibUtilities::Interp2D(points0, points1, &normals[i * nqe],
1122 tobasis0.GetPointsKey(),
1123 tobasis1.GetPointsKey(), &normal[i][0]);
1124 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
1125 }
1126
1127 // normalise normal vectors
1128 Vmath::Zero(nq_face, work, 1);
1129 for (i = 0; i < GetCoordim(); ++i)
1130 {
1131 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
1132 }
1133
1134 Vmath::Vsqrt(nq_face, work, 1, work, 1);
1135 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
1136
1137 Vmath::Vcopy(nqb, work, 1, length, 1);
1138
1139 for (i = 0; i < GetCoordim(); ++i)
1140 {
1141 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
1142 }
1143 }
1144}
1145
1146//-----------------------------
1147// Operator creation functions
1148//-----------------------------
1150 Array<OneD, NekDouble> &outarray,
1151 const StdRegions::StdMatrixKey &mkey)
1152{
1153 StdExpansion::MassMatrixOp_MatFree(inarray, outarray, mkey);
1154}
1155
1157 Array<OneD, NekDouble> &outarray,
1158 const StdRegions::StdMatrixKey &mkey)
1159{
1160 HexExp::v_LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
1161}
1162
1163void HexExp::v_LaplacianMatrixOp(const int k1, const int k2,
1164 const Array<OneD, const NekDouble> &inarray,
1165 Array<OneD, NekDouble> &outarray,
1166 const StdRegions::StdMatrixKey &mkey)
1167{
1168 StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
1169}
1170
1172 const Array<OneD, const NekDouble> &inarray,
1173 Array<OneD, NekDouble> &outarray,
1174 const StdRegions::StdMatrixKey &mkey)
1175{
1176 StdExpansion::WeakDerivMatrixOp_MatFree(i, inarray, outarray, mkey);
1177}
1178
1180 const Array<OneD, const NekDouble> &inarray,
1181 Array<OneD, NekDouble> &outarray, const StdRegions::StdMatrixKey &mkey)
1182{
1183 StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray, outarray, mkey);
1184}
1185
1187 const Array<OneD, const NekDouble> &inarray,
1188 Array<OneD, NekDouble> &outarray, const StdRegions::StdMatrixKey &mkey)
1189{
1190 StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray, outarray, mkey);
1191}
1192
1194 Array<OneD, NekDouble> &outarray,
1195 const StdRegions::StdMatrixKey &mkey)
1196{
1197 HexExp::v_HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
1198}
1199
1200/**
1201 * This function is used to compute exactly the advective numerical flux
1202 * on the interface of two elements with different expansions, hence an
1203 * appropriate number of Gauss points has to be used. The number of
1204 * Gauss points has to be equal to the number used by the highest
1205 * polynomial degree of the two adjacent elements
1206 *
1207 * @param numMin Is the reduced polynomial order
1208 * @param inarray Input array of coefficients
1209 * @param dumpVar Output array of reduced coefficients.
1210 */
1212 const Array<OneD, const NekDouble> &inarray,
1213 Array<OneD, NekDouble> &outarray)
1214{
1215 int n_coeffs = inarray.size();
1216 int nmodes0 = m_base[0]->GetNumModes();
1217 int nmodes1 = m_base[1]->GetNumModes();
1218 int nmodes2 = m_base[2]->GetNumModes();
1219 int numMax = nmodes0;
1220
1221 Array<OneD, NekDouble> coeff(n_coeffs);
1222 Array<OneD, NekDouble> coeff_tmp1(nmodes0 * nmodes1, 0.0);
1223 Array<OneD, NekDouble> coeff_tmp2(n_coeffs, 0.0);
1224 Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
1225
1226 Vmath::Vcopy(n_coeffs, inarray, 1, coeff_tmp2, 1);
1227
1228 const LibUtilities::PointsKey Pkey0(nmodes0,
1230 const LibUtilities::PointsKey Pkey1(nmodes1,
1232 const LibUtilities::PointsKey Pkey2(nmodes2,
1234
1235 LibUtilities::BasisKey b0(m_base[0]->GetBasisType(), nmodes0, Pkey0);
1236 LibUtilities::BasisKey b1(m_base[1]->GetBasisType(), nmodes1, Pkey1);
1237 LibUtilities::BasisKey b2(m_base[2]->GetBasisType(), nmodes2, Pkey2);
1238 LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A, nmodes0, Pkey0);
1239 LibUtilities::BasisKey bortho1(LibUtilities::eOrtho_A, nmodes1, Pkey1);
1240 LibUtilities::BasisKey bortho2(LibUtilities::eOrtho_A, nmodes2, Pkey2);
1241
1242 LibUtilities::InterpCoeff3D(b0, b1, b2, coeff_tmp2, bortho0, bortho1,
1243 bortho2, coeff);
1244
1245 Vmath::Zero(n_coeffs, coeff_tmp2, 1);
1246
1247 int cnt = 0, cnt2 = 0;
1248
1249 for (int u = 0; u < numMin + 1; ++u)
1250 {
1251 for (int i = 0; i < numMin; ++i)
1252 {
1253 Vmath::Vcopy(numMin, tmp = coeff + cnt + cnt2, 1,
1254 tmp2 = coeff_tmp1 + cnt, 1);
1255
1256 cnt = i * numMax;
1257 }
1258
1259 Vmath::Vcopy(nmodes0 * nmodes1, tmp3 = coeff_tmp1, 1,
1260 tmp4 = coeff_tmp2 + cnt2, 1);
1261
1262 cnt2 = u * nmodes0 * nmodes1;
1263 }
1264
1265 LibUtilities::InterpCoeff3D(bortho0, bortho1, bortho2, coeff_tmp2, b0, b1,
1266 b2, outarray);
1267}
1268
1270 const StdRegions::StdMatrixKey &mkey)
1271{
1272 int nq = GetTotPoints();
1273
1274 // Calculate sqrt of the Jacobian
1276 Array<OneD, NekDouble> sqrt_jac(nq);
1277 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1278 {
1279 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1280 }
1281 else
1282 {
1283 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1284 }
1285
1286 // Multiply array by sqrt(Jac)
1287 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1288
1289 // Apply std region filter
1290 StdHexExp::v_SVVLaplacianFilter(array, mkey);
1291
1292 // Divide by sqrt(Jac)
1293 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1294}
1295
1296//-----------------------------
1297// Matrix creation functions
1298//-----------------------------
1300{
1301 DNekMatSharedPtr returnval;
1302
1303 switch (mkey.GetMatrixType())
1304 {
1312 returnval = Expansion3D::v_GenMatrix(mkey);
1313 break;
1314 default:
1315 returnval = StdHexExp::v_GenMatrix(mkey);
1316 }
1317
1318 return returnval;
1319}
1320
1322{
1323 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1324 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1325 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1326
1329
1330 return tmp->GetStdMatrix(mkey);
1331}
1332
1334{
1335 return m_matrixManager[mkey];
1336}
1337
1339{
1340 m_matrixManager.DeleteObject(mkey);
1341}
1342
1344{
1345 return m_staticCondMatrixManager[mkey];
1346}
1347
1349{
1350 m_staticCondMatrixManager.DeleteObject(mkey);
1351}
1352
1354 const Array<OneD, const NekDouble> &inarray,
1356{
1357 // This implementation is only valid when there are no
1358 // coefficients associated to the Laplacian operator
1359 if (m_metrics.count(eMetricLaplacian00) == 0)
1360 {
1362 }
1363
1364 int nquad0 = m_base[0]->GetNumPoints();
1365 int nquad1 = m_base[1]->GetNumPoints();
1366 int nquad2 = m_base[2]->GetNumPoints();
1367 int nqtot = nquad0 * nquad1 * nquad2;
1368
1369 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1370
1371 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1372 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1373 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1374 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1375 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1376 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1377 const Array<OneD, const NekDouble> &metric00 =
1379 const Array<OneD, const NekDouble> &metric01 =
1381 const Array<OneD, const NekDouble> &metric02 =
1383 const Array<OneD, const NekDouble> &metric11 =
1385 const Array<OneD, const NekDouble> &metric12 =
1387 const Array<OneD, const NekDouble> &metric22 =
1389
1390 // Allocate temporary storage
1391 Array<OneD, NekDouble> wsp0(wsp);
1392 Array<OneD, NekDouble> wsp1(wsp + 1 * nqtot);
1393 Array<OneD, NekDouble> wsp2(wsp + 2 * nqtot);
1394 Array<OneD, NekDouble> wsp3(wsp + 3 * nqtot);
1395 Array<OneD, NekDouble> wsp4(wsp + 4 * nqtot);
1396 Array<OneD, NekDouble> wsp5(wsp + 5 * nqtot);
1397
1398 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1399
1400 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1401 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1402 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1403 // especially for this purpose
1404 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1405 &wsp1[0], 1, &wsp3[0], 1);
1406 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1407 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1408 &wsp1[0], 1, &wsp4[0], 1);
1409 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1410 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1411 &wsp1[0], 1, &wsp5[0], 1);
1412 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1413
1414 // outarray = m = (D_xi1 * B)^T * k
1415 // wsp1 = n = (D_xi2 * B)^T * l
1416 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1417 false, true, true);
1418 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1419 false, true);
1420 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1421 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1422 true, false);
1423 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1424}
1425
1427{
1428 if (m_metrics.count(eMetricQuadrature) == 0)
1429 {
1431 }
1432
1433 const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1434 const unsigned int nqtot = GetTotPoints();
1435 const unsigned int dim = 3;
1436 const MetricType m[3][3] = {
1440
1441 for (unsigned int i = 0; i < dim; ++i)
1442 {
1443 for (unsigned int j = i; j < dim; ++j)
1444 {
1445 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1446 const Array<TwoD, const NekDouble> &gmat =
1447 m_metricinfo->GetGmat(GetPointsKeys());
1448 if (type == SpatialDomains::eDeformed)
1449 {
1450 Vmath::Vcopy(nqtot, &gmat[i * dim + j][0], 1,
1451 &m_metrics[m[i][j]][0], 1);
1452 }
1453 else
1454 {
1455 Vmath::Fill(nqtot, gmat[i * dim + j][0], &m_metrics[m[i][j]][0],
1456 1);
1457 }
1459 }
1460 }
1461}
1462
1463/** @brief: This method gets all of the factors which are
1464 required as part of the Gradient Jump Penalty
1465 stabilisation and involves the product of the normal and
1466 geometric factors along the element trace.
1467*/
1469 Array<OneD, Array<OneD, NekDouble>> &d0factors,
1470 Array<OneD, Array<OneD, NekDouble>> &d1factors,
1471 Array<OneD, Array<OneD, NekDouble>> &d2factors)
1472{
1473 int nquad0 = GetNumPoints(0);
1474 int nquad1 = GetNumPoints(1);
1475 int nquad2 = GetNumPoints(2);
1476
1478 m_metricinfo->GetDerivFactors(GetPointsKeys());
1479
1480 if (d0factors.size() != 6)
1481 {
1482 d0factors = Array<OneD, Array<OneD, NekDouble>>(6);
1483 d1factors = Array<OneD, Array<OneD, NekDouble>>(6);
1484 d2factors = Array<OneD, Array<OneD, NekDouble>>(6);
1485 }
1486
1487 if (d0factors[0].size() != nquad0 * nquad1)
1488 {
1489 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1490 d0factors[5] = Array<OneD, NekDouble>(nquad0 * nquad1);
1491 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1492 d1factors[5] = Array<OneD, NekDouble>(nquad0 * nquad1);
1493 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1494 d2factors[5] = Array<OneD, NekDouble>(nquad0 * nquad1);
1495 }
1496
1497 if (d0factors[1].size() != nquad0 * nquad2)
1498 {
1499 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1500 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1501 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1502 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1503 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1504 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1505 }
1506
1507 if (d0factors[2].size() != nquad1 * nquad2)
1508 {
1509 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1510 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1511 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1512 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1513 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1514 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1515 }
1516
1517 // Outwards normals
1519 GetTraceNormal(0);
1521 GetTraceNormal(1);
1523 GetTraceNormal(2);
1525 GetTraceNormal(3);
1527 GetTraceNormal(4);
1529 GetTraceNormal(5);
1530
1531 int ncoords = normal_0.size();
1532
1533 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1534 {
1535 // faces 0 and 5
1536 for (int i = 0; i < nquad0 * nquad1; ++i)
1537 {
1538 d0factors[0][i] = df[0][i] * normal_0[0][i];
1539 d1factors[0][i] = df[1][i] * normal_0[0][i];
1540 d2factors[0][i] = df[2][i] * normal_0[0][i];
1541
1542 d0factors[5][i] =
1543 df[0][nquad0 * nquad1 * (nquad2 - 1) + i] * normal_5[0][i];
1544 d1factors[5][i] =
1545 df[1][nquad0 * nquad1 * (nquad2 - 1) + i] * normal_5[0][i];
1546 d2factors[5][i] =
1547 df[2][nquad0 * nquad1 * (nquad2 - 1) + i] * normal_5[0][i];
1548 }
1549
1550 for (int n = 1; n < ncoords; ++n)
1551 {
1552 for (int i = 0; i < nquad0 * nquad1; ++i)
1553 {
1554 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1555 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1556 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1557
1558 d0factors[5][i] +=
1559 df[3 * n][nquad0 * nquad1 * (nquad2 - 1) + i] *
1560 normal_5[n][i];
1561 d1factors[5][i] +=
1562 df[3 * n + 1][nquad0 * nquad1 * (nquad2 - 1) + i] *
1563 normal_5[n][i];
1564 d2factors[5][i] +=
1565 df[3 * n + 2][nquad0 * nquad1 * (nquad2 - 1) + i] *
1566 normal_5[n][i];
1567 }
1568 }
1569
1570 // faces 1 and 3
1571 for (int j = 0; j < nquad2; ++j)
1572 {
1573 for (int i = 0; i < nquad0; ++i)
1574 {
1575 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1576 normal_1[0][j * nquad0 + i];
1577 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1578 normal_1[0][j * nquad0 + i];
1579 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1580 normal_1[0][j * nquad0 + i];
1581
1582 d0factors[3][j * nquad0 + i] =
1583 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1584 normal_3[0][j * nquad0 + i];
1585 d1factors[3][j * nquad0 + i] =
1586 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1587 normal_3[0][j * nquad0 + i];
1588 d2factors[3][j * nquad0 + i] =
1589 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1590 normal_3[0][j * nquad0 + i];
1591 }
1592 }
1593
1594 for (int n = 1; n < ncoords; ++n)
1595 {
1596 for (int j = 0; j < nquad2; ++j)
1597 {
1598 for (int i = 0; i < nquad0; ++i)
1599 {
1600 d0factors[1][j * nquad0 + i] +=
1601 df[3 * n][j * nquad0 * nquad1 + i] *
1602 normal_1[0][j * nquad0 + i];
1603 d1factors[1][j * nquad0 + i] +=
1604 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1605 normal_1[0][j * nquad0 + i];
1606 d2factors[1][j * nquad0 + i] +=
1607 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1608 normal_1[0][j * nquad0 + i];
1609
1610 d0factors[3][j * nquad0 + i] +=
1611 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1612 normal_3[0][j * nquad0 + i];
1613 d1factors[3][j * nquad0 + i] +=
1614 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1615 normal_3[0][j * nquad0 + i];
1616 d2factors[3][j * nquad0 + i] +=
1617 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1618 normal_3[0][j * nquad0 + i];
1619 }
1620 }
1621 }
1622
1623 // faces 2 and 4
1624 for (int j = 0; j < nquad2; ++j)
1625 {
1626 for (int i = 0; i < nquad1; ++i)
1627 {
1628 d0factors[2][j * nquad1 + i] =
1629 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1630 normal_2[0][j * nquad1 + i];
1631 d1factors[2][j * nquad1 + i] =
1632 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1633 normal_2[0][j * nquad1 + i];
1634 d2factors[2][j * nquad1 + i] =
1635 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1636 normal_2[0][j * nquad1 + i];
1637
1638 d0factors[4][j * nquad1 + i] =
1639 df[0][j * nquad0 * nquad1 + i * nquad0] *
1640 normal_4[0][j * nquad1 + i];
1641 d1factors[4][j * nquad1 + i] =
1642 df[1][j * nquad0 * nquad1 + i * nquad0] *
1643 normal_4[0][j * nquad1 + i];
1644 d2factors[4][j * nquad1 + i] =
1645 df[2][j * nquad0 * nquad1 + i * nquad0] *
1646 normal_4[0][j * nquad1 + i];
1647 }
1648 }
1649
1650 for (int n = 1; n < ncoords; ++n)
1651 {
1652 for (int j = 0; j < nquad2; ++j)
1653 {
1654 for (int i = 0; i < nquad1; ++i)
1655 {
1656 d0factors[2][j * nquad1 + i] +=
1657 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1658 normal_2[n][j * nquad1 + i];
1659 d1factors[2][j * nquad1 + i] +=
1660 df[3 * n + 1]
1661 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1662 normal_2[n][j * nquad1 + i];
1663 d2factors[2][j * nquad1 + i] +=
1664 df[3 * n + 2]
1665 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1666 normal_2[n][j * nquad1 + i];
1667
1668 d0factors[4][j * nquad1 + i] +=
1669 df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1670 normal_4[n][j * nquad1 + i];
1671 d1factors[4][j * nquad1 + i] +=
1672 df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1673 normal_4[n][j * nquad1 + i];
1674 d2factors[4][j * nquad1 + i] +=
1675 df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1676 normal_4[n][j * nquad1 + i];
1677 }
1678 }
1679 }
1680 }
1681 else
1682 {
1683 // Faces 0 and 5
1684 for (int i = 0; i < nquad0 * nquad1; ++i)
1685 {
1686 d0factors[0][i] = df[0][0] * normal_0[0][i];
1687 d0factors[5][i] = df[0][0] * normal_5[0][i];
1688
1689 d1factors[0][i] = df[1][0] * normal_0[0][i];
1690 d1factors[5][i] = df[1][0] * normal_5[0][i];
1691
1692 d2factors[0][i] = df[2][0] * normal_0[0][i];
1693 d2factors[5][i] = df[2][0] * normal_5[0][i];
1694 }
1695
1696 for (int n = 1; n < ncoords; ++n)
1697 {
1698 for (int i = 0; i < nquad0 * nquad1; ++i)
1699 {
1700 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1701 d0factors[5][i] += df[3 * n][0] * normal_5[n][i];
1702
1703 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1704 d1factors[5][i] += df[3 * n + 1][0] * normal_5[n][i];
1705
1706 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1707 d2factors[5][i] += df[3 * n + 2][0] * normal_5[n][i];
1708 }
1709 }
1710
1711 // faces 1 and 3
1712 for (int i = 0; i < nquad0 * nquad2; ++i)
1713 {
1714 d0factors[1][i] = df[0][0] * normal_1[0][i];
1715 d0factors[3][i] = df[0][0] * normal_3[0][i];
1716
1717 d1factors[1][i] = df[1][0] * normal_1[0][i];
1718 d1factors[3][i] = df[1][0] * normal_3[0][i];
1719
1720 d2factors[1][i] = df[2][0] * normal_1[0][i];
1721 d2factors[3][i] = df[2][0] * normal_3[0][i];
1722 }
1723
1724 for (int n = 1; n < ncoords; ++n)
1725 {
1726 for (int i = 0; i < nquad0 * nquad2; ++i)
1727 {
1728 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1729 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1730
1731 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1732 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1733
1734 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1735 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1736 }
1737 }
1738
1739 // faces 2 and 4
1740 for (int i = 0; i < nquad1 * nquad2; ++i)
1741 {
1742 d0factors[2][i] = df[0][0] * normal_2[0][i];
1743 d0factors[4][i] = df[0][0] * normal_4[0][i];
1744
1745 d1factors[2][i] = df[1][0] * normal_2[0][i];
1746 d1factors[4][i] = df[1][0] * normal_4[0][i];
1747
1748 d2factors[2][i] = df[2][0] * normal_2[0][i];
1749 d2factors[4][i] = df[2][0] * normal_4[0][i];
1750 }
1751
1752 for (int n = 1; n < ncoords; ++n)
1753 {
1754 for (int i = 0; i < nquad1 * nquad2; ++i)
1755 {
1756 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1757 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1758
1759 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1760 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1761
1762 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1763 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1764 }
1765 }
1766 }
1767}
1768} // namespace Nektar::LocalRegions
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
Describes the specification for a Basis.
Definition: Basis.h:45
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:120
PointsKey GetPointsKey() const
Return distribution of points.
Definition: Basis.h:137
Defines a specification for a set of points.
Definition: Points.h:50
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:276
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:286
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:167
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:273
void ComputeGmatcdotMF(const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
Definition: Expansion.cpp:603
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:530
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:274
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:251
void v_WeakDirectionalDerivMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1179
NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrate the physical point list inarray over region.
Definition: HexExp.cpp:101
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: HexExp.cpp:645
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:244
void v_MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1149
void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1156
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1299
DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1321
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:246
void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1193
void v_DropLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: HexExp.cpp:1348
DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey) override
Definition: HexExp.cpp:1333
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.
Definition: HexExp.cpp:370
void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: HexExp.cpp:297
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculates the inner product .
Definition: HexExp.cpp:427
void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1269
void v_ComputeTraceNormal(const int face) override
Definition: HexExp.cpp:880
HexExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::HexGeomSharedPtr &geom)
Constructor using BasisKey class for quadrature points and order definition.
Definition: HexExp.cpp:57
void v_ComputeLaplacianMetric() override
Definition: HexExp.cpp:1426
void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
Definition: HexExp.cpp:662
void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
Definition: HexExp.cpp:1353
void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
Calculate the derivative of the physical points.
Definition: HexExp.cpp:142
void v_DropLocMatrix(const MatrixKey &mkey) override
Definition: HexExp.cpp:1338
void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: HexExp.cpp:400
void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
Retrieves the physical coordinates of a given set of reference coordinates.
Definition: HexExp.cpp:628
NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: HexExp.cpp:581
void v_IProductWRTDirectionalDerivBase_SumFac(const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: HexExp.cpp:514
void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: HexExp.cpp:472
void v_PhysDirectionalDeriv(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out) override
Physical derivative along a direction vector.
Definition: HexExp.cpp:255
NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
Definition: HexExp.cpp:573
DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: HexExp.cpp:1343
void v_GetTracePhysMap(const int face, Array< OneD, int > &outarray) override
Definition: HexExp.cpp:765
LibUtilities::ShapeType v_DetShapeType() const override
Return the region shape using the enum-list of ShapeType.
Definition: HexExp.cpp:657
void v_ReduceOrderCoeffs(int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: HexExp.cpp:1211
void v_WeakDerivMatrixOp(const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1171
StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const override
Definition: HexExp.cpp:601
StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const override
Definition: HexExp.cpp:608
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the elements basis.
Definition: HexExp.cpp:332
void v_NormalTraceDerivFactors(Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors) override
: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabili...
Definition: HexExp.cpp:1468
void v_MassLevelCurvatureMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: HexExp.cpp:1186
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:124
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156
const LibUtilities::PointsKeyVector GetPointsKeys() const
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:299
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:528
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:367
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space.
Definition: StdExpansion.h:424
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:723
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Definition: StdExpansion.h:849
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Class representing a hexehedral element in reference space.
Definition: StdHexExp.h:44
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:83
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
Definition: Interp.cpp:162
void InterpCoeff3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:101
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:42
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:56
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:60
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< HexGeom > HexGeomSharedPtr
Definition: HexGeom.h:84
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::shared_ptr< StdHexExp > StdHexExpSharedPtr
Definition: StdHexExp.h:228
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:79
static Array< OneD, NekDouble > NullNekDouble1DArray
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.hpp:154
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
STL namespace.
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294