Nektar++
ImageWarpingSystem.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: ImageWarpingSystem.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Image warping solve routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38using namespace std;
39
40namespace Nektar
41{
44 "ImageWarpingSystem", ImageWarpingSystem::create,
45 "Image warping system.");
46
47/**
48 *
49 */
53 : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
54{
55}
56
57/**
58 *
59 */
60void ImageWarpingSystem::v_InitObject(bool DeclareField)
61{
63
64 // Define Velocity fields
66 int nq = m_fields[0]->GetNpoints();
67
68 for (int i = 0; i < m_spacedim; ++i)
69 {
71 }
72
73 // Bit of a hack: redefine u/v fields so they are continuous for
74 // Helmholtz solve.
77 m_session, m_graph, m_session->GetVariable(2));
78 m_fields[2] = fld;
80 *fld, m_graph, m_session->GetVariable(3));
81
82 // Tell UnsteadySystem to only integrate first two fields (i.e. I and
83 // phi).
84 m_intVariables.push_back(0);
85 m_intVariables.push_back(1);
86
87 // Define the normal velocity fields
88 if (m_fields[0]->GetTrace())
89 {
91 }
92
93 string advName;
94 string riemName;
95 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
99 m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
101 riemName, m_session);
103 this);
104
105 m_advObject->SetRiemannSolver(m_riemannSolver);
106 m_advObject->InitObject(m_session, m_fields);
107
109 {
112 }
113 else
114 {
115 ASSERTL0(false, "Implicit unsteady Advection not set up.");
116 }
117}
118
119/**
120 *
121 */
123{
124}
125
126/**
127 *
128 */
130 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
132 [[maybe_unused]] const NekDouble time)
133{
134 int npoints = GetNpoints();
135 int ncoeffs = inarray[0].size();
137
138 // Load parameter alpha.
139 m_session->LoadParameter("Alpha", m_alpha);
140
142 "CG not implemented yet.");
143
144 // Set up storage arrays.
145 Array<OneD, NekDouble> tmp(npoints);
146 Array<OneD, NekDouble> alloc(3 * npoints);
147 Array<OneD, NekDouble> dIdx1(alloc);
148 Array<OneD, NekDouble> dIdx2(alloc + npoints);
149 Array<OneD, NekDouble> dIdx3(alloc + 2 * npoints);
150
151 // Calculate grad I.
152 m_fields[0]->PhysDeriv(inarray[0], dIdx1, dIdx2);
153
154 // Set factors.
155 // TODO: Check - should be -1?
157
158 // Multiply by phi, and perform Helmholtz solve to calculate the
159 // advection velocity field.
160 for (int i = 0; i < 2; ++i)
161 {
162 Vmath::Vmul(npoints, &alloc[i * npoints], 1, inarray[1].get(), 1,
163 m_fields[i + 2]->UpdatePhys().get(), 1);
164 Vmath::Smul(npoints, 1 / m_alpha / m_alpha,
165 m_fields[i + 2]->GetPhys().get(), 1,
166 m_fields[i + 2]->UpdatePhys().get(), 1);
167 m_fields[i + 2]->HelmSolve(m_fields[i + 2]->GetPhys(),
168 m_fields[i + 2]->UpdateCoeffs(), factors);
169 m_fields[i + 2]->BwdTrans(m_fields[i + 2]->GetCoeffs(), m_velocity[i]);
170 }
171
172 // Calculate the weak advection operator for I and phi - result is put
173 // in WeakAdv and is in physical space.
174 m_advObject->Advect(2, m_fields, m_velocity, inarray, outarray, 0.0);
175 for (int i = 0; i < 2; ++i)
176 {
177 Vmath::Neg(npoints, outarray[i], 1);
178 }
179
180 // Calculate du/dx -> dIdx1, dv/dy -> dIdx2.
181 m_fields[2]->PhysDeriv(m_velocity[0], dIdx1, dIdx3);
182 m_fields[3]->PhysDeriv(m_velocity[1], dIdx3, dIdx2);
183
184 // Calculate RHS = I*div(u) = I*du/dx + I*dv/dy -> dIdx1.
185 Vmath::Vvtvvtp(npoints, dIdx1.get(), 1, inarray[0].get(), 1, dIdx2.get(), 1,
186 inarray[0].get(), 1, dIdx1.get(), 1);
187
188 // Take inner product to get to coefficient space.
189 Array<OneD, NekDouble> tmp2(ncoeffs);
190 m_fields[0]->IProductWRTBase(dIdx1, tmp2);
191
192 // Multiply by elemental inverse mass matrix, backwards transform
193 m_fields[0]->MultiplyByElmtInvMass(tmp2, tmp2);
194 m_fields[0]->BwdTrans(tmp2, tmp);
195 Vmath::Vadd(npoints, outarray[0], 1, tmp, 1, outarray[0], 1);
196}
197
198/**
199 *
200 */
202 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
203 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
204{
205 int nvariables = inarray.size();
207
208 switch (m_projectionType)
209 {
211 {
212 // Just copy over array
213 if (inarray != outarray)
214 {
215 int npoints = GetNpoints();
216
217 for (int i = 0; i < nvariables; ++i)
218 {
219 Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
220 }
221 }
222 }
223 break;
224 default:
225 ASSERTL0(false, "Unknown projection scheme");
226 break;
227 }
228}
229
230/**
231 * @brief Get the normal velocity
232 */
234{
235 // Number of trace (interface) points
236 int nTracePts = GetTraceNpoints();
237
238 // Auxiliary variable to compute the normal velocity
239 Array<OneD, NekDouble> tmp(nTracePts);
240
241 // Reset the normal velocity
242 Vmath::Zero(nTracePts, m_traceVn, 1);
243
244 for (int i = 0; i < m_velocity.size(); ++i)
245 {
246 m_fields[0]->ExtractTracePhys(m_velocity[i], tmp);
247
248 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, tmp, 1, m_traceVn, 1,
249 m_traceVn, 1);
250 }
251
252 return m_traceVn;
253}
254
255/**
256 *
257 */
259 const Array<OneD, Array<OneD, NekDouble>> &physfield,
261{
262 ASSERTL1(flux[0].size() == m_velocity.size(),
263 "Dimension of flux array and velocity array do not match");
264
265 int nq = physfield[0].size();
266
267 for (int i = 0; i < flux.size(); ++i)
268 {
269 for (int j = 0; j < flux[0].size(); ++j)
270 {
271 Vmath::Vmul(nq, physfield[i], 1, m_velocity[j], 1, flux[i][j], 1);
272 }
273 }
274}
275
276/**
277 *
278 */
280{
282}
283} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
ImageWarpingSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
static EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
Array< OneD, Array< OneD, NekDouble > > m_velocity
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
void v_GenerateSummary(SolverUtils::SummaryList &s) override
Print a summary of time stepping parameters.
static std::string className
Name of class.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity.
void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
Array< OneD, NekDouble > m_traceVn
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:143
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
A base class for PDEs which include an advection component.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
SOLVER_UTILS_EXPORT int GetNpoints()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< ContField > ContFieldSharedPtr
Definition: ContField.h:268
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:46
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:402
StdRegions::ConstFactorMap factors
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825