Nektar++
Public Member Functions | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Member Functions | List of all members
Nektar::SolverUtils::EquationSystem Class Reference

A base class for describing how to solve specific equations. More...

#include <EquationSystem.h>

Inheritance diagram for Nektar::SolverUtils::EquationSystem:
[legend]

Public Member Functions

virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 

Protected Types

enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Protected Member Functions

SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities (u, v, w, omega_x, omega_y, omega_z, a_x, a_y, a_z, domega_x, domega_y, domega_z) More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Static Protected Attributes

static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Private Member Functions

virtual SOLVER_UTILS_EXPORT Array< OneD, bool > v_GetSystemSingularChecks ()
 
SOLVER_UTILS_EXPORT void PrintProgressbar (const int position, const int goal) const
 

Detailed Description

A base class for describing how to solve specific equations.

This class is a base class for all solver implementations. It provides the underlying generic functionality and interface for solving equations.

To solve a steady-state equation, create a derived class from this class and reimplement the virtual functions to provide custom implementation for the problem.

To solve unsteady problems, derive from the UnsteadySystem class instead which provides general time integration.

Definition at line 75 of file EquationSystem.h.

Member Enumeration Documentation

◆ HomogeneousType

Parameter for homogeneous expansions.

Enumerator
eHomogeneous1D 
eHomogeneous2D 
eHomogeneous3D 
eNotHomogeneous 

Definition at line 445 of file EquationSystem.h.

Constructor & Destructor Documentation

◆ ~EquationSystem()

Nektar::SolverUtils::EquationSystem::~EquationSystem ( )
virtual

Destructor.

Destructor for class EquationSystem.

Definition at line 132 of file EquationSystem.cpp.

133{
134 LibUtilities::NekManager<LocalRegions::MatrixKey, DNekScalMat,
135 LocalRegions::MatrixKey::opLess>::ClearManager();
136 LibUtilities::NekManager<LocalRegions::MatrixKey, DNekScalBlkMat,
137 LocalRegions::MatrixKey::opLess>::ClearManager();
138}
NekMatrix< NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag >, BlockMatrixTag > DNekScalBlkMat
Definition: NekTypeDefs.hpp:68
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat

◆ EquationSystem()

Nektar::SolverUtils::EquationSystem::EquationSystem ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Initialises EquationSystem class members.

This constructor is protected as the objects of this class are never instantiated directly.

Parameters
pSessionThe session reader holding problem parameters.

Definition at line 110 of file EquationSystem.cpp.

113 : m_comm(pSession->GetComm()), m_session(pSession), m_graph(pGraph),
114 m_lambda(0), m_infosteps(10),
116{
117 // set up session names in fieldMetaDataMap
118 const vector<std::string> filenames = m_session->GetFilenames();
119
120 for (int i = 0; i < filenames.size(); ++i)
121 {
122 string sessionname = "SessionName";
123 sessionname += std::to_string(i);
124 m_fieldMetaDataMap[sessionname] = filenames[i];
125 m_fieldMetaDataMap["ChkFileNum"] = std::to_string(0);
126 }
127}
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
LibUtilities::CommSharedPtr m_comm
Communicator.
int m_infosteps
Number of time steps between outputting status information.
NekDouble m_lambda
Lambda constant in real system if one required.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
static FieldMetaDataMap NullFieldMetaDataMap
Definition: FieldIO.h:51

References m_fieldMetaDataMap, and m_session.

Member Function Documentation

◆ as()

template<class T >
std::shared_ptr< T > Nektar::SolverUtils::EquationSystem::as ( )
inline

Definition at line 106 of file EquationSystem.h.

107 {
108 return std::dynamic_pointer_cast<T>(shared_from_this());
109 }

◆ Checkpoint_BaseFlow()

void Nektar::SolverUtils::EquationSystem::Checkpoint_BaseFlow ( const int  n)

Write base flow file of m_fields.

Write the n-th base flow into a .chk file

Parameters
nThe index of the base flow file.

Definition at line 1227 of file EquationSystem.cpp.

1228{
1229 std::string outname = m_sessionName + "_BaseFlow_" + std::to_string(n);
1230
1231 WriteFld(outname + ".chk");
1232}
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
std::string m_sessionName
Name of the session.

References m_sessionName, and WriteFld().

◆ Checkpoint_Output() [1/2]

void Nektar::SolverUtils::EquationSystem::Checkpoint_Output ( const int  n)

Write checkpoint file of m_fields.

Write the n-th checkpoint file.

Parameters
nThe index of the checkpoint file.

Definition at line 1176 of file EquationSystem.cpp.

1177{
1178 if (!m_comm->IsParallelInTime())
1179 {
1180 // Serial-in-time
1181 std::string outname = m_sessionName + "_" + std::to_string(n);
1182 WriteFld(outname + ".chk");
1183 }
1184 else
1185 {
1186 // Parallel-in-time
1187 auto loc = m_sessionName.find("_xml/");
1188 auto sessionName = m_sessionName.substr(0, loc);
1189 std::string paradir =
1190 sessionName + "_" + std::to_string(m_iterPIT) + ".pit";
1191 if (!fs::is_directory(paradir))
1192 {
1193 fs::create_directory(paradir);
1194 }
1195 std::string outname = paradir + "/" + sessionName + "_timeLevel" +
1196 std::to_string(m_session->GetTimeLevel()) + "_" +
1197 std::to_string(n);
1198 WriteFld(outname + ".chk");
1199 }
1200}
int m_iterPIT
Number of parallel-in-time time iteration.

References CG_Iterations::loc, m_comm, m_iterPIT, m_session, m_sessionName, and WriteFld().

Referenced by Nektar::SolverUtils::FileSolution::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoSolve(), Nektar::MMFAdvection::v_DoSolve(), Nektar::MMFMaxwell::v_DoSolve(), Nektar::MMFSWE::v_DoSolve(), Nektar::CoupledLinearNS::v_DoSolve(), v_SetInitialConditions(), Nektar::CompressibleFlowSystem::v_SetInitialConditions(), and Nektar::NonlinearPeregrine::v_SetInitialConditions().

◆ Checkpoint_Output() [2/2]

void Nektar::SolverUtils::EquationSystem::Checkpoint_Output ( const int  n,
MultiRegions::ExpListSharedPtr field,
std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)

Write checkpoint file of custom data fields.

Write the n-th checkpoint file.

Parameters
nThe index of the checkpoint file.

Definition at line 1206 of file EquationSystem.cpp.

1210{
1211 if (!m_comm->IsParallelInTime())
1212 {
1213 // Serial-in-time
1214 std::string outname = m_sessionName + "_" + std::to_string(n);
1215 WriteFld(outname, field, fieldcoeffs, variables);
1216 }
1217 else
1218 {
1219 ASSERTL0(false, "Not Implemented for Parallel-in-Time");
1220 }
1221}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208

References ASSERTL0, m_comm, m_sessionName, and WriteFld().

◆ CopyFromPhysField()

void Nektar::SolverUtils::EquationSystem::CopyFromPhysField ( const int  i,
Array< OneD, NekDouble > &  output 
)
inline

Definition at line 794 of file EquationSystem.h.

796{
797 Vmath::Vcopy(output.size(), m_fields[i]->GetPhys(), 1, output, 1);
798}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References m_fields, and Vmath::Vcopy().

◆ CopyToPhysField()

void Nektar::SolverUtils::EquationSystem::CopyToPhysField ( const int  i,
const Array< OneD, const NekDouble > &  input 
)
inline

Definition at line 800 of file EquationSystem.h.

802{
803 Vmath::Vcopy(input.size(), input, 1, m_fields[i]->UpdatePhys(), 1);
804}

References m_fields, and Vmath::Vcopy().

◆ DoInitialise()

void Nektar::SolverUtils::EquationSystem::DoInitialise ( bool  dumpInitialConditions = true)
inline

Perform any initialisation necessary before solving the problem.

This allows initialisation of the solver which cannot be completed during object construction (such as setting of initial conditions).

Public interface routine to virtual function implementation.

Definition at line 552 of file EquationSystem.h.

553{
554 v_DoInitialise(dumpInitialConditions);
555}
virtual SOLVER_UTILS_EXPORT void v_DoInitialise(bool dumpInitialConditions=true)
Virtual function for initialisation implementation.

References v_DoInitialise().

◆ DoSolve()

void Nektar::SolverUtils::EquationSystem::DoSolve ( void  )
inline

Solve the problem.

Performs the actual solve.

Public interface routine to virtual function implementation.

Definition at line 582 of file EquationSystem.h.

583{
584 v_DoSolve();
585}
virtual SOLVER_UTILS_EXPORT void v_DoSolve()
Virtual function for solve implementation.

References v_DoSolve().

◆ ErrorExtraPoints()

Array< OneD, NekDouble > Nektar::SolverUtils::EquationSystem::ErrorExtraPoints ( unsigned int  field)

Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].

Compute the error in the L2-norm, L-inf for a larger number of quadrature points.

Parameters
fieldThe field to compare.
Returns
Error in the L2-norm and L-inf norm.

Definition at line 899 of file EquationSystem.cpp.

900{
901 int NumModes = GetNumExpModes();
902 Array<OneD, NekDouble> L2INF(2);
903
904 const LibUtilities::PointsKey PkeyT1(m_NumQuadPointsError,
906 const LibUtilities::PointsKey PkeyT2(m_NumQuadPointsError,
907 LibUtilities::eGaussRadauMAlpha1Beta0);
908 const LibUtilities::PointsKey PkeyQ1(m_NumQuadPointsError,
910 const LibUtilities::PointsKey PkeyQ2(m_NumQuadPointsError,
912 const LibUtilities::BasisKey BkeyT1(LibUtilities::eModified_A, NumModes,
913 PkeyT1);
914 const LibUtilities::BasisKey BkeyT2(LibUtilities::eModified_B, NumModes,
915 PkeyT2);
916 const LibUtilities::BasisKey BkeyQ1(LibUtilities::eModified_A, NumModes,
917 PkeyQ1);
918 const LibUtilities::BasisKey BkeyQ2(LibUtilities::eModified_A, NumModes,
919 PkeyQ2);
920
921 LibUtilities::BasisKeyVector Tkeys, Qkeys;
922
923 // make a copy of the ExpansionInfoMap
924 SpatialDomains::ExpansionInfoMap NewExpInfo = m_graph->GetExpansionInfo();
927 NewExpInfo);
928
929 // reset new graph with new keys
930 Tkeys.push_back(BkeyT1);
931 Tkeys.push_back(BkeyT2);
932 m_graph->ResetExpansionInfoToBasisKey(ExpInfo, LibUtilities::eTriangle,
933 Tkeys);
934 Qkeys.push_back(BkeyQ1);
935 Qkeys.push_back(BkeyQ2);
936 m_graph->ResetExpansionInfoToBasisKey(ExpInfo, LibUtilities::eQuadrilateral,
937 Qkeys);
938
941 NewExpInfo);
942
943 int ErrorCoordim = ErrorExp->GetCoordim(0);
944 int ErrorNq = ErrorExp->GetTotPoints();
945
946 Array<OneD, NekDouble> ErrorXc0(ErrorNq, 0.0);
947 Array<OneD, NekDouble> ErrorXc1(ErrorNq, 0.0);
948 Array<OneD, NekDouble> ErrorXc2(ErrorNq, 0.0);
949
950 switch (ErrorCoordim)
951 {
952 case 1:
953 ErrorExp->GetCoords(ErrorXc0);
954 break;
955 case 2:
956 ErrorExp->GetCoords(ErrorXc0, ErrorXc1);
957 break;
958 case 3:
959 ErrorExp->GetCoords(ErrorXc0, ErrorXc1, ErrorXc2);
960 break;
961 }
963 m_session->GetFunction("ExactSolution", field);
964
965 // Evaluate the exact solution
966 Array<OneD, NekDouble> ErrorSol(ErrorNq);
967
968 exSol->Evaluate(ErrorXc0, ErrorXc1, ErrorXc2, m_time, ErrorSol);
969
970 // Calcualte spectral/hp approximation on the quadrature points
971 // of this new expansion basis
972 ErrorExp->BwdTrans(m_fields[field]->GetCoeffs(), ErrorExp->UpdatePhys());
973
974 L2INF[0] = ErrorExp->L2(ErrorExp->GetPhys(), ErrorSol);
975 L2INF[1] = ErrorExp->Linf(ErrorExp->GetPhys(), ErrorSol);
976
977 return L2INF;
978}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
NekDouble m_time
Current time of simulation.
int m_NumQuadPointsError
Number of Quadrature points used to work out the error.
SOLVER_UTILS_EXPORT int GetNumExpModes()
std::vector< BasisKey > BasisKeyVector
Name for a vector of BasisKeys.
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:125
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:49
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
std::shared_ptr< ExpansionInfoMap > ExpansionInfoMapShPtr
Definition: MeshGraph.h:143
std::map< int, ExpansionInfoShPtr > ExpansionInfoMap
Definition: MeshGraph.h:141

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eQuadrilateral, Nektar::LibUtilities::eTriangle, GetNumExpModes(), m_fields, m_graph, m_NumQuadPointsError, m_session, and m_time.

Referenced by Nektar::MMFSWE::v_L2Error(), v_L2Error(), and v_LinfError().

◆ EvaluateExactSolution()

void Nektar::SolverUtils::EquationSystem::EvaluateExactSolution ( int  field,
Array< OneD, NekDouble > &  outfield,
const NekDouble  time 
)
inline

Evaluates an exact solution.

Definition at line 682 of file EquationSystem.h.

684{
685 v_EvaluateExactSolution(field, outfield, time);
686}
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)

References v_EvaluateExactSolution().

Referenced by Nektar::PulseWaveSystem::v_L2Error(), Nektar::MMFSWE::v_LinfError(), and Nektar::PulseWaveSystem::v_LinfError().

◆ ExtraFldOutput()

void Nektar::SolverUtils::EquationSystem::ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
inline

Append the coefficients and name of variables with solver specific extra variables

Parameters
fieldcoeffsVector with coefficients
variablesVector with name of variables

Definition at line 631 of file EquationSystem.h.

634{
635 v_ExtraFldOutput(fieldcoeffs, variables);
636}
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput(std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)

References v_ExtraFldOutput().

Referenced by WriteFld().

◆ FwdTransFields()

void Nektar::SolverUtils::EquationSystem::FwdTransFields ( void  )

FwdTrans the m_fields members

Definition at line 1162 of file EquationSystem.cpp.

1163{
1164 for (int i = 0; i < m_fields.size(); i++)
1165 {
1166 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
1167 m_fields[i]->UpdateCoeffs());
1168 m_fields[i]->SetPhysState(false);
1169 }
1170}

References m_fields.

◆ GetCheckpointNumber()

SOLVER_UTILS_EXPORT int Nektar::SolverUtils::EquationSystem::GetCheckpointNumber ( )
inline

Definition at line 281 of file EquationSystem.h.

282 {
283 return m_nchk;
284 }
int m_nchk
Number of checkpoints written so far.

References m_nchk.

◆ GetCheckpointSteps()

SOLVER_UTILS_EXPORT int Nektar::SolverUtils::EquationSystem::GetCheckpointSteps ( )
inline

Definition at line 291 of file EquationSystem.h.

292 {
293 return m_checksteps;
294 }
int m_checksteps
Number of steps between checkpoints.

References m_checksteps.

◆ GetCoeff_Offset()

int Nektar::SolverUtils::EquationSystem::GetCoeff_Offset ( int  n)
inline

Definition at line 759 of file EquationSystem.h.

760{
761 return m_fields[0]->GetCoeff_Offset(n);
762}

References m_fields.

◆ GetExpSize()

int Nektar::SolverUtils::EquationSystem::GetExpSize ( void  )
inline

◆ GetFunction()

SessionFunctionSharedPtr Nektar::SolverUtils::EquationSystem::GetFunction ( std::string  name,
const MultiRegions::ExpListSharedPtr field = MultiRegions::NullExpListSharedPtr,
bool  cache = false 
)

Get a SessionFunction by name.

Definition at line 741 of file EquationSystem.cpp.

743{
744 MultiRegions::ExpListSharedPtr vField = field;
745 if (!field)
746 {
747 vField = m_fields[0];
748 }
749
750 if (cache)
751 {
752 if ((m_sessionFunctions.find(name) == m_sessionFunctions.end()) ||
753 (m_sessionFunctions[name]->GetSession() != m_session) ||
754 (m_sessionFunctions[name]->GetExpansion() != vField))
755 {
758 m_session, vField, name, cache);
759 }
760
761 return m_sessionFunctions[name];
762 }
763 else
764 {
766 new SessionFunction(m_session, vField, name, cache));
767 }
768}
std::map< std::string, SolverUtils::SessionFunctionSharedPtr > m_sessionFunctions
Map of known SessionFunctions.
std::shared_ptr< SessionFunction > SessionFunctionSharedPtr

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), m_fields, m_session, m_sessionFunctions, and CellMLToNektar.pycml::name.

Referenced by Nektar::CoupledLinearNS::DefineForcingTerm(), Nektar::MMFSWE::EvaluateCoriolis(), Nektar::ShallowWaterSystem::EvaluateCoriolis(), Nektar::ShallowWaterSystem::EvaluateWaterDepth(), Nektar::SmoothedProfileMethod::ReadPhi(), Nektar::VelocityCorrectionScheme::SetUpSVV(), Nektar::SteadyAdvectionDiffusion::v_DoInitialise(), Nektar::CoupledLinearNS::v_DoInitialise(), Nektar::LinearElasticSystem::v_DoSolve(), v_EvaluateExactSolution(), Nektar::Poisson::v_GenerateSummary(), Nektar::PulseWaveSystem::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), Nektar::APE::v_InitObject(), Nektar::LEE::v_InitObject(), Nektar::EigenValuesAdvection::v_InitObject(), Nektar::MMFAdvection::v_InitObject(), Nektar::Poisson::v_InitObject(), Nektar::Projection::v_InitObject(), Nektar::SteadyAdvectionDiffusion::v_InitObject(), Nektar::UnsteadyAdvection::v_InitObject(), v_L2Error(), Nektar::PulseWaveSystem::v_L2Error(), v_LinfError(), Nektar::PulseWaveSystem::v_LinfError(), Nektar::Dummy::v_PostIntegrate(), Nektar::AcousticSystem::v_PreIntegrate(), and v_SetInitialConditions().

◆ GetInfoSteps()

SOLVER_UTILS_EXPORT int Nektar::SolverUtils::EquationSystem::GetInfoSteps ( )
inline

Definition at line 301 of file EquationSystem.h.

302 {
303 return m_infosteps;
304 }

References m_infosteps.

◆ GetNcoeffs() [1/2]

int Nektar::SolverUtils::EquationSystem::GetNcoeffs ( void  )
inline

Definition at line 706 of file EquationSystem.h.

707{
708 return m_fields[0]->GetNcoeffs();
709}

References m_fields.

Referenced by Nektar::LinearSWE::AddCoriolis(), Nektar::NonlinearPeregrine::AddCoriolis(), Nektar::NonlinearSWE::AddCoriolis(), Nektar::NonlinearPeregrine::AddVariableDepth(), Nektar::NonlinearSWE::AddVariableDepth(), Nektar::CoupledLinearNS::DefineForcingTerm(), Nektar::MMFAdvection::DoOdeProjection(), Nektar::UnsteadyDiffusion::DoOdeProjection(), Nektar::UnsteadyInviscidBurgers::DoOdeProjection(), Nektar::LinearSWE::DoOdeProjection(), Nektar::NonlinearPeregrine::DoOdeProjection(), Nektar::NonlinearSWE::DoOdeProjection(), Nektar::MMFMaxwell::DoOdeRhs(), Nektar::MMFSWE::DoOdeRhs(), Nektar::NonlinearPeregrine::DoOdeRhs(), Nektar::CFSImplicit::DoOdeRhsCoeff(), ImportFld(), ImportFldToMultiDomains(), Nektar::CFSImplicit::MultiplyElmtInvMassPlusSource(), Nektar::VelocityCorrectionScheme::SetupFlowrate(), Nektar::CoupledLinearNS::Solve(), Nektar::CoupledLinearNS::SolveLinearNS(), Nektar::CoupledLinearNS::SolveSteadyNavierStokes(), Nektar::CoupledLinearNS::SolveUnsteadyStokesSystem(), Nektar::LEE::v_AddLinTerm(), Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff(), Nektar::EigenValuesAdvection::v_DoSolve(), Nektar::Laplace::v_DoSolve(), Nektar::Projection::v_DoSolve(), Nektar::SteadyAdvectionDiffusion::v_DoSolve(), Nektar::AcousticSystem::v_ExtraFldOutput(), Nektar::CoupledLinearNS::v_Output(), v_SetInitialConditions(), Nektar::MMFAdvection::WeakDGDirectionalAdvection(), Nektar::MMFMaxwell::WeakDGMaxwellDirDeriv(), Nektar::MMFSWE::WeakDGSWEDirDeriv(), WriteFld(), and Nektar::PulseWaveSystem::WriteVessels().

◆ GetNcoeffs() [2/2]

int Nektar::SolverUtils::EquationSystem::GetNcoeffs ( const int  eid)
inline

Definition at line 711 of file EquationSystem.h.

712{
713 return m_fields[0]->GetNcoeffs(eid);
714}

References m_fields.

◆ GetNpoints()

int Nektar::SolverUtils::EquationSystem::GetNpoints ( void  )
inline

Definition at line 774 of file EquationSystem.h.

775{
776 return m_fields[0]->GetNpoints();
777}

References m_fields.

Referenced by Nektar::SolverUtils::UnsteadySystem::AppendOutput1D(), Nektar::MMFMaxwell::ComputeMaterialMicroWaveCloak(), Nektar::MMFMaxwell::ComputeMaterialOpticalCloak(), Nektar::MMFMaxwell::ComputeRadCloak(), Nektar::SolverUtils::UnsteadySystem::DoDummyProjection(), Nektar::MMFAdvection::DoOdeProjection(), Nektar::UnsteadyAdvection::DoOdeProjection(), Nektar::UnsteadyDiffusion::DoOdeProjection(), Nektar::UnsteadyInviscidBurgers::DoOdeProjection(), Nektar::CompressibleFlowSystem::DoOdeProjection(), Nektar::ImageWarpingSystem::DoOdeProjection(), Nektar::MMFMaxwell::DoOdeProjection(), Nektar::LinearSWE::DoOdeProjection(), Nektar::NonlinearPeregrine::DoOdeProjection(), Nektar::NonlinearSWE::DoOdeProjection(), Nektar::MMFAdvection::DoOdeRhs(), Nektar::UnsteadyAdvection::DoOdeRhs(), Nektar::UnsteadyAdvectionDiffusion::DoOdeRhs(), Nektar::UnsteadyInviscidBurgers::DoOdeRhs(), Nektar::UnsteadyViscousBurgers::DoOdeRhs(), Nektar::CompressibleFlowSystem::DoOdeRhs(), Nektar::ImageWarpingSystem::DoOdeRhs(), Nektar::SolverUtils::FileSolution::DoOdeRhs(), Nektar::UnsteadyInviscidBurgers::GetFluxVector(), Nektar::UnsteadyInviscidBurgers::GetNormalVelocity(), Nektar::CFSImplicit::NumCalcRiemFluxJac(), Nektar::CoupledLinearNS::Solve(), Nektar::NavierStokesCFE::v_DoDiffusion(), Nektar::NavierStokesCFEAxisym::v_DoDiffusion(), Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff(), Nektar::EigenValuesAdvection::v_DoSolve(), Nektar::LinearElasticSystem::v_DoSolve(), Nektar::SolverUtils::FileSolution::v_GetDensity(), Nektar::NavierStokesCFEAxisym::v_InitObject(), Nektar::MMFSWE::v_L2Error(), v_L2Error(), Nektar::PulseWaveSystem::v_L2Error(), v_LinfError(), Nektar::PulseWaveSystem::v_LinfError(), Nektar::MMFMaxwell::WeakDGMaxwellDirDeriv(), Nektar::MMFSWE::WeakDGSWEDirDeriv(), and ZeroPhysFields().

◆ GetNumExpModes()

int Nektar::SolverUtils::EquationSystem::GetNumExpModes ( void  )
inline

Definition at line 716 of file EquationSystem.h.

717{
718 return m_graph->GetExpansionInfo()
719 .begin()
720 ->second->m_basisKeyVector[0]
721 .GetNumModes();
722}

References m_graph.

Referenced by ErrorExtraPoints().

◆ GetNumExpModesPerExp()

const Array< OneD, int > Nektar::SolverUtils::EquationSystem::GetNumExpModesPerExp ( void  )
inline

Definition at line 724 of file EquationSystem.h.

725{
726 return m_fields[0]->EvalBasisNumModesMaxPerExp();
727}

References m_fields.

Referenced by Nektar::SolverUtils::AdvectionSystem::GetElmtCFLVals().

◆ GetNvariables()

int Nektar::SolverUtils::EquationSystem::GetNvariables ( void  )
inline

Definition at line 729 of file EquationSystem.h.

730{
731 return m_session->GetVariables().size();
732}

References m_session.

Referenced by ImportFldToMultiDomains().

◆ GetPhys_Offset()

int Nektar::SolverUtils::EquationSystem::GetPhys_Offset ( int  n)
inline

Definition at line 754 of file EquationSystem.h.

755{
756 return m_fields[0]->GetPhys_Offset(n);
757}

References m_fields.

Referenced by Nektar::CFSImplicit::AddMatNSBlkDiagVol(), and Nektar::IncNavierStokes::SetRadiationBoundaryForcing().

◆ GetPressure()

MultiRegions::ExpListSharedPtr Nektar::SolverUtils::EquationSystem::GetPressure ( void  )
inline

Get pressure field if available.

Get Pressure field if available

Definition at line 619 of file EquationSystem.h.

620{
621 return v_GetPressure();
622}
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure(void)

References v_GetPressure().

◆ GetSession()

SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr Nektar::SolverUtils::EquationSystem::GetSession ( )
inline

Get Session name.

Definition at line 118 of file EquationSystem.h.

119 {
120 return m_session;
121 }

References m_session.

◆ GetSessionName()

SOLVER_UTILS_EXPORT std::string Nektar::SolverUtils::EquationSystem::GetSessionName ( )
inline

Get Session name.

Definition at line 101 of file EquationSystem.h.

102 {
103 return m_sessionName;
104 }

References m_sessionName.

◆ GetSteps()

int Nektar::SolverUtils::EquationSystem::GetSteps ( void  )
inline

Definition at line 779 of file EquationSystem.h.

780{
781 return m_steps;
782}
int m_steps
Number of steps to take.

References m_steps.

◆ GetTime()

NekDouble Nektar::SolverUtils::EquationSystem::GetTime ( )
inline

Return final time.

Return time.

Definition at line 701 of file EquationSystem.h.

702{
703 return m_time;
704}

References m_time.

◆ GetTimeStep()

NekDouble Nektar::SolverUtils::EquationSystem::GetTimeStep ( void  )
inline

Definition at line 784 of file EquationSystem.h.

785{
786 return m_timestep;
787}
NekDouble m_timestep
Time step size.

References m_timestep.

Referenced by Nektar::SolverUtils::UnsteadySystem::GetTimeStep().

◆ GetTotPoints() [1/2]

int Nektar::SolverUtils::EquationSystem::GetTotPoints ( void  )
inline

Definition at line 764 of file EquationSystem.h.

765{
766 return m_fields[0]->GetNpoints();
767}

References m_fields.

Referenced by Nektar::LinearSWE::AddCoriolis(), Nektar::NonlinearPeregrine::AddCoriolis(), Nektar::NonlinearSWE::AddCoriolis(), Nektar::SolverUtils::MMFSystem::AdddedtMaxwell(), Nektar::NonlinearPeregrine::AddVariableDepth(), Nektar::NonlinearSWE::AddVariableDepth(), Nektar::SolverUtils::UnsteadySystem::CheckSteadyState(), Nektar::SolverUtils::MMFSystem::Computedemdxicdote(), Nektar::MMFMaxwell::ComputeEnergyDensity(), Nektar::LinearSWE::ConservativeToPrimitive(), Nektar::MMFSWE::ConservativeToPrimitive(), Nektar::NonlinearPeregrine::ConservativeToPrimitive(), Nektar::NonlinearSWE::ConservativeToPrimitive(), Nektar::CoupledLinearNS::Continuation(), Nektar::CoupledLinearNS::DefineForcingTerm(), Nektar::SolverUtils::MMFSystem::DeriveCrossProductMF(), Nektar::AcousticSystem::DoOdeRhs(), Nektar::MMFDiffusion::DoOdeRhs(), Nektar::Dummy::DoOdeRhs(), Nektar::MMFMaxwell::DoOdeRhs(), Nektar::LinearSWE::DoOdeRhs(), Nektar::MMFSWE::DoOdeRhs(), Nektar::NonlinearPeregrine::DoOdeRhs(), Nektar::NonlinearSWE::DoOdeRhs(), Nektar::MMFMaxwell::EvaluateCoriolis(), Nektar::MMFSWE::EvaluateCoriolisForZonalFlow(), Nektar::CompressibleFlowSystem::EvaluateIsentropicVortex(), Nektar::CoupledLinearNS::EvaluateNewtonRHS(), Nektar::MMFSWE::EvaluateStandardCoriolis(), Nektar::MMFSWE::EvaluateWaterDepth(), Nektar::CompressibleFlowSystem::GetExactRinglebFlow(), Nektar::MMFSWE::IsolatedMountainFlow(), Nektar::NonlinearPeregrine::LaitoneSolitaryWave(), Nektar::MMFDiffusion::Morphogenesis(), Nektar::CFSImplicit::MultiplyElmtInvMassPlusSource(), Nektar::MMFDiffusion::PlanePhiWave(), Nektar::LinearSWE::PrimitiveToConservative(), Nektar::MMFSWE::PrimitiveToConservative(), Nektar::NonlinearPeregrine::PrimitiveToConservative(), Nektar::NonlinearSWE::PrimitiveToConservative(), Nektar::MMFSWE::RossbyWave(), Nektar::CoupledLinearNS::SetUpCoupledMatrix(), Nektar::CoupledLinearNS::SolveSteadyNavierStokes(), Nektar::MMFSWE::SteadyZonalFlow(), Nektar::MMFDiffusion::TestCubeProblem(), Nektar::MMFDiffusion::TestPlaneProblem(), Nektar::MMFSWE::UnstableJetFlow(), Nektar::MMFSWE::UnsteadyZonalFlow(), Nektar::LEE::v_AddLinTerm(), Nektar::NavierStokesImplicitCFE::v_CalcPhysDeriv(), Nektar::LinearSWE::v_ConservativeToPrimitive(), Nektar::NonlinearPeregrine::v_ConservativeToPrimitive(), Nektar::NonlinearSWE::v_ConservativeToPrimitive(), Nektar::VCSImplicit::v_DoInitialise(), Nektar::CoupledLinearNS::v_DoInitialise(), Nektar::VCSMapping::v_DoInitialise(), Nektar::VelocityCorrectionScheme::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoSolve(), Nektar::SteadyAdvectionDiffusion::v_DoSolve(), Nektar::MMFMaxwell::v_DoSolve(), Nektar::MMFDiffusion::v_EvaluateExactSolution(), Nektar::CompressibleFlowSystem::v_GetMaxStdVelocity(), Nektar::APE::v_InitObject(), Nektar::LEE::v_InitObject(), Nektar::ShallowWaterSystem::v_InitObject(), Nektar::Dummy::v_Output(), Nektar::LinearSWE::v_PrimitiveToConservative(), Nektar::NonlinearPeregrine::v_PrimitiveToConservative(), Nektar::NonlinearSWE::v_PrimitiveToConservative(), Nektar::MMFMaxwell::v_SetInitialConditions(), Nektar::MMFSWE::v_SetInitialConditions(), Nektar::MMFDiffusion::v_SetInitialConditions(), Nektar::SolverUtils::UnsteadySystem::v_SteadyStateResidual(), Nektar::CompressibleFlowSystem::v_SteadyStateResidual(), and Nektar::NonlinearPeregrine::WCESolve().

◆ GetTotPoints() [2/2]

int Nektar::SolverUtils::EquationSystem::GetTotPoints ( int  n)
inline

Definition at line 769 of file EquationSystem.h.

770{
771 return m_fields[0]->GetTotPoints(n);
772}

References m_fields.

◆ GetTraceNormals()

SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > Nektar::SolverUtils::EquationSystem::GetTraceNormals ( )
inline

Definition at line 321 of file EquationSystem.h.

322 {
323 return m_traceNormals;
324 }
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.

References m_traceNormals.

◆ GetTraceNpoints()

int Nektar::SolverUtils::EquationSystem::GetTraceNpoints ( void  )
inline

◆ GetTraceTotPoints()

int Nektar::SolverUtils::EquationSystem::GetTraceTotPoints ( void  )
inline

Definition at line 739 of file EquationSystem.h.

740{
741 return GetTraceNpoints();
742}
SOLVER_UTILS_EXPORT int GetTraceNpoints()

References GetTraceNpoints().

Referenced by Nektar::SolverUtils::MMFSystem::AverageMaxwellFlux1D(), Nektar::SolverUtils::MMFSystem::ComputeMFtrace(), Nektar::SolverUtils::MMFSystem::ComputeNtimesF12(), Nektar::SolverUtils::MMFSystem::ComputeNtimesFz(), Nektar::SolverUtils::MMFSystem::ComputeNtimestimesdF12(), Nektar::SolverUtils::MMFSystem::ComputeNtimestimesdFz(), Nektar::MMFMaxwell::ComputeSurfaceCurrent(), Nektar::CompressibleFlowSystem::DoOdeRhs(), Nektar::NonlinearPeregrine::DoOdeRhs(), Nektar::CFSImplicit::DoOdeRhsCoeff(), Nektar::CFSImplicit::GetTraceJac(), Nektar::SolverUtils::MMFSystem::LaxFriedrichMaxwellFlux1D(), Nektar::CFSImplicit::NumCalcRiemFluxJac(), Nektar::NonlinearPeregrine::NumericalFluxConsVariables(), Nektar::NonlinearPeregrine::NumericalFluxForcing(), Nektar::SolverUtils::MMFSystem::NumericalMaxwellFluxTE(), Nektar::SolverUtils::MMFSystem::NumericalMaxwellFluxTM(), Nektar::MMFSWE::NumericalSWEFlux(), Nektar::MMFMaxwell::Printout_SurfaceCurrent(), Nektar::AcousticSystem::SetBoundaryConditions(), Nektar::CompressibleFlowSystem::SetBoundaryConditions(), Nektar::LinearSWE::SetBoundaryConditions(), Nektar::NonlinearPeregrine::SetBoundaryConditions(), Nektar::NonlinearSWE::SetBoundaryConditions(), Nektar::SolverUtils::MMFSystem::UpwindMaxwellFlux1D(), Nektar::NavierStokesCFE::v_DoDiffusion(), Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff(), Nektar::NavierStokesCFE::v_ExtraFldOutput(), Nektar::PulseWaveSystem::v_InitObject(), Nektar::MMFSWE::WallBoundary2D(), Nektar::NonlinearPeregrine::WallBoundaryContVariables(), and Nektar::NonlinearPeregrine::WallBoundaryForcing().

◆ GetVariable()

const std::string Nektar::SolverUtils::EquationSystem::GetVariable ( unsigned int  i)
inline

Definition at line 734 of file EquationSystem.h.

735{
736 return m_session->GetVariable(i);
737}

References m_session.

◆ ImportFld() [1/3]

void Nektar::SolverUtils::EquationSystem::ImportFld ( const std::string &  infile,
Array< OneD, MultiRegions::ExpListSharedPtr > &  pFields 
)

Input field data from the given file.

Import field from infile and load into m_fields. This routine will also perform a BwdTrans to ensure data is in both the physical and coefficient storage.

Parameters
infileFilename to read.

Definition at line 1334 of file EquationSystem.cpp.

1337{
1338 std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef;
1339 std::vector<std::vector<NekDouble>> FieldData;
1342 field_fld->Import(infile, FieldDef, FieldData);
1343
1344 // Copy FieldData into m_fields
1345 for (int j = 0; j < pFields.size(); ++j)
1346 {
1347 Vmath::Zero(pFields[j]->GetNcoeffs(), pFields[j]->UpdateCoeffs(), 1);
1348
1349 for (int i = 0; i < FieldDef.size(); ++i)
1350 {
1351 ASSERTL1(FieldDef[i]->m_fields[j] == m_session->GetVariable(j),
1352 std::string("Order of ") + infile +
1353 std::string(" data and that defined in "
1354 "m_boundaryconditions differs"));
1355
1356 pFields[j]->ExtractDataToCoeffs(FieldDef[i], FieldData[i],
1357 FieldDef[i]->m_fields[j],
1358 pFields[j]->UpdateCoeffs());
1359 }
1360 pFields[j]->BwdTrans(pFields[j]->GetCoeffs(), pFields[j]->UpdatePhys());
1361 }
1362}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
static std::shared_ptr< FieldIO > CreateForFile(const LibUtilities::SessionReaderSharedPtr session, const std::string &filename)
Construct a FieldIO object for a given input filename.
Definition: FieldIO.cpp:224
SOLVER_UTILS_EXPORT int GetNcoeffs()
std::shared_ptr< FieldIO > FieldIOSharedPtr
Definition: FieldIO.h:322
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273

References ASSERTL1, Nektar::LibUtilities::FieldIO::CreateForFile(), GetNcoeffs(), m_fields, m_session, and Vmath::Zero().

◆ ImportFld() [2/3]

void Nektar::SolverUtils::EquationSystem::ImportFld ( const std::string &  infile,
MultiRegions::ExpListSharedPtr pField,
std::string &  pFieldName 
)

Output a field. Input field data into ExpList from the given file.

Import field from infile and load into pField. This routine will also perform a BwdTrans to ensure data is in both the physical and coefficient storage.

Definition at line 1418 of file EquationSystem.cpp.

1421{
1422 std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef;
1423 std::vector<std::vector<NekDouble>> FieldData;
1424
1427 field_fld->Import(infile, FieldDef, FieldData);
1428 int idx = -1;
1429
1430 Vmath::Zero(pField->GetNcoeffs(), pField->UpdateCoeffs(), 1);
1431
1432 for (int i = 0; i < FieldDef.size(); ++i)
1433 {
1434 // find the index of the required field in the file.
1435 for (int j = 0; j < FieldData.size(); ++j)
1436 {
1437 if (FieldDef[i]->m_fields[j] == pFieldName)
1438 {
1439 idx = j;
1440 }
1441 }
1442 ASSERTL1(idx >= 0, "Field " + pFieldName + " not found.");
1443
1444 pField->ExtractDataToCoeffs(FieldDef[i], FieldData[i],
1445 FieldDef[i]->m_fields[idx],
1446 pField->UpdateCoeffs());
1447 }
1448 pField->BwdTrans(pField->GetCoeffs(), pField->UpdatePhys());
1449}

References ASSERTL1, Nektar::LibUtilities::FieldIO::CreateForFile(), m_fields, m_session, and Vmath::Zero().

◆ ImportFld() [3/3]

void Nektar::SolverUtils::EquationSystem::ImportFld ( const std::string &  infile,
std::vector< std::string > &  fieldStr,
Array< OneD, Array< OneD, NekDouble > > &  coeffs 
)

Output a field. Input field data into array from the given file.

Import field from infile and load into the array coeffs.

Parameters
infileFilename to read.
fieldStran array of string identifying fields to be imported
coeffsarray of array of coefficients to store imported data

Definition at line 1458 of file EquationSystem.cpp.

1461{
1462
1463 ASSERTL0(fieldStr.size() <= coeffs.size(),
1464 "length of fieldstr should be the same as coeffs");
1465
1466 std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef;
1467 std::vector<std::vector<NekDouble>> FieldData;
1468
1471 field_fld->Import(infile, FieldDef, FieldData);
1472
1473 // Copy FieldData into m_fields
1474 for (int j = 0; j < fieldStr.size(); ++j)
1475 {
1476 Vmath::Zero(coeffs[j].size(), coeffs[j], 1);
1477 for (int i = 0; i < FieldDef.size(); ++i)
1478 {
1479 m_fields[0]->ExtractDataToCoeffs(FieldDef[i], FieldData[i],
1480 fieldStr[j], coeffs[j]);
1481 }
1482 }
1483}

References ASSERTL0, Nektar::LibUtilities::FieldIO::CreateForFile(), m_fields, m_session, and Vmath::Zero().

◆ ImportFldToMultiDomains()

void Nektar::SolverUtils::EquationSystem::ImportFldToMultiDomains ( const std::string &  infile,
Array< OneD, MultiRegions::ExpListSharedPtr > &  pFields,
const int  ndomains 
)

Input field data from the given file to multiple domains.

Import field from infile and load into m_fields. This routine will also perform a BwdTrans to ensure data is in both the physical and coefficient storage.

Parameters
infileFilename to read. If optionan ndomains is specified it assumes we loop over nodmains for each nvariables.

Definition at line 1372 of file EquationSystem.cpp.

1375{
1376 std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef;
1377 std::vector<std::vector<NekDouble>> FieldData;
1378
1379 LibUtilities::Import(infile, FieldDef, FieldData);
1380
1381 int nvariables = GetNvariables();
1382
1383 ASSERTL0(
1384 ndomains * nvariables == pFields.size(),
1385 "Number of fields does not match the number of variables and domains");
1386
1387 // Copy FieldData into m_fields
1388 for (int j = 0; j < ndomains; ++j)
1389 {
1390 for (int i = 0; i < nvariables; ++i)
1391 {
1392 Vmath::Zero(pFields[j * nvariables + i]->GetNcoeffs(),
1393 pFields[j * nvariables + i]->UpdateCoeffs(), 1);
1394
1395 for (int n = 0; n < FieldDef.size(); ++n)
1396 {
1397 ASSERTL1(FieldDef[n]->m_fields[i] == m_session->GetVariable(i),
1398 std::string("Order of ") + infile +
1399 std::string(" data and that defined in "
1400 "m_boundaryconditions differs"));
1401
1402 pFields[j * nvariables + i]->ExtractDataToCoeffs(
1403 FieldDef[n], FieldData[n], FieldDef[n]->m_fields[i],
1404 pFields[j * nvariables + i]->UpdateCoeffs());
1405 }
1406 pFields[j * nvariables + i]->BwdTrans(
1407 pFields[j * nvariables + i]->GetCoeffs(),
1408 pFields[j * nvariables + i]->UpdatePhys());
1409 }
1410 }
1411}
SOLVER_UTILS_EXPORT int GetNvariables()
void Import(const std::string &infilename, std::vector< FieldDefinitionsSharedPtr > &fielddefs, std::vector< std::vector< NekDouble > > &fielddata, FieldMetaDataMap &fieldinfomap, const Array< OneD, int > &ElementIDs)
This function allows for data to be imported from an FLD file when a session and/or communicator is n...
Definition: FieldIO.cpp:288

References ASSERTL0, ASSERTL1, GetNcoeffs(), GetNvariables(), Nektar::LibUtilities::Import(), m_fields, m_session, and Vmath::Zero().

◆ InitObject()

void Nektar::SolverUtils::EquationSystem::InitObject ( bool  DeclareField = true)
inline

Initialises the members of this object.

This is the second part of the two-phase initialisation process. Calls to virtual functions will correctly resolve to the derived class during this phase of the construction.

Definition at line 541 of file EquationSystem.h.

542{
543 v_InitObject(DeclareField);
544}
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareFeld=true)
Initialisation object for EquationSystem.

References v_InitObject().

◆ L2Error() [1/2]

SOLVER_UTILS_EXPORT NekDouble Nektar::SolverUtils::EquationSystem::L2Error ( unsigned int  field,
bool  Normalised = false 
)
inline

Compute the L2 error of the fields.

Definition at line 159 of file EquationSystem.h.

161 {
162 return L2Error(field, NullNekDouble1DArray, Normalised);
163 }
SOLVER_UTILS_EXPORT NekDouble L2Error(unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
Compute the L2 error between fields and a given exact solution.
static Array< OneD, NekDouble > NullNekDouble1DArray

References L2Error(), and Nektar::NullNekDouble1DArray.

◆ L2Error() [2/2]

NekDouble Nektar::SolverUtils::EquationSystem::L2Error ( unsigned int  field,
const Array< OneD, NekDouble > &  exactsoln,
bool  Normalised = false 
)
inline

Compute the L2 error between fields and a given exact solution.

L_2 Error computation Public interface routine to virtual function implementation.

Definition at line 609 of file EquationSystem.h.

612{
613 return v_L2Error(field, exactsoln, Normalised);
614}
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error(unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
Virtual function for the L_2 error computation between fields and a given exact solution.

References v_L2Error().

Referenced by L2Error().

◆ LinfError()

NekDouble Nektar::SolverUtils::EquationSystem::LinfError ( unsigned int  field,
const Array< OneD, NekDouble > &  exactsoln = NullNekDouble1DArray 
)
inline

Linf error computation.

L_inf Error computation Public interface routine to virtual function implementation.

Definition at line 599 of file EquationSystem.h.

601{
602 return v_LinfError(field, exactsoln);
603}
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError(unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
Virtual function for the L_inf error computation between fields and a given exact solution.

References v_LinfError().

Referenced by Nektar::MMFSWE::v_LinfError().

◆ NegatedOp()

bool Nektar::SolverUtils::EquationSystem::NegatedOp ( void  )
inline

Identify if operator is negated in DoSolve.

Definition at line 689 of file EquationSystem.h.

690{
691 return v_NegatedOp();
692}
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp(void)
Virtual function to identify if operator is negated in DoSolve.

References v_NegatedOp().

◆ Output()

void Nektar::SolverUtils::EquationSystem::Output ( void  )
inline

Perform output operations after solve.

Perform output operations after solve.

Definition at line 590 of file EquationSystem.h.

591{
592 v_Output();
593}
virtual SOLVER_UTILS_EXPORT void v_Output(void)

References v_Output().

◆ PrintProgressbar()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::PrintProgressbar ( const int  position,
const int  goal 
) const
inlineprivate

Definition at line 529 of file EquationSystem.h.

531 {
532 LibUtilities::PrintProgressbar(position, goal, "Interpolating");
533 }
int PrintProgressbar(const int position, const int goal, const std::string message, int lastprogress=-1)
Prints a progressbar.
Definition: Progressbar.hpp:65

References Nektar::LibUtilities::PrintProgressbar().

◆ PrintSummary()

void Nektar::SolverUtils::EquationSystem::PrintSummary ( std::ostream &  out)
inline

Print a summary of parameters and solver characteristics.

Prints a summary of variables and problem parameters.

Public interface routine to virtual function implementation.

Parameters
outThe ostream object to write to.

Definition at line 645 of file EquationSystem.h.

646{
647 if (m_session->GetComm()->GetRank() == 0)
648 {
649 std::vector<std::pair<std::string, std::string>> vSummary;
650 v_GenerateSummary(vSummary);
651
652 out << "==============================================================="
653 "========"
654 << std::endl
655 << std::flush;
656 for (auto &x : vSummary)
657 {
658 out << "\t";
659 out.width(20);
660 out << x.first << ": " << x.second << std::endl << std::flush;
661 }
662 out << "==============================================================="
663 "========"
664 << std::endl
665 << std::flush;
666 }
667}
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &l)
Virtual function for generating summary information.

References m_session, and v_GenerateSummary().

◆ ResetSessionName()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::ResetSessionName ( std::string  newname)
inline

Reset Session name.

Definition at line 112 of file EquationSystem.h.

113 {
114 m_sessionName = newname;
115 }

References m_sessionName.

◆ SessionSummary()

void Nektar::SolverUtils::EquationSystem::SessionSummary ( SummaryList s)

Write out a session summary.

Write out a summary of the session data.

Parameters
outOutput stream to write data to.

Definition at line 1489 of file EquationSystem.cpp.

1490{
1491 AddSummaryItem(s, "EquationType", m_session->GetSolverInfo("EQTYPE"));
1492 AddSummaryItem(s, "Session Name", m_sessionName);
1493 AddSummaryItem(s, "Spatial Dim.", m_spacedim);
1494 AddSummaryItem(s, "Max SEM Exp. Order",
1495 m_fields[0]->EvalBasisNumModesMax());
1496
1497 if (m_session->GetComm()->GetSize() > 1)
1498 {
1499 AddSummaryItem(s, "Num. Processes", m_session->GetComm()->GetSize());
1500 }
1501
1503 {
1504 AddSummaryItem(s, "Quasi-3D", "Homogeneous in z-direction");
1505 AddSummaryItem(s, "Expansion Dim.", m_expdim + 1);
1506 AddSummaryItem(s, "Num. Hom. Modes (z)", m_npointsZ);
1507 AddSummaryItem(s, "Hom. length (LZ)", m_LhomZ);
1508 AddSummaryItem(s, "FFT Type", m_useFFT ? "FFTW" : "MVM");
1509 if (m_halfMode)
1510 {
1511 AddSummaryItem(s, "ModeType", "Half Mode");
1512 }
1513 else if (m_singleMode)
1514 {
1515 AddSummaryItem(s, "ModeType", "Single Mode");
1516 }
1517 else if (m_multipleModes)
1518 {
1519 AddSummaryItem(s, "ModeType", "Multiple Modes");
1520 }
1521 }
1523 {
1524 AddSummaryItem(s, "Quasi-3D", "Homogeneous in yz-plane");
1525 AddSummaryItem(s, "Expansion Dim.", m_expdim + 2);
1526 AddSummaryItem(s, "Num. Hom. Modes (y)", m_npointsY);
1527 AddSummaryItem(s, "Num. Hom. Modes (z)", m_npointsZ);
1528 AddSummaryItem(s, "Hom. length (LY)", m_LhomY);
1529 AddSummaryItem(s, "Hom. length (LZ)", m_LhomZ);
1530 AddSummaryItem(s, "FFT Type", m_useFFT ? "FFTW" : "MVM");
1531 }
1532 else
1533 {
1534 AddSummaryItem(s, "Expansion Dim.", m_expdim);
1535 }
1536
1537 if (m_session->DefinesSolverInfo("UpwindType"))
1538 {
1539 AddSummaryItem(s, "Riemann Solver",
1540 m_session->GetSolverInfo("UpwindType"));
1541 }
1542
1543 if (m_session->DefinesSolverInfo("AdvectionType"))
1544 {
1545 std::string AdvectionType;
1546 AdvectionType = m_session->GetSolverInfo("AdvectionType");
1548 s, "Advection Type",
1549 GetAdvectionFactory().GetClassDescription(AdvectionType));
1550 }
1551
1553 {
1554 AddSummaryItem(s, "Projection Type", "Continuous Galerkin");
1555 }
1557 {
1558 AddSummaryItem(s, "Projection Type", "Discontinuous Galerkin");
1559 }
1561 {
1562 AddSummaryItem(s, "Projection Type",
1563 "Mixed Continuous Galerkin and Discontinuous");
1564 }
1565
1566 if (m_session->DefinesSolverInfo("DiffusionType"))
1567 {
1568 std::string DiffusionType;
1569 DiffusionType = m_session->GetSolverInfo("DiffusionType");
1571 s, "Diffusion Type",
1572 GetDiffusionFactory().GetClassDescription(DiffusionType));
1573 }
1574}
int m_spacedim
Spatial dimension (>= expansion dim).
bool m_useFFT
Flag to determine if FFT is used for homogeneous transform.
int m_expdim
Expansion dimension.
bool m_multipleModes
Flag to determine if use multiple homogenenous modes are used.
int m_npointsZ
number of points in Z direction (if homogeneous)
NekDouble m_LhomY
physical length in Y direction (if homogeneous)
int m_npointsY
number of points in Y direction (if homogeneous)
bool m_singleMode
Flag to determine if single homogeneous mode is used.
enum HomogeneousType m_HomogeneousType
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
NekDouble m_LhomZ
physical length in Z direction (if homogeneous)
bool m_halfMode
Flag to determine if half homogeneous mode is used.
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
DiffusionFactory & GetDiffusionFactory()
Definition: Diffusion.cpp:39
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, eHomogeneous1D, eHomogeneous2D, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::GetAdvectionFactory(), Nektar::SolverUtils::GetDiffusionFactory(), m_expdim, m_fields, m_halfMode, m_HomogeneousType, m_LhomY, m_LhomZ, m_multipleModes, m_npointsY, m_npointsZ, m_projectionType, m_session, m_sessionName, m_singleMode, m_spacedim, and m_useFFT.

Referenced by Nektar::Laplace::v_GenerateSummary(), Nektar::Projection::v_GenerateSummary(), Nektar::LinearElasticSystem::v_GenerateSummary(), and v_GenerateSummary().

◆ SetBoundaryConditions()

void Nektar::SolverUtils::EquationSystem::SetBoundaryConditions ( NekDouble  time)

Evaluates the boundary conditions at the given time.

If boundary conditions are time-dependent, they will be evaluated at the time specified.

Parameters
timeThe time at which to evaluate the BCs

Definition at line 775 of file EquationSystem.cpp.

776{
777 std::string varName;
778 int nvariables = m_fields.size();
779 for (int i = 0; i < nvariables; ++i)
780 {
781 varName = m_session->GetVariable(i);
782 m_fields[i]->EvaluateBoundaryConditions(time, varName);
783 }
784}

References m_fields, and m_session.

Referenced by Nektar::UnsteadyAdvectionDiffusion::DoImplicitSolve(), Nektar::UnsteadyViscousBurgers::DoImplicitSolve(), Nektar::MMFDiffusion::DoImplicitSolve(), Nektar::MMFAdvection::DoOdeProjection(), Nektar::UnsteadyAdvection::DoOdeProjection(), Nektar::UnsteadyDiffusion::DoOdeProjection(), Nektar::UnsteadyInviscidBurgers::DoOdeProjection(), Nektar::ImageWarpingSystem::DoOdeProjection(), Nektar::LinearSWE::DoOdeProjection(), Nektar::NonlinearPeregrine::DoOdeProjection(), Nektar::NonlinearSWE::DoOdeProjection(), Nektar::PulseWavePropagation::SetPulseWaveBoundaryConditions(), Nektar::SolverUtils::FileSolution::v_DoInitialise(), and Nektar::SolverUtils::UnsteadySystem::v_DoInitialise().

◆ SetCheckpointNumber()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetCheckpointNumber ( int  num)
inline

Definition at line 286 of file EquationSystem.h.

287 {
288 m_nchk = num;
289 }

References m_nchk.

◆ SetCheckpointSteps()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetCheckpointSteps ( int  num)
inline

Definition at line 296 of file EquationSystem.h.

297 {
298 m_checksteps = num;
299 }

References m_checksteps.

◆ SetInfoSteps()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetInfoSteps ( int  num)
inline

Definition at line 306 of file EquationSystem.h.

307 {
308 m_infosteps = num;
309 }

References m_infosteps.

◆ SetInitialConditions()

void Nektar::SolverUtils::EquationSystem::SetInitialConditions ( NekDouble  initialtime = 0.0,
bool  dumpInitialConditions = true,
const int  domain = 0 
)
inline

Initialise the data in the dependent fields.

Definition at line 674 of file EquationSystem.h.

677{
678 v_SetInitialConditions(initialtime, dumpInitialConditions, domain);
679}
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)

References v_SetInitialConditions().

Referenced by main(), Nektar::PulseWaveSystem::v_DoInitialise(), Nektar::MMFSWE::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoInitialise(), and Nektar::CoupledLinearNS::v_DoInitialise().

◆ SetInitialStep()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetInitialStep ( const int  step)
inline

Definition at line 336 of file EquationSystem.h.

337 {
338 m_initialStep = step;
339 }
int m_initialStep
Number of the step where the simulation should begin.

References m_initialStep.

◆ SetIterationNumberPIT()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetIterationNumberPIT ( int  num)
inline

Definition at line 311 of file EquationSystem.h.

312 {
313 m_iterPIT = num;
314 }

References m_iterPIT.

◆ SetLambda()

void Nektar::SolverUtils::EquationSystem::SetLambda ( NekDouble  lambda)
inline

Set parameter m_lambda.

Definition at line 669 of file EquationSystem.h.

670{
671 m_lambda = lambda;
672}

References m_lambda.

◆ SetModifiedBasis()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetModifiedBasis ( const bool  modbasis)
inline

◆ SetSteps()

void Nektar::SolverUtils::EquationSystem::SetSteps ( const int  steps)
inline

Definition at line 789 of file EquationSystem.h.

790{
791 m_steps = steps;
792}

References m_steps.

◆ SetTime()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetTime ( const NekDouble  time)
inline

Definition at line 326 of file EquationSystem.h.

327 {
328 m_time = time;
329 }

References m_time.

◆ SetTimeStep()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetTimeStep ( const NekDouble  timestep)
inline

Definition at line 331 of file EquationSystem.h.

332 {
333 m_timestep = timestep;
334 }

References m_timestep.

Referenced by Nektar::SolverUtils::UnsteadySystem::SetTimeStep().

◆ SetWindowNumberPIT()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::EquationSystem::SetWindowNumberPIT ( int  num)
inline

Definition at line 316 of file EquationSystem.h.

317 {
318 m_windowPIT = num;
319 }
int m_windowPIT
Index of windows for parallel-in-time time iteration.

References m_windowPIT.

◆ TransCoeffToPhys()

void Nektar::SolverUtils::EquationSystem::TransCoeffToPhys ( void  )
inline

Transform from coefficient to physical space.

Performs the transformation from coefficient to physical space.

Public interface routine to virtual function implementation.

Definition at line 562 of file EquationSystem.h.

563{
565}
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys()
Virtual function for transformation to physical space.

References v_TransCoeffToPhys().

◆ TransPhysToCoeff()

void Nektar::SolverUtils::EquationSystem::TransPhysToCoeff ( void  )
inline

Transform from physical to coefficient space.

Performs the transformation from physical to coefficient space.

Public interface routine to virtual function implementation.

Definition at line 572 of file EquationSystem.h.

573{
575}
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff()
Virtual function for transformation to coefficient space.

References v_TransPhysToCoeff().

◆ UpdateFieldMetaDataMap()

SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMap & Nektar::SolverUtils::EquationSystem::UpdateFieldMetaDataMap ( )
inline

Get hold of FieldInfoMap so it can be updated.

◆ UpdateFields()

Array< OneD, MultiRegions::ExpListSharedPtr > & Nektar::SolverUtils::EquationSystem::UpdateFields ( void  )
inline

Definition at line 695 of file EquationSystem.h.

696{
697 return m_fields;
698}

References m_fields.

◆ UpdatePhysField()

Array< OneD, NekDouble > & Nektar::SolverUtils::EquationSystem::UpdatePhysField ( const int  i)
inline

Definition at line 806 of file EquationSystem.h.

807{
808 return m_fields[i]->UpdatePhys();
809}

References m_fields.

◆ v_DoInitialise()

void Nektar::SolverUtils::EquationSystem::v_DoInitialise ( bool  dumpInitialConditions = true)
protectedvirtual

Virtual function for initialisation implementation.

By default, nothing needs initialising at the EquationSystem level.

Reimplemented in Nektar::VCSImplicit, Nektar::SolverUtils::FileSolution, Nektar::EigenValuesAdvection, Nektar::SteadyAdvectionDiffusion, Nektar::PulseWaveSystem, Nektar::MMFSWE, Nektar::SolverUtils::UnsteadySystem, Nektar::CoupledLinearNS, Nektar::VCSMapping, and Nektar::VelocityCorrectionScheme.

Definition at line 1081 of file EquationSystem.cpp.

1082{
1083}

Referenced by DoInitialise().

◆ v_DoSolve()

void Nektar::SolverUtils::EquationSystem::v_DoSolve ( void  )
protectedvirtual

◆ v_EvaluateExactSolution()

void Nektar::SolverUtils::EquationSystem::v_EvaluateExactSolution ( unsigned int  field,
Array< OneD, NekDouble > &  outfield,
const NekDouble  time 
)
protectedvirtual

Reimplemented in Nektar::MMFAdvection, Nektar::MMFDiffusion, Nektar::MMFMaxwell, Nektar::MMFSWE, and Nektar::CompressibleFlowSystem.

Definition at line 1064 of file EquationSystem.cpp.

1067{
1068 ASSERTL0(outfield.size() == m_fields[field]->GetNpoints(),
1069 "ExactSolution array size mismatch.");
1070 Vmath::Zero(outfield.size(), outfield, 1);
1071 if (m_session->DefinesFunction("ExactSolution"))
1072 {
1073 GetFunction("ExactSolution")
1074 ->Evaluate(m_session->GetVariable(field), outfield, time);
1075 }
1076}
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.

References ASSERTL0, GetFunction(), m_fields, m_session, and Vmath::Zero().

Referenced by EvaluateExactSolution(), Nektar::MMFDiffusion::v_EvaluateExactSolution(), and Nektar::CompressibleFlowSystem::v_EvaluateExactSolution().

◆ v_ExtraFldOutput()

void Nektar::SolverUtils::EquationSystem::v_ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
protectedvirtual

◆ v_GenerateSummary()

void Nektar::SolverUtils::EquationSystem::v_GenerateSummary ( SummaryList l)
protectedvirtual

◆ v_GetPressure()

MultiRegions::ExpListSharedPtr Nektar::SolverUtils::EquationSystem::v_GetPressure ( void  )
protectedvirtual

Reimplemented in Nektar::CompressibleFlowSystem, and Nektar::IncNavierStokes.

Definition at line 1587 of file EquationSystem.cpp.

1588{
1589 ASSERTL0(false, "This function is not valid for the Base class");
1591 return null;
1592}

References ASSERTL0.

Referenced by GetPressure().

◆ v_GetSystemSingularChecks()

Array< OneD, bool > Nektar::SolverUtils::EquationSystem::v_GetSystemSingularChecks ( )
privatevirtual

Reimplemented in Nektar::Helmholtz, Nektar::Laplace, Nektar::Poisson, and Nektar::VelocityCorrectionScheme.

Definition at line 1579 of file EquationSystem.cpp.

1580{
1581 return Array<OneD, bool>(m_session->GetVariables().size(), false);
1582}

References m_session.

Referenced by v_InitObject().

◆ v_InitObject()

void Nektar::SolverUtils::EquationSystem::v_InitObject ( bool  DeclareFeld = true)
protectedvirtual

Initialisation object for EquationSystem.

Continuous field

Setting up the normals

Setting up the normals

Reimplemented in Nektar::PulseWavePropagation, Nektar::PulseWaveSystem, Nektar::SolverUtils::AdvectionSystem, Nektar::SolverUtils::UnsteadySystem, Nektar::Bidomain, Nektar::BidomainRoth, Nektar::Monodomain, Nektar::NavierStokesCFE, Nektar::MMFDiffusion, Nektar::ImageWarpingSystem, Nektar::CoupledLinearNS, Nektar::IncNavierStokes, Nektar::SmoothedProfileMethod, Nektar::VCSMapping, Nektar::VelocityCorrectionScheme, Nektar::SolverUtils::FileSolution, Nektar::AcousticSystem, Nektar::APE, Nektar::LEE, Nektar::CFLtester, Nektar::EigenValuesAdvection, Nektar::Helmholtz, Nektar::Laplace, Nektar::MMFAdvection, Nektar::Poisson, Nektar::Projection, Nektar::SteadyAdvectionDiffusion, Nektar::SteadyAdvectionDiffusionReaction, Nektar::UnsteadyAdvection, Nektar::UnsteadyAdvectionDiffusion, Nektar::UnsteadyDiffusion, Nektar::UnsteadyInviscidBurgers, Nektar::UnsteadyReactionDiffusion, Nektar::UnsteadyViscousBurgers, Nektar::CompressibleFlowSystem, Nektar::CFSImplicit, Nektar::EulerCFE, Nektar::EulerImplicitCFE, Nektar::NavierStokesCFEAxisym, Nektar::NavierStokesImplicitCFE, Nektar::Dummy, Nektar::IterativeElasticSystem, Nektar::LinearElasticSystem, Nektar::MMFMaxwell, Nektar::LinearSWE, Nektar::MMFSWE, Nektar::NonlinearPeregrine, Nektar::NonlinearSWE, and Nektar::ShallowWaterSystem.

Definition at line 143 of file EquationSystem.cpp.

144{
145 // Save the basename of input file name for output details
146 m_sessionName = m_session->GetSessionName();
147
148 // Instantiate a field reader/writer
150
151 // Also read and store the boundary conditions
155
156 // Set space dimension for use in class
157 m_spacedim = m_graph->GetSpaceDimension();
158
159 // Setting parameteres for homogenous problems
160 m_HomoDirec = 0;
161 m_useFFT = false;
162 m_homogen_dealiasing = false;
163 m_singleMode = false;
164 m_halfMode = false;
165 m_multipleModes = false;
167
168 m_verbose = m_session->DefinesCmdLineArgument("verbose");
169
170 if (m_session->DefinesSolverInfo("HOMOGENEOUS"))
171 {
172 std::string HomoStr = m_session->GetSolverInfo("HOMOGENEOUS");
173 m_spacedim = 3;
174
175 if ((HomoStr == "HOMOGENEOUS1D") || (HomoStr == "Homogeneous1D") ||
176 (HomoStr == "1D") || (HomoStr == "Homo1D"))
177 {
179 m_session->LoadParameter("LZ", m_LhomZ);
180 m_HomoDirec = 1;
181
182 if (m_session->DefinesSolverInfo("ModeType"))
183 {
184 m_session->MatchSolverInfo("ModeType", "SingleMode",
185 m_singleMode, false);
186 m_session->MatchSolverInfo("ModeType", "HalfMode", m_halfMode,
187 false);
188 m_session->MatchSolverInfo("ModeType", "MultipleModes",
189 m_multipleModes, false);
190 }
191
192 // Stability Analysis flags
193 if (m_session->DefinesSolverInfo("ModeType"))
194 {
195 if (m_singleMode)
196 {
197 m_npointsZ = 2;
198 }
199 else if (m_halfMode)
200 {
201 m_npointsZ = 1;
202 }
203 else if (m_multipleModes)
204 {
205 m_npointsZ = m_session->GetParameter("HomModesZ");
206 }
207 else
208 {
209 ASSERTL0(false, "SolverInfo ModeType not valid");
210 }
211 }
212 else
213 {
214 m_npointsZ = m_session->GetParameter("HomModesZ");
215 }
216 }
217
218 if ((HomoStr == "HOMOGENEOUS2D") || (HomoStr == "Homogeneous2D") ||
219 (HomoStr == "2D") || (HomoStr == "Homo2D"))
220 {
222 m_session->LoadParameter("HomModesY", m_npointsY);
223 m_session->LoadParameter("LY", m_LhomY);
224 m_session->LoadParameter("HomModesZ", m_npointsZ);
225 m_session->LoadParameter("LZ", m_LhomZ);
226 m_HomoDirec = 2;
227 }
228
229 if ((HomoStr == "HOMOGENEOUS3D") || (HomoStr == "Homogeneous3D") ||
230 (HomoStr == "3D") || (HomoStr == "Homo3D"))
231 {
233 m_session->LoadParameter("HomModesY", m_npointsY);
234 m_session->LoadParameter("LY", m_LhomY);
235 m_session->LoadParameter("HomModesZ", m_npointsZ);
236 m_session->LoadParameter("LZ", m_LhomZ);
237 m_HomoDirec = 2;
238 }
239
240 m_session->MatchSolverInfo("USEFFT", "FFTW", m_useFFT, false);
241
242 m_session->MatchSolverInfo("DEALIASING", "True", m_homogen_dealiasing,
243 false);
244 }
245 else
246 {
247 // set to default value so can use to identify 2d or 3D
248 // (homogeneous) expansions
249 m_npointsZ = 1;
250 }
251
252 m_session->MatchSolverInfo("SPECTRALHPDEALIASING", "True",
253 m_specHP_dealiasing, false);
254 if (m_specHP_dealiasing == false)
255 {
256 m_session->MatchSolverInfo("SPECTRALHPDEALIASING", "On",
257 m_specHP_dealiasing, false);
258 }
259
260 // Options to determine type of projection from file or directly
261 // from constructor
262 if (m_session->DefinesSolverInfo("PROJECTION"))
263 {
264 std::string ProjectStr = m_session->GetSolverInfo("PROJECTION");
265
266 if ((ProjectStr == "Continuous") || (ProjectStr == "Galerkin") ||
267 (ProjectStr == "CONTINUOUS") || (ProjectStr == "GALERKIN"))
268 {
270 }
271 else if ((ProjectStr == "MixedCGDG") ||
272 (ProjectStr == "Mixed_CG_Discontinuous"))
273 {
275 }
276 else if (ProjectStr == "DisContinuous")
277 {
279 }
280 else
281 {
282 ASSERTL0(false, "PROJECTION value not recognised");
283 }
284 }
285 else
286 {
287 cerr << "Projection type not specified in SOLVERINFO,"
288 "defaulting to continuous Galerkin"
289 << endl;
291 }
292
293 // Enforce singularity check for some problems
295
296 int i;
297 int nvariables = m_session->GetVariables().size();
298 bool DeclareCoeffPhysArrays = true;
299
300 m_fields = Array<OneD, MultiRegions::ExpListSharedPtr>(nvariables);
301 m_spacedim = m_graph->GetSpaceDimension() + m_HomoDirec;
302 m_expdim = m_graph->GetMeshDimension();
303
304 if (DeclareFields) // declare field if required
305 {
306 /// Continuous field
309 {
310 switch (m_expdim)
311 {
312 case 1:
313 {
316 {
317 const LibUtilities::PointsKey PkeyY(
319 const LibUtilities::BasisKey BkeyY(
321 const LibUtilities::PointsKey PkeyZ(
323 const LibUtilities::BasisKey BkeyZ(
325
326 for (i = 0; i < m_fields.size(); i++)
327 {
328 m_fields[i] = MemoryManager<
329 MultiRegions::ContField3DHomogeneous2D>::
330 AllocateSharedPtr(m_session, BkeyY, BkeyZ,
333 m_session->GetVariable(i));
334 }
335 }
336 else
337 {
338 for (i = 0; i < m_fields.size(); i++)
339 {
340 m_fields[i] =
344 m_session->GetVariable(i));
345 }
346 }
347 break;
348 }
349 case 2:
350 {
352 {
353 // Fourier single mode stability analysis
354 if (m_singleMode)
355 {
356 const LibUtilities::PointsKey PkeyZ(
359
360 const LibUtilities::BasisKey BkeyZ(
362 PkeyZ);
363
364 for (i = 0; i < m_fields.size(); i++)
365 {
366 m_fields[i] = MemoryManager<
367 MultiRegions::ContField3DHomogeneous1D>::
368 AllocateSharedPtr(
369 m_session, BkeyZ, m_LhomZ, m_useFFT,
371 m_session->GetVariable(i),
373 }
374 }
375 // Half mode stability analysis
376 else if (m_halfMode)
377 {
378 const LibUtilities::PointsKey PkeyZ(
381
382 const LibUtilities::BasisKey BkeyZR(
384 PkeyZ);
385
386 const LibUtilities::BasisKey BkeyZI(
388 PkeyZ);
389
390 for (i = 0; i < m_fields.size(); i++)
391 {
392 if (m_session->GetVariable(i).compare("w") == 0)
393 {
394 m_fields[i] = MemoryManager<
395 MultiRegions::
396 ContField3DHomogeneous1D>::
397 AllocateSharedPtr(
398 m_session, BkeyZI, m_LhomZ,
400 m_graph, m_session->GetVariable(i),
402 }
403 else
404 {
405 m_fields[i] = MemoryManager<
406 MultiRegions::
407 ContField3DHomogeneous1D>::
408 AllocateSharedPtr(
409 m_session, BkeyZR, m_LhomZ,
411 m_graph, m_session->GetVariable(i),
413 }
414 }
415 }
416 // Normal homogeneous 1D
417 else
418 {
419 const LibUtilities::PointsKey PkeyZ(
421 const LibUtilities::BasisKey BkeyZ(
423
424 for (i = 0; i < m_fields.size(); i++)
425 {
426 m_fields[i] = MemoryManager<
427 MultiRegions::ContField3DHomogeneous1D>::
428 AllocateSharedPtr(
429 m_session, BkeyZ, m_LhomZ, m_useFFT,
431 m_session->GetVariable(i),
433 }
434 }
435 }
436 else
437 {
438 i = 0;
442 m_session->GetVariable(i),
443 DeclareCoeffPhysArrays,
445 m_fields[0] = firstfield;
446 for (i = 1; i < m_fields.size(); i++)
447 {
448 if (m_graph->SameExpansionInfo(
449 m_session->GetVariable(0),
450 m_session->GetVariable(i)))
451 {
452 m_fields[i] =
455 *firstfield, m_graph,
456 m_session->GetVariable(i),
457 DeclareCoeffPhysArrays,
459 }
460 else
461 {
462 m_fields[i] =
466 m_session->GetVariable(i),
467 DeclareCoeffPhysArrays,
469 }
470 }
471
472 if (m_projectionType ==
474 {
475 /// Setting up the normals
477 Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
478
479 for (i = 0; i < m_spacedim; ++i)
480 {
481 m_traceNormals[i] =
482 Array<OneD, NekDouble>(GetTraceNpoints());
483 }
484
485 m_fields[0]->GetTrace()->GetNormals(m_traceNormals);
486 }
487 }
488
489 break;
490 }
491 case 3:
492 {
493 i = 0;
497 m_session->GetVariable(i),
498 DeclareCoeffPhysArrays,
500
501 m_fields[0] = firstfield;
502 for (i = 1; i < m_fields.size(); i++)
503 {
504 if (m_graph->SameExpansionInfo(
505 m_session->GetVariable(0),
506 m_session->GetVariable(i)))
507 {
508 m_fields[i] =
511 *firstfield, m_graph,
512 m_session->GetVariable(i),
513 DeclareCoeffPhysArrays,
515 }
516 else
517 {
518 m_fields[i] =
522 m_session->GetVariable(i),
523 DeclareCoeffPhysArrays,
525 }
526 }
527
528 if (m_projectionType ==
530 {
531 /// Setting up the normals
533 Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
534 for (i = 0; i < m_spacedim; ++i)
535 {
536 m_traceNormals[i] =
537 Array<OneD, NekDouble>(GetTraceNpoints());
538 }
539
540 m_fields[0]->GetTrace()->GetNormals(m_traceNormals);
541 // Call the trace on all fields to ensure DG setup.
542 for (i = 1; i < m_fields.size(); ++i)
543 {
544 m_fields[i]->GetTrace();
545 }
546 }
547 break;
548 }
549 default:
550 ASSERTL0(false, "Expansion dimension not recognised");
551 break;
552 }
553 }
554 // Discontinuous field
555 else
556 {
557 switch (m_expdim)
558 {
559 case 1:
560 {
563 {
564 const LibUtilities::PointsKey PkeyY(
566 const LibUtilities::BasisKey BkeyY(
568 const LibUtilities::PointsKey PkeyZ(
570 const LibUtilities::BasisKey BkeyZ(
572
573 for (i = 0; i < m_fields.size(); i++)
574 {
575 m_fields[i] = MemoryManager<
576 MultiRegions::DisContField3DHomogeneous2D>::
577 AllocateSharedPtr(m_session, BkeyY, BkeyZ,
580 m_session->GetVariable(i));
581 }
582 }
583 else
584 {
585 for (i = 0; i < m_fields.size(); i++)
586 {
587 m_fields[i] =
591 m_session->GetVariable(i));
592 }
593 }
594
595 break;
596 }
597 case 2:
598 {
600 {
601 const LibUtilities::PointsKey PkeyZ(
603 const LibUtilities::BasisKey BkeyZ(
605
606 for (i = 0; i < m_fields.size(); i++)
607 {
608 m_fields[i] = MemoryManager<
609 MultiRegions::DisContField3DHomogeneous1D>::
610 AllocateSharedPtr(m_session, BkeyZ, m_LhomZ,
611 m_useFFT,
613 m_session->GetVariable(i));
614 }
615 }
616 else
617 {
618 i = 0;
622 m_session->GetVariable(i));
623 m_fields[0] = firstfield;
624 for (i = 1; i < m_fields.size(); i++)
625 {
626 if (m_graph->SameExpansionInfo(
627 m_session->GetVariable(0),
628 m_session->GetVariable(i)))
629 {
630 m_fields[i] =
633 *firstfield, m_graph,
634 m_session->GetVariable(i));
635 }
636 else
637 {
638 m_fields[i] =
642 m_session->GetVariable(i));
643 }
644 }
645 }
646
647 break;
648 }
649 case 3:
650 {
652 {
653 ASSERTL0(
654 false,
655 "3D fully periodic problems not implemented yet");
656 }
657 else
658 {
659 i = 0;
663 m_session->GetVariable(i));
664 m_fields[0] = firstfield;
665 for (i = 1; i < m_fields.size(); i++)
666 {
667 if (m_graph->SameExpansionInfo(
668 m_session->GetVariable(0),
669 m_session->GetVariable(i)))
670 {
671 m_fields[i] =
674 *firstfield, m_graph,
675 m_session->GetVariable(i));
676 }
677 else
678 {
679 m_fields[i] =
683 m_session->GetVariable(i));
684 }
685 }
686 }
687 break;
688 }
689 default:
690 ASSERTL0(false, "Expansion dimension not recognised");
691 break;
692 }
693
694 // Setting up the normals
695 m_traceNormals = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
696
697 for (i = 0; i < m_spacedim; ++i)
698 {
699 m_traceNormals[i] =
700 Array<OneD, NekDouble>(GetTraceNpoints(), 0.0);
701 }
702
703 m_fields[0]->GetTrace()->GetNormals(m_traceNormals);
704 }
705 // Zero all physical fields initially
707 }
708
709 // Set Default Parameter
710 m_session->LoadParameter("Time", m_time, 0.0);
711 m_session->LoadParameter("TimeStep", m_timestep, 0.0);
712 m_session->LoadParameter("NumSteps", m_steps, 0);
713 m_session->LoadParameter("IO_CheckSteps", m_checksteps, 0);
714 m_session->LoadParameter("IO_CheckTime", m_checktime, 0.0);
715 m_session->LoadParameter("FinTime", m_fintime, 0);
716 m_session->LoadParameter("NumQuadPointsError", m_NumQuadPointsError, 0);
717
718 // Check uniqueness of checkpoint output
719 ASSERTL0((m_checktime == 0.0 && m_checksteps == 0) ||
720 (m_checktime > 0.0 && m_checksteps == 0) ||
721 (m_checktime == 0.0 && m_checksteps > 0),
722 "Only one of IO_CheckTime and IO_CheckSteps "
723 "should be set!");
724 m_session->LoadParameter("TimeIncrementFactor", m_TimeIncrementFactor, 1.0);
725
726 // Check for parallel-in-time
727 if (m_comm->IsParallelInTime())
728 {
729 ASSERTL0(m_fintime == 0.0,
730 "Only specify NumSteps and TimeSteps for Parallel-in-Time. "
731 "FinTime should not be used! ");
732 }
733
734 m_nchk = 0;
735 m_iterPIT = 0;
736}
static std::shared_ptr< FieldIO > CreateDefault(const LibUtilities::SessionReaderSharedPtr session)
Returns an object for the default FieldIO method.
Definition: FieldIO.cpp:195
LibUtilities::FieldIOSharedPtr m_fld
Field input/output.
NekDouble m_fintime
Finish time of the simulation.
NekDouble m_checktime
Time between checkpoints.
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
SOLVER_UTILS_EXPORT void ZeroPhysFields()
int m_HomoDirec
number of homogenous directions
Array< OneD, bool > m_checkIfSystemSingular
Flag to indicate if the fields should be checked for singularity.
bool m_homogen_dealiasing
Flag to determine if dealiasing is used for homogeneous simulations.
virtual SOLVER_UTILS_EXPORT Array< OneD, bool > v_GetSystemSingularChecks()
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
Pointer to boundary conditions object.
@ eFourierEvenlySpaced
1D Evenly-spaced points using Fourier Fit
Definition: PointsType.h:74
@ eFourierSingleModeSpaced
1D Non Evenly-spaced points for Single Mode analysis
Definition: PointsType.h:75
@ eFourierSingleMode
Fourier ModifiedExpansion with just the first mode .
Definition: BasisType.h:64
@ eFourierHalfModeIm
Fourier Modified expansions with just the imaginary part of the first mode .
Definition: BasisType.h:68
@ eFourierHalfModeRe
Fourier Modified expansions with just the real part of the first mode .
Definition: BasisType.h:66
@ eFourier
Fourier Expansion .
Definition: BasisType.h:55
std::shared_ptr< DisContField > DisContFieldSharedPtr
Definition: DisContField.h:345
std::shared_ptr< ContField > ContFieldSharedPtr
Definition: ContField.h:268

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::LibUtilities::FieldIO::CreateDefault(), Nektar::MultiRegions::eDiscontinuous, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eFourierEvenlySpaced, Nektar::LibUtilities::eFourierHalfModeIm, Nektar::LibUtilities::eFourierHalfModeRe, Nektar::LibUtilities::eFourierSingleMode, Nektar::LibUtilities::eFourierSingleModeSpaced, Nektar::MultiRegions::eGalerkin, eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, Nektar::MultiRegions::eMixed_CG_Discontinuous, eNotHomogeneous, GetTraceNpoints(), m_boundaryConditions, m_checkIfSystemSingular, m_checksteps, m_checktime, m_comm, m_expdim, m_fields, m_fintime, m_fld, m_graph, m_halfMode, m_HomoDirec, m_homogen_dealiasing, m_HomogeneousType, m_iterPIT, m_LhomY, m_LhomZ, m_multipleModes, m_nchk, m_npointsY, m_npointsZ, m_NumQuadPointsError, m_projectionType, m_session, m_sessionName, m_singleMode, m_spacedim, m_specHP_dealiasing, m_steps, m_time, m_TimeIncrementFactor, m_timestep, m_traceNormals, m_useFFT, m_verbose, v_GetSystemSingularChecks(), and ZeroPhysFields().

Referenced by InitObject(), Nektar::SolverUtils::UnsteadySystem::v_InitObject(), Nektar::EigenValuesAdvection::v_InitObject(), Nektar::Laplace::v_InitObject(), Nektar::Projection::v_InitObject(), Nektar::SteadyAdvectionDiffusion::v_InitObject(), and Nektar::LinearElasticSystem::v_InitObject().

◆ v_L2Error()

NekDouble Nektar::SolverUtils::EquationSystem::v_L2Error ( unsigned int  field,
const Array< OneD, NekDouble > &  exactsoln = NullNekDouble1DArray,
bool  Normalised = false 
)
protectedvirtual

Virtual function for the L_2 error computation between fields and a given exact solution.

Compute the error in the L2-norm.

Parameters
fieldThe field to compare.
exactsolnThe exact solution to compare with.
NormalisedNormalise L2-error.
Returns
Error in the L2-norm.

Reimplemented in Nektar::MMFSWE, and Nektar::PulseWaveSystem.

Definition at line 793 of file EquationSystem.cpp.

796{
797 NekDouble L2error = -1.0;
798
799 if (m_NumQuadPointsError == 0)
800 {
801 if (m_fields[field]->GetPhysState() == false)
802 {
803 m_fields[field]->BwdTrans(m_fields[field]->GetCoeffs(),
804 m_fields[field]->UpdatePhys());
805 }
806
807 if (exactsoln.size())
808 {
809 L2error =
810 m_fields[field]->L2(m_fields[field]->GetPhys(), exactsoln);
811 }
812 else if (m_session->DefinesFunction("ExactSolution"))
813 {
814 Array<OneD, NekDouble> exactsoln(m_fields[field]->GetNpoints());
815
816 GetFunction("ExactSolution")
817 ->Evaluate(m_session->GetVariable(field), exactsoln, m_time);
818
819 L2error =
820 m_fields[field]->L2(m_fields[field]->GetPhys(), exactsoln);
821 }
822 else
823 {
824 L2error = m_fields[field]->L2(m_fields[field]->GetPhys());
825 }
826
827 if (Normalised == true)
828 {
829 Array<OneD, NekDouble> one(m_fields[field]->GetNpoints(), 1.0);
830
831 NekDouble Vol = m_fields[field]->Integral(one);
832 L2error = sqrt(L2error * L2error / Vol);
833 }
834 }
835 else
836 {
837 Array<OneD, NekDouble> L2INF(2);
838 L2INF = ErrorExtraPoints(field);
839 L2error = L2INF[0];
840 }
841 return L2error;
842}
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > ErrorExtraPoints(unsigned int field)
Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].
SOLVER_UTILS_EXPORT int GetNpoints()
double NekDouble
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ErrorExtraPoints(), GetFunction(), GetNpoints(), m_fields, m_NumQuadPointsError, m_session, m_time, and tinysimd::sqrt().

Referenced by L2Error().

◆ v_LinfError()

NekDouble Nektar::SolverUtils::EquationSystem::v_LinfError ( unsigned int  field,
const Array< OneD, NekDouble > &  exactsoln = NullNekDouble1DArray 
)
protectedvirtual

Virtual function for the L_inf error computation between fields and a given exact solution.

Compute the error in the L_inf-norm

Parameters
fieldThe field to compare.
exactsolnThe exact solution to compare with.
Returns
Error in the L_inft-norm.

Reimplemented in Nektar::MMFSWE, and Nektar::PulseWaveSystem.

Definition at line 850 of file EquationSystem.cpp.

852{
853 NekDouble Linferror = -1.0;
854
855 if (m_NumQuadPointsError == 0)
856 {
857 if (m_fields[field]->GetPhysState() == false)
858 {
859 m_fields[field]->BwdTrans(m_fields[field]->GetCoeffs(),
860 m_fields[field]->UpdatePhys());
861 }
862
863 if (exactsoln.size())
864 {
865 Linferror =
866 m_fields[field]->Linf(m_fields[field]->GetPhys(), exactsoln);
867 }
868 else if (m_session->DefinesFunction("ExactSolution"))
869 {
870 Array<OneD, NekDouble> exactsoln(m_fields[field]->GetNpoints());
871
872 GetFunction("ExactSolution")
873 ->Evaluate(m_session->GetVariable(field), exactsoln, m_time);
874
875 Linferror =
876 m_fields[field]->Linf(m_fields[field]->GetPhys(), exactsoln);
877 }
878 else
879 {
880 Linferror = m_fields[field]->Linf(m_fields[field]->GetPhys());
881 }
882 }
883 else
884 {
885 Array<OneD, NekDouble> L2INF(2);
886 L2INF = ErrorExtraPoints(field);
887 Linferror = L2INF[1];
888 }
889
890 return Linferror;
891}

References ErrorExtraPoints(), GetFunction(), GetNpoints(), m_fields, m_NumQuadPointsError, m_session, and m_time.

Referenced by LinfError().

◆ v_NegatedOp()

bool Nektar::SolverUtils::EquationSystem::v_NegatedOp ( void  )
protectedvirtual

Virtual function to identify if operator is negated in DoSolve.

Virtual function to define if operator in DoSolve is negated with regard to the strong form. This is currently only used in Arnoldi solves. Default is false.

Reimplemented in Nektar::CoupledLinearNS.

Definition at line 1097 of file EquationSystem.cpp.

1098{
1099 return false;
1100}

Referenced by NegatedOp().

◆ v_Output()

void Nektar::SolverUtils::EquationSystem::v_Output ( void  )
protectedvirtual

Write the field data to file. The file is named according to the session name with the extension .fld appended.

Reimplemented in Nektar::AcousticSystem, Nektar::Dummy, Nektar::CoupledLinearNS, and Nektar::PulseWaveSystem.

Definition at line 1126 of file EquationSystem.cpp.

1127{
1128 if (!m_comm->IsParallelInTime())
1129 {
1130 // Serial-in-time
1131 WriteFld(m_sessionName + ".fld");
1132 }
1133 else
1134 {
1135 // Parallel-in-time
1136 std::string newdir = m_sessionName + ".pit";
1137 if (!fs::is_directory(newdir))
1138 {
1139 fs::create_directory(newdir);
1140 }
1141 WriteFld(newdir + "/" + m_sessionName + "_" +
1142 std::to_string(m_windowPIT * m_comm->GetTimeComm()->GetSize() +
1143 m_comm->GetTimeComm()->GetRank() + 1) +
1144 ".fld");
1145 }
1146}

References m_comm, m_sessionName, m_windowPIT, and WriteFld().

Referenced by Output(), Nektar::AcousticSystem::v_Output(), and Nektar::Dummy::v_Output().

◆ v_SetInitialConditions()

void Nektar::SolverUtils::EquationSystem::v_SetInitialConditions ( NekDouble  initialtime = 0.0,
bool  dumpInitialConditions = true,
const int  domain = 0 
)
protectedvirtual

Set the physical fields based on a restart file, or a function describing the initial condition given in the session.

Parameters
initialtimeTime at which to evaluate the function.
dumpInitialConditionsWrite the initial condition to file?

Reimplemented in Nektar::MMFAdvection, Nektar::MMFMaxwell, Nektar::MMFSWE, Nektar::Bidomain, Nektar::BidomainRoth, Nektar::Monodomain, Nektar::CompressibleFlowSystem, Nektar::MMFDiffusion, and Nektar::NonlinearPeregrine.

Definition at line 986 of file EquationSystem.cpp.

989{
990 if (m_session->GetComm()->GetRank() == 0)
991 {
992 cout << "Initial Conditions:" << endl;
993 }
994
995 if (m_session->DefinesFunction("InitialConditions"))
996 {
997 GetFunction("InitialConditions")
998 ->Evaluate(m_session->GetVariables(), m_fields, m_time, domain);
999 // Enforce C0 Continutiy of initial condiiton
1002 {
1003 for (int i = 0; i < m_fields.size(); ++i)
1004 {
1005 m_fields[i]->LocalToGlobal();
1006 m_fields[i]->GlobalToLocal();
1007 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
1008 m_fields[i]->UpdatePhys());
1009 }
1010 }
1011
1012 if (m_session->GetComm()->GetRank() == 0)
1013 {
1014 for (int i = 0; i < m_fields.size(); ++i)
1015 {
1016 std::string varName = m_session->GetVariable(i);
1017 cout << " - Field " << varName << ": "
1018 << GetFunction("InitialConditions")
1019 ->Describe(varName, domain)
1020 << endl;
1021 }
1022 }
1023 }
1024 else
1025 {
1026 int nq = m_fields[0]->GetNpoints();
1027 for (int i = 0; i < m_fields.size(); i++)
1028 {
1029 Vmath::Zero(nq, m_fields[i]->UpdatePhys(), 1);
1030 m_fields[i]->SetPhysState(true);
1031 Vmath::Zero(m_fields[i]->GetNcoeffs(), m_fields[i]->UpdateCoeffs(),
1032 1);
1033 if (m_session->GetComm()->GetRank() == 0)
1034 {
1035 cout << " - Field " << m_session->GetVariable(i)
1036 << ": 0 (default)" << endl;
1037 }
1038 }
1039 }
1040
1041 if (dumpInitialConditions && m_checksteps && m_nchk == 0 &&
1042 !m_comm->IsParallelInTime())
1043 {
1045 }
1046 else if (dumpInitialConditions && m_nchk == 0 && m_comm->IsParallelInTime())
1047 {
1048 std::string newdir = m_sessionName + ".pit";
1049 if (!fs::is_directory(newdir))
1050 {
1051 fs::create_directory(newdir);
1052 }
1053 if (m_comm->GetTimeComm()->GetRank() == 0)
1054 {
1055 WriteFld(newdir + "/" + m_sessionName + "_0.fld");
1056 }
1057 }
1058 ++m_nchk;
1059}
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.

References Checkpoint_Output(), Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, GetFunction(), GetNcoeffs(), m_checksteps, m_comm, m_fields, m_nchk, m_projectionType, m_session, m_sessionName, m_time, WriteFld(), and Vmath::Zero().

Referenced by SetInitialConditions(), Nektar::Bidomain::v_SetInitialConditions(), Nektar::BidomainRoth::v_SetInitialConditions(), Nektar::Monodomain::v_SetInitialConditions(), Nektar::CompressibleFlowSystem::v_SetInitialConditions(), Nektar::MMFDiffusion::v_SetInitialConditions(), and Nektar::NonlinearPeregrine::v_SetInitialConditions().

◆ v_TransCoeffToPhys()

void Nektar::SolverUtils::EquationSystem::v_TransCoeffToPhys ( void  )
protectedvirtual

Virtual function for transformation to physical space.

Reimplemented in Nektar::CoupledLinearNS, Nektar::IncNavierStokes, and Nektar::VelocityCorrectionScheme.

Definition at line 1105 of file EquationSystem.cpp.

1106{
1107}

Referenced by TransCoeffToPhys().

◆ v_TransPhysToCoeff()

void Nektar::SolverUtils::EquationSystem::v_TransPhysToCoeff ( void  )
protectedvirtual

Virtual function for transformation to coefficient space.

Reimplemented in Nektar::CoupledLinearNS, Nektar::IncNavierStokes, and Nektar::VelocityCorrectionScheme.

Definition at line 1112 of file EquationSystem.cpp.

1113{
1114}

Referenced by TransPhysToCoeff().

◆ WriteFld() [1/2]

void Nektar::SolverUtils::EquationSystem::WriteFld ( const std::string &  outname)

Write field data to the given filename.

Writes the field data to a file with the given filename.

Parameters
outnameFilename to write to.

Definition at line 1238 of file EquationSystem.cpp.

1239{
1240 std::vector<Array<OneD, NekDouble>> fieldcoeffs(m_fields.size());
1241 std::vector<std::string> variables(m_fields.size());
1242
1243 for (int i = 0; i < m_fields.size(); ++i)
1244 {
1245 if (m_fields[i]->GetNcoeffs() == m_fields[0]->GetNcoeffs())
1246 {
1247 fieldcoeffs[i] = m_fields[i]->UpdateCoeffs();
1248 }
1249 else
1250 {
1251 fieldcoeffs[i] = Array<OneD, NekDouble>(m_fields[0]->GetNcoeffs());
1252 m_fields[0]->ExtractCoeffsToCoeffs(
1253 m_fields[i], m_fields[i]->GetCoeffs(), fieldcoeffs[i]);
1254 }
1255 variables[i] = m_boundaryConditions->GetVariable(i);
1256 }
1257
1258 ExtraFldOutput(fieldcoeffs, variables);
1259
1260 WriteFld(outname, m_fields[0], fieldcoeffs, variables);
1261}
SOLVER_UTILS_EXPORT void ExtraFldOutput(std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)

References ExtraFldOutput(), GetNcoeffs(), m_boundaryConditions, m_fields, and WriteFld().

Referenced by Checkpoint_BaseFlow(), Nektar::MMFMaxwell::Checkpoint_EDFluxOutput(), Nektar::MMFMaxwell::Checkpoint_EnergyOutput(), Checkpoint_Output(), Nektar::MMFSWE::Checkpoint_Output_Cartesian(), Nektar::MMFMaxwell::Checkpoint_PlotOutput(), Nektar::MMFMaxwell::Checkpoint_TotalFieldOutput(), Nektar::MMFMaxwell::Checkpoint_TotPlotOutput(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), v_Output(), Nektar::CoupledLinearNS::v_Output(), Nektar::SolverUtils::AdvectionSystem::v_PostIntegrate(), Nektar::MMFAdvection::v_SetInitialConditions(), Nektar::MMFMaxwell::v_SetInitialConditions(), Nektar::MMFSWE::v_SetInitialConditions(), v_SetInitialConditions(), Nektar::CompressibleFlowSystem::v_SetInitialConditions(), Nektar::MMFDiffusion::v_SetInitialConditions(), Nektar::NonlinearPeregrine::v_SetInitialConditions(), and WriteFld().

◆ WriteFld() [2/2]

void Nektar::SolverUtils::EquationSystem::WriteFld ( const std::string &  outname,
MultiRegions::ExpListSharedPtr field,
std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)

Write input fields to the given filename.

Writes the field data to a file with the given filename.

Parameters
outnameFilename to write to.
fieldExpList on which data is based.
fieldcoeffsAn array of array of expansion coefficients.
variablesAn array of variable names.

Definition at line 1270 of file EquationSystem.cpp.

1274{
1275 std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef =
1276 field->GetFieldDefinitions();
1277 std::vector<std::vector<NekDouble>> FieldData(FieldDef.size());
1278
1279 // Copy Data into FieldData and set variable
1280 for (int j = 0; j < fieldcoeffs.size(); ++j)
1281 {
1282 for (int i = 0; i < FieldDef.size(); ++i)
1283 {
1284 // Could do a search here to find correct variable
1285 FieldDef[i]->m_fields.push_back(variables[j]);
1286 field->AppendFieldData(FieldDef[i], FieldData[i], fieldcoeffs[j]);
1287 }
1288 }
1289
1290 // Update time in field info if required
1291 if (m_fieldMetaDataMap.find("Time") != m_fieldMetaDataMap.end())
1292 {
1293 m_fieldMetaDataMap["Time"] = boost::lexical_cast<std::string>(m_time);
1294 }
1295
1296 // Update step in field info if required
1297 if (m_fieldMetaDataMap.find("ChkFileNum") != m_fieldMetaDataMap.end())
1298 {
1299 m_fieldMetaDataMap["ChkFileNum"] = std::to_string(m_nchk);
1300 }
1301
1302 // If necessary, add mapping information to metadata
1303 // and output mapping coordinates
1304 Array<OneD, MultiRegions::ExpListSharedPtr> fields(1);
1305 fields[0] = field;
1309 mapping->Output(fieldMetaDataMap, outname);
1310
1311 // If necessary, add informaton for moving frame reference to metadata
1312 // X, Y, Z translational displacements
1313 // Theta_x, Theta_y, Theta_z angular displacements
1314 // X0, Y0, Z0 pivot point
1315 std::vector<std::string> strFrameData = {
1316 "X", "Y", "Z", "Theta_x", "Theta_y", "Theta_z", "X0", "Y0", "Z0"};
1317 for (size_t i = 0; i < strFrameData.size() && i < m_movingFrameData.size();
1318 ++i)
1319 {
1320 fieldMetaDataMap[strFrameData[i]] =
1321 boost::lexical_cast<std::string>(m_movingFrameData[i]);
1322 }
1323
1324 m_fld->Write(outname, FieldDef, FieldData, fieldMetaDataMap,
1325 m_session->GetBackups());
1326}
static GLOBAL_MAPPING_EXPORT MappingSharedPtr Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Return a pointer to the mapping, creating it on first call.
Definition: Mapping.cpp:266
Array< OneD, NekDouble > m_movingFrameData
Moving frame of reference angles with respect to the.
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:51
std::map< std::string, std::string > FieldMetaDataMap
Definition: FieldIO.h:50

References Nektar::GlobalMapping::Mapping::Load(), m_fieldMetaDataMap, m_fld, m_movingFrameData, m_nchk, m_session, m_time, and Nektar::GlobalMapping::MappingSharedPtr.

◆ ZeroPhysFields()

void Nektar::SolverUtils::EquationSystem::ZeroPhysFields ( void  )

Zero the physical fields.

Definition at line 1151 of file EquationSystem.cpp.

1152{
1153 for (int i = 0; i < m_fields.size(); i++)
1154 {
1155 Vmath::Zero(m_fields[i]->GetNpoints(), m_fields[i]->UpdatePhys(), 1);
1156 }
1157}

References GetNpoints(), m_fields, and Vmath::Zero().

Referenced by v_InitObject().

Member Data Documentation

◆ equationSystemTypeLookupIds

std::string Nektar::SolverUtils::EquationSystem::equationSystemTypeLookupIds
staticprotected
Initial value:
= {
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.

Definition at line 523 of file EquationSystem.h.

◆ m_boundaryConditions

SpatialDomains::BoundaryConditionsSharedPtr Nektar::SolverUtils::EquationSystem::m_boundaryConditions
protected

◆ m_checkIfSystemSingular

Array<OneD, bool> Nektar::SolverUtils::EquationSystem::m_checkIfSystemSingular
protected

Flag to indicate if the fields should be checked for singularity.

Definition at line 423 of file EquationSystem.h.

Referenced by v_InitObject().

◆ m_checksteps

int Nektar::SolverUtils::EquationSystem::m_checksteps
protected

◆ m_checktime

NekDouble Nektar::SolverUtils::EquationSystem::m_checktime
protected

◆ m_comm

LibUtilities::CommSharedPtr Nektar::SolverUtils::EquationSystem::m_comm
protected

◆ m_expdim

int Nektar::SolverUtils::EquationSystem::m_expdim
protected

◆ m_fieldMetaDataMap

LibUtilities::FieldMetaDataMap Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap
protected

◆ m_fields

Array<OneD, MultiRegions::ExpListSharedPtr> Nektar::SolverUtils::EquationSystem::m_fields
protected

Array holding all dependent variables.

Definition at line 359 of file EquationSystem.h.

Referenced by Nektar::SolverUtils::MMFSystem::AbsIntegral(), Nektar::UnsteadyAdvectionDiffusion::AddAdvectionPenaltyFlux(), Nektar::MMFSWE::AddCoriolis(), Nektar::LinearSWE::AddCoriolis(), Nektar::NonlinearPeregrine::AddCoriolis(), Nektar::NonlinearSWE::AddCoriolis(), Nektar::MMFSWE::AddDivForGradient(), Nektar::MMFSWE::AddElevationEffect(), Nektar::MMFMaxwell::AddGreenDerivCompensate(), Nektar::VCSImplicit::AddImplicitSkewSymAdvection(), Nektar::CFSImplicit::AddMatNSBlkDiagBnd(), Nektar::CFSImplicit::AddMatNSBlkDiagVol(), Nektar::MMFMaxwell::AddPML(), Nektar::MMFSWE::AddRotation(), Nektar::NonlinearPeregrine::AddVariableDepth(), Nektar::NonlinearSWE::AddVariableDepth(), Nektar::MMFAdvection::AdvectionBellPlane(), Nektar::MMFAdvection::AdvectionBellSphere(), Nektar::SolverUtils::UnsteadySystem::AppendOutput1D(), Nektar::VCSMapping::ApplyIncNSMappingForcing(), Nektar::SolverUtils::MMFSystem::AverageMaxwellFlux1D(), Nektar::SolverUtils::MMFSystem::AvgAbsInt(), Nektar::SolverUtils::MMFSystem::AvgInt(), Nektar::LinearElasticSystem::BuildMatrixSystem(), Nektar::CFSImplicit::CalcRefValues(), Nektar::CFSImplicit::CalcTraceNumericalFlux(), Nektar::CFSImplicit::CalcVolJacStdMat(), Nektar::SolverUtils::MMFSystem::CartesianToMovingframes(), Nektar::SolverUtils::UnsteadySystem::CheckForRestartTime(), Nektar::SolverUtils::MMFSystem::CheckMovingFrames(), Nektar::MMFMaxwell::Checkpoint_EDFluxOutput(), Nektar::MMFMaxwell::Checkpoint_EnergyOutput(), Nektar::MMFSWE::Checkpoint_Output_Cartesian(), Nektar::MMFMaxwell::Checkpoint_PlotOutput(), Nektar::MMFMaxwell::Checkpoint_TotalFieldOutput(), Nektar::MMFMaxwell::Checkpoint_TotPlotOutput(), Nektar::SolverUtils::UnsteadySystem::CheckSteadyState(), Nektar::VCSImplicit::CheckUnsetGlobalLinSys(), Nektar::MMFSWE::Compute_demdt_cdot_ek(), Nektar::SolverUtils::MMFSystem::ComputeCurl(), Nektar::SolverUtils::MMFSystem::Computedemdxicdote(), Nektar::SolverUtils::MMFSystem::ComputeDivCurlMF(), Nektar::MMFSWE::ComputeEnergy(), Nektar::MMFMaxwell::ComputeEnergyDensity(), Nektar::MMFSWE::ComputeEnstrophy(), Nektar::VelocityCorrectionScheme::ComputeGJPNormalVelocity(), Nektar::MMFSWE::ComputeMass(), Nektar::MMFMaxwell::ComputeMaterialMicroWaveCloak(), Nektar::MMFMaxwell::ComputeMaterialOpticalCloak(), Nektar::MMFMaxwell::ComputeMaterialVector(), Nektar::SolverUtils::MMFSystem::ComputeMFtrace(), Nektar::MMFAdvection::ComputeNablaCdotVelocity(), Nektar::MMFSWE::ComputeNablaCdotVelocity(), Nektar::SolverUtils::MMFSystem::ComputencdotMF(), Nektar::MMFMaxwell::ComputeRadCloak(), Nektar::MMFMaxwell::ComputeSurfaceCurrent(), Nektar::MMFAdvection::ComputeveldotMF(), Nektar::MMFSWE::ComputeVorticity(), Nektar::SolverUtils::MMFSystem::ComputeZimYim(), Nektar::MMFSWE::ConservativeToPrimitive(), Nektar::CoupledLinearNS::Continuation(), Nektar::SolverUtils::MMFSystem::CopyBoundaryTrace(), Nektar::AcousticSystem::CopyBoundaryTrace(), Nektar::ShallowWaterSystem::CopyBoundaryTrace(), CopyFromPhysField(), CopyToPhysField(), Nektar::CoupledLinearNS::DefineForcingTerm(), Nektar::CompressibleFlowSystem::DoAdvection(), Nektar::CFSImplicit::DoAdvectionCoeff(), Nektar::UnsteadyAdvectionDiffusion::DoImplicitSolve(), Nektar::UnsteadyDiffusion::DoImplicitSolve(), Nektar::UnsteadyViscousBurgers::DoImplicitSolve(), Nektar::Bidomain::DoImplicitSolve(), Nektar::BidomainRoth::DoImplicitSolve(), Nektar::Monodomain::DoImplicitSolve(), Nektar::MMFDiffusion::DoImplicitSolve(), Nektar::CFSImplicit::DoImplicitSolve(), Nektar::CFSImplicit::DoOdeImplicitRhs(), Nektar::AcousticSystem::DoOdeProjection(), Nektar::MMFAdvection::DoOdeProjection(), Nektar::UnsteadyAdvection::DoOdeProjection(), Nektar::UnsteadyDiffusion::DoOdeProjection(), Nektar::UnsteadyInviscidBurgers::DoOdeProjection(), Nektar::CompressibleFlowSystem::DoOdeProjection(), Nektar::Dummy::DoOdeProjection(), Nektar::LinearSWE::DoOdeProjection(), Nektar::NonlinearPeregrine::DoOdeProjection(), Nektar::NonlinearSWE::DoOdeProjection(), Nektar::AcousticSystem::DoOdeRhs(), Nektar::MMFAdvection::DoOdeRhs(), Nektar::UnsteadyAdvection::DoOdeRhs(), Nektar::UnsteadyAdvectionDiffusion::DoOdeRhs(), Nektar::UnsteadyDiffusion::DoOdeRhs(), Nektar::UnsteadyInviscidBurgers::DoOdeRhs(), Nektar::UnsteadyReactionDiffusion::DoOdeRhs(), Nektar::UnsteadyViscousBurgers::DoOdeRhs(), Nektar::Bidomain::DoOdeRhs(), Nektar::BidomainRoth::DoOdeRhs(), Nektar::CompressibleFlowSystem::DoOdeRhs(), Nektar::MMFDiffusion::DoOdeRhs(), Nektar::ImageWarpingSystem::DoOdeRhs(), Nektar::MMFMaxwell::DoOdeRhs(), Nektar::PulseWavePropagation::DoOdeRhs(), Nektar::LinearSWE::DoOdeRhs(), Nektar::MMFSWE::DoOdeRhs(), Nektar::NonlinearPeregrine::DoOdeRhs(), Nektar::NonlinearSWE::DoOdeRhs(), Nektar::CFSImplicit::DoOdeRhsCoeff(), ErrorExtraPoints(), Nektar::CoupledLinearNS::EvaluateAdvection(), Nektar::IncNavierStokes::EvaluateAdvectionTerms(), Nektar::MMFAdvection::EvaluateAdvectionVelocity(), Nektar::MMFMaxwell::EvaluateCoriolis(), Nektar::MMFSWE::EvaluateCoriolisForZonalFlow(), Nektar::CompressibleFlowSystem::EvaluateIsentropicVortex(), Nektar::CoupledLinearNS::EvaluateNewtonRHS(), Nektar::MMFSWE::EvaluateStandardCoriolis(), Nektar::MMFSWE::EvaluateWaterDepth(), FwdTransFields(), Nektar::MMFMaxwell::GaussianPulse(), Nektar::MMFMaxwell::GenerateSigmaPML(), Nektar::SolverUtils::AdvectionSystem::GetCFLEstimate(), GetCoeff_Offset(), Nektar::SolverUtils::AdvectionSystem::GetElmtCFLVals(), Nektar::CompressibleFlowSystem::GetElmtTimeStep(), Nektar::CompressibleFlowSystem::GetExactRinglebFlow(), GetExpSize(), Nektar::UnsteadyAdvection::GetFluxVector(), Nektar::PulseWavePropagation::GetFluxVector(), Nektar::LinearSWE::GetFluxVector(), Nektar::NonlinearPeregrine::GetFluxVector(), Nektar::NonlinearSWE::GetFluxVector(), Nektar::UnsteadyAdvection::GetFluxVectorDeAlias(), Nektar::CompressibleFlowSystem::GetFluxVectorDeAlias(), GetFunction(), Nektar::SolverUtils::MMFSystem::GetIncidentField(), Nektar::UnsteadyAdvectionDiffusion::GetMaxStdVelocity(), Nektar::SolverUtils::MMFSystem::GetMaxwellFlux1D(), Nektar::SolverUtils::MMFSystem::GetMaxwellFlux2D(), GetNcoeffs(), Nektar::UnsteadyAdvection::GetNormalVel(), Nektar::EigenValuesAdvection::GetNormalVelocity(), Nektar::MMFAdvection::GetNormalVelocity(), Nektar::UnsteadyInviscidBurgers::GetNormalVelocity(), Nektar::ImageWarpingSystem::GetNormalVelocity(), GetNpoints(), GetNumExpModesPerExp(), GetPhys_Offset(), Nektar::CompressibleFlowSystem::GetStabilityLimitVector(), Nektar::UnsteadyAdvectionDiffusion::GetSubstepTimeStep(), Nektar::MMFSWE::GetSWEFluxVector(), GetTotPoints(), Nektar::CFSImplicit::GetTraceJac(), GetTraceNpoints(), Nektar::NavierStokesCFE::GetViscosityAndThermalCondFromTemp(), ImportFld(), ImportFldToMultiDomains(), Nektar::CompressibleFlowSystem::InitAdvection(), Nektar::CFSImplicit::InitialiseNonlinSysSolver(), Nektar::SolverUtils::UnsteadySystem::InitializeSteadyState(), Nektar::NavierStokesCFE::InitObject_Explicit(), Nektar::MMFSWE::IsolatedMountainFlow(), Nektar::NonlinearPeregrine::LaitoneSolitaryWave(), Nektar::SolverUtils::MMFSystem::LaxFriedrichMaxwellFlux1D(), Nektar::VCSMapping::MappingAccelerationCorrection(), Nektar::VCSMapping::MappingAdvectionCorrection(), Nektar::VCSMapping::MappingPressureCorrection(), Nektar::VelocityCorrectionScheme::MeasureFlowrate(), Nektar::SolverUtils::MMFSystem::MMFInitObject(), Nektar::MMFDiffusion::Morphogenesis(), Nektar::CFSImplicit::MultiplyElmtInvMassPlusSource(), Nektar::CFSImplicit::NonlinSysEvaluatorCoeff(), Nektar::CFSImplicit::NonlinSysEvaluatorCoeff1D(), Nektar::CFSImplicit::NumCalcRiemFluxJac(), Nektar::NonlinearPeregrine::NumericalFluxConsVariables(), Nektar::NonlinearPeregrine::NumericalFluxForcing(), Nektar::SolverUtils::MMFSystem::NumericalMaxwellFluxTE(), Nektar::SolverUtils::MMFSystem::NumericalMaxwellFluxTM(), Nektar::MMFSWE::NumericalSWEFlux(), Nektar::MMFDiffusion::PlanePhiWave(), Nektar::CFSImplicit::PreconCoeff(), Nektar::MMFSWE::PrimitiveToConservative(), Nektar::MMFMaxwell::Printout_SurfaceCurrent(), Nektar::MMFSWE::RossbyWave(), SessionSummary(), Nektar::MMFSWE::SetBoundaryConditions(), Nektar::AcousticSystem::SetBoundaryConditions(), Nektar::CompressibleFlowSystem::SetBoundaryConditions(), Nektar::LinearSWE::SetBoundaryConditions(), Nektar::NonlinearPeregrine::SetBoundaryConditions(), Nektar::NonlinearSWE::SetBoundaryConditions(), SetBoundaryConditions(), Nektar::IncNavierStokes::SetBoundaryConditions(), Nektar::NonlinearPeregrine::SetBoundaryConditionsContVariables(), Nektar::NonlinearPeregrine::SetBoundaryConditionsForcing(), Nektar::IncNavierStokes::SetMRFDomainVelBCs(), Nektar::IncNavierStokes::SetMRFWallBCs(), Nektar::IncNavierStokes::SetRadiationBoundaryForcing(), Nektar::SmoothedProfileMethod::SetUpCorrectionPressure(), Nektar::CoupledLinearNS::SetUpCoupledMatrix(), Nektar::SmoothedProfileMethod::SetUpExpansions(), Nektar::VelocityCorrectionScheme::SetUpExtrapolation(), Nektar::VelocityCorrectionScheme::SetupFlowrate(), Nektar::SolverUtils::MMFSystem::SetUpMovingFrames(), Nektar::VelocityCorrectionScheme::SetUpSVV(), Nektar::IncNavierStokes::SetUpWomersley(), Nektar::IncNavierStokes::SetWomersleyBoundary(), Nektar::IncNavierStokes::SetZeroNormalVelocity(), Nektar::CoupledLinearNS::Solve(), Nektar::CoupledLinearNS::SolveLinearNS(), Nektar::CoupledLinearNS::SolveSteadyNavierStokes(), Nektar::CoupledLinearNS::SolveUnsteadyStokesSystem(), Nektar::NavierStokesCFE::SpecialBndTreat(), Nektar::MMFSWE::SteadyZonalFlow(), Nektar::UnsteadyAdvectionDiffusion::SubStepAdvance(), Nektar::UnsteadyAdvectionDiffusion::SubStepAdvection(), Nektar::SolverUtils::UnsteadySystem::SVVVarDiffCoeff(), Nektar::VelocityCorrectionScheme::SVVVarDiffCoeff(), Nektar::MMFAdvection::Test2Dproblem(), Nektar::MMFAdvection::Test3Dproblem(), Nektar::MMFDiffusion::TestCubeProblem(), Nektar::MMFMaxwell::TestMaxwell1D(), Nektar::MMFMaxwell::TestMaxwell2DPEC(), Nektar::MMFMaxwell::TestMaxwell2DPMC(), Nektar::MMFMaxwell::TestMaxwellSphere(), Nektar::MMFDiffusion::TestPlaneProblem(), Nektar::MMFSWE::TestSWE2Dproblem(), Nektar::MMFSWE::TestVorticityComputation(), Nektar::MMFSWE::UnstableJetFlow(), Nektar::MMFSWE::UnsteadyZonalFlow(), Nektar::AcousticSystem::UpdateBasefieldFwdBwd(), Nektar::SolverUtils::FileSolution::UpdateField(), UpdateFields(), Nektar::SmoothedProfileMethod::UpdateForcing(), UpdatePhysField(), Nektar::SolverUtils::MMFSystem::UpwindMaxwellFlux1D(), Nektar::LEE::v_AddLinTerm(), Nektar::NavierStokesImplicitCFE::v_CalcPhysDeriv(), Nektar::LinearSWE::v_ConservativeToPrimitive(), Nektar::NonlinearPeregrine::v_ConservativeToPrimitive(), Nektar::NonlinearSWE::v_ConservativeToPrimitive(), Nektar::NavierStokesCFE::v_DoDiffusion(), Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff(), Nektar::VCSImplicit::v_DoInitialise(), Nektar::SteadyAdvectionDiffusion::v_DoInitialise(), Nektar::PulseWaveSystem::v_DoInitialise(), Nektar::MMFSWE::v_DoInitialise(), Nektar::CoupledLinearNS::v_DoInitialise(), Nektar::VCSMapping::v_DoInitialise(), Nektar::VelocityCorrectionScheme::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoSolve(), Nektar::EigenValuesAdvection::v_DoSolve(), Nektar::Laplace::v_DoSolve(), Nektar::MMFAdvection::v_DoSolve(), Nektar::Projection::v_DoSolve(), Nektar::SteadyAdvectionDiffusion::v_DoSolve(), Nektar::IterativeElasticSystem::v_DoSolve(), Nektar::LinearElasticSystem::v_DoSolve(), Nektar::MMFMaxwell::v_DoSolve(), Nektar::PulseWaveSystem::v_DoSolve(), Nektar::MMFSWE::v_DoSolve(), Nektar::VelocityCorrectionScheme::v_EvaluateAdvection_SetPressureBCs(), Nektar::VCSMapping::v_EvaluateAdvection_SetPressureBCs(), v_EvaluateExactSolution(), Nektar::MMFMaxwell::v_EvaluateExactSolution(), Nektar::AcousticSystem::v_ExtraFldOutput(), Nektar::CompressibleFlowSystem::v_ExtraFldOutput(), Nektar::NavierStokesCFE::v_ExtraFldOutput(), Nektar::LinearElasticSystem::v_ExtraFldOutput(), Nektar::Poisson::v_GenerateSummary(), Nektar::Projection::v_GenerateSummary(), Nektar::SolverUtils::MMFSystem::v_GenerateSummary(), Nektar::SolverUtils::FileSolution::v_GetDensity(), Nektar::AcousticSystem::v_GetMaxStdVelocity(), Nektar::CompressibleFlowSystem::v_GetMaxStdVelocity(), Nektar::IncNavierStokes::v_GetMaxStdVelocity(), Nektar::CompressibleFlowSystem::v_GetTimeStep(), Nektar::SolverUtils::FileSolution::v_GetVelocity(), Nektar::NavierStokesCFEAxisym::v_GetViscousFluxVector(), Nektar::NavierStokesCFE::v_GetViscousFluxVectorDeAlias(), v_InitObject(), Nektar::PulseWavePropagation::v_InitObject(), Nektar::PulseWaveSystem::v_InitObject(), Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), Nektar::MMFDiffusion::v_InitObject(), Nektar::ImageWarpingSystem::v_InitObject(), Nektar::CoupledLinearNS::v_InitObject(), Nektar::IncNavierStokes::v_InitObject(), Nektar::VCSMapping::v_InitObject(), Nektar::VelocityCorrectionScheme::v_InitObject(), Nektar::SolverUtils::FileSolution::v_InitObject(), Nektar::AcousticSystem::v_InitObject(), Nektar::APE::v_InitObject(), Nektar::LEE::v_InitObject(), Nektar::EigenValuesAdvection::v_InitObject(), Nektar::MMFAdvection::v_InitObject(), Nektar::Poisson::v_InitObject(), Nektar::Projection::v_InitObject(), Nektar::UnsteadyAdvection::v_InitObject(), Nektar::UnsteadyAdvectionDiffusion::v_InitObject(), Nektar::UnsteadyDiffusion::v_InitObject(), Nektar::UnsteadyInviscidBurgers::v_InitObject(), Nektar::UnsteadyReactionDiffusion::v_InitObject(), Nektar::UnsteadyViscousBurgers::v_InitObject(), Nektar::CompressibleFlowSystem::v_InitObject(), Nektar::NavierStokesCFEAxisym::v_InitObject(), Nektar::Dummy::v_InitObject(), Nektar::IterativeElasticSystem::v_InitObject(), Nektar::LinearElasticSystem::v_InitObject(), Nektar::MMFMaxwell::v_InitObject(), Nektar::LinearSWE::v_InitObject(), Nektar::MMFSWE::v_InitObject(), Nektar::NonlinearPeregrine::v_InitObject(), Nektar::NonlinearSWE::v_InitObject(), Nektar::ShallowWaterSystem::v_InitObject(), Nektar::MMFSWE::v_L2Error(), v_L2Error(), Nektar::PulseWaveSystem::v_L2Error(), Nektar::MMFSWE::v_LinfError(), v_LinfError(), Nektar::PulseWaveSystem::v_LinfError(), Nektar::CoupledLinearNS::v_Output(), Nektar::Dummy::v_PostIntegrate(), Nektar::AcousticSystem::v_PreIntegrate(), Nektar::Dummy::v_PreIntegrate(), Nektar::LinearSWE::v_PrimitiveToConservative(), Nektar::NonlinearPeregrine::v_PrimitiveToConservative(), Nektar::NonlinearSWE::v_PrimitiveToConservative(), Nektar::APE::v_RiemannInvariantBC(), Nektar::LEE::v_RiemannInvariantBC(), Nektar::MMFAdvection::v_SetInitialConditions(), Nektar::MMFMaxwell::v_SetInitialConditions(), Nektar::MMFSWE::v_SetInitialConditions(), v_SetInitialConditions(), Nektar::CompressibleFlowSystem::v_SetInitialConditions(), Nektar::MMFDiffusion::v_SetInitialConditions(), Nektar::VelocityCorrectionScheme::v_SetUpPressureForcing(), Nektar::VCSMapping::v_SetUpPressureForcing(), Nektar::VCSImplicit::v_SetUpPressureForcing(), Nektar::VelocityCorrectionScheme::v_SetUpViscousForcing(), Nektar::VCSMapping::v_SetUpViscousForcing(), Nektar::VCSImplicit::v_SetUpViscousForcing(), Nektar::VCSMapping::v_SolvePressure(), Nektar::VelocityCorrectionScheme::v_SolveUnsteadyStokesSystem(), Nektar::VelocityCorrectionScheme::v_SolveViscous(), Nektar::VCSMapping::v_SolveViscous(), Nektar::VCSImplicit::v_SolveViscous(), Nektar::SolverUtils::UnsteadySystem::v_SteadyStateResidual(), Nektar::CompressibleFlowSystem::v_SteadyStateResidual(), Nektar::CoupledLinearNS::v_TransCoeffToPhys(), Nektar::VelocityCorrectionScheme::v_TransCoeffToPhys(), Nektar::CoupledLinearNS::v_TransPhysToCoeff(), Nektar::VelocityCorrectionScheme::v_TransPhysToCoeff(), Nektar::AcousticSystem::WallBC(), Nektar::LinearSWE::WallBoundary(), Nektar::NonlinearPeregrine::WallBoundary(), Nektar::NonlinearSWE::WallBoundary(), Nektar::LinearSWE::WallBoundary2D(), Nektar::NonlinearPeregrine::WallBoundary2D(), Nektar::NonlinearSWE::WallBoundary2D(), Nektar::MMFSWE::WallBoundary2D(), Nektar::NonlinearPeregrine::WallBoundaryContVariables(), Nektar::NonlinearPeregrine::WallBoundaryForcing(), Nektar::NonlinearPeregrine::WCESolve(), Nektar::MMFAdvection::WeakDGDirectionalAdvection(), Nektar::MMFMaxwell::WeakDGMaxwellDirDeriv(), Nektar::MMFSWE::WeakDGSWEDirDeriv(), Nektar::AcousticSystem::WhiteNoiseBC(), WriteFld(), Nektar::IterativeElasticSystem::WriteGeometry(), and ZeroPhysFields().

◆ m_fintime

NekDouble Nektar::SolverUtils::EquationSystem::m_fintime
protected

◆ m_fld

LibUtilities::FieldIOSharedPtr Nektar::SolverUtils::EquationSystem::m_fld
protected

Field input/output.

Definition at line 357 of file EquationSystem.h.

Referenced by v_InitObject(), WriteFld(), and Nektar::PulseWaveSystem::WriteVessels().

◆ m_graph

SpatialDomains::MeshGraphSharedPtr Nektar::SolverUtils::EquationSystem::m_graph
protected

◆ m_halfMode

bool Nektar::SolverUtils::EquationSystem::m_halfMode
protected

Flag to determine if half homogeneous mode is used.

Definition at line 402 of file EquationSystem.h.

Referenced by SessionSummary(), and v_InitObject().

◆ m_HomoDirec

int Nektar::SolverUtils::EquationSystem::m_HomoDirec
protected

number of homogenous directions

Definition at line 463 of file EquationSystem.h.

Referenced by v_InitObject().

◆ m_homogen_dealiasing

bool Nektar::SolverUtils::EquationSystem::m_homogen_dealiasing
protected

◆ m_HomogeneousType

enum HomogeneousType Nektar::SolverUtils::EquationSystem::m_HomogeneousType
protected

◆ m_infosteps

int Nektar::SolverUtils::EquationSystem::m_infosteps
protected

◆ m_initialStep

int Nektar::SolverUtils::EquationSystem::m_initialStep
protected

◆ m_iterPIT

int Nektar::SolverUtils::EquationSystem::m_iterPIT = 0
protected

Number of parallel-in-time time iteration.

Definition at line 392 of file EquationSystem.h.

Referenced by Checkpoint_Output(), SetIterationNumberPIT(), and v_InitObject().

◆ m_lambda

NekDouble Nektar::SolverUtils::EquationSystem::m_lambda
protected

Lambda constant in real system if one required.

Definition at line 376 of file EquationSystem.h.

Referenced by SetLambda(), and Nektar::CoupledLinearNS::v_DoInitialise().

◆ m_lastCheckTime

NekDouble Nektar::SolverUtils::EquationSystem::m_lastCheckTime
protected

◆ m_LhomX

NekDouble Nektar::SolverUtils::EquationSystem::m_LhomX
protected

physical length in X direction (if homogeneous)

Definition at line 455 of file EquationSystem.h.

◆ m_LhomY

NekDouble Nektar::SolverUtils::EquationSystem::m_LhomY
protected

physical length in Y direction (if homogeneous)

Definition at line 456 of file EquationSystem.h.

Referenced by SessionSummary(), and v_InitObject().

◆ m_LhomZ

NekDouble Nektar::SolverUtils::EquationSystem::m_LhomZ
protected

physical length in Z direction (if homogeneous)

Definition at line 457 of file EquationSystem.h.

Referenced by SessionSummary(), Nektar::CoupledLinearNS::SetUpCoupledMatrix(), v_InitObject(), and Nektar::CoupledLinearNS::v_InitObject().

◆ m_movingFrameData

Array<OneD, NekDouble> Nektar::SolverUtils::EquationSystem::m_movingFrameData
protected

Moving frame of reference angles with respect to the.

Definition at line 435 of file EquationSystem.h.

Referenced by Nektar::IncNavierStokes::v_GetMovingFrameDisp(), Nektar::IncNavierStokes::v_InitObject(), Nektar::IncNavierStokes::v_SetMovingFrameDisp(), and WriteFld().

◆ m_movingFrameProjMat

boost::numeric::ublas::matrix<NekDouble> Nektar::SolverUtils::EquationSystem::m_movingFrameProjMat
protected

◆ m_movingFrameVelsxyz

Array<OneD, NekDouble> Nektar::SolverUtils::EquationSystem::m_movingFrameVelsxyz
protected

Moving frame of reference velocities (u, v, w, omega_x, omega_y, omega_z, a_x, a_y, a_z, domega_x, domega_y, domega_z)

Definition at line 430 of file EquationSystem.h.

Referenced by Nektar::IncNavierStokes::SetMRFWallBCs(), Nektar::IncNavierStokes::v_GetMovingFrameVelocities(), Nektar::IncNavierStokes::v_InitObject(), and Nektar::IncNavierStokes::v_SetMovingFrameVelocities().

◆ m_multipleModes

bool Nektar::SolverUtils::EquationSystem::m_multipleModes
protected

Flag to determine if use multiple homogenenous modes are used.

Definition at line 404 of file EquationSystem.h.

Referenced by SessionSummary(), and v_InitObject().

◆ m_nchk

int Nektar::SolverUtils::EquationSystem::m_nchk
protected

◆ m_npointsX

int Nektar::SolverUtils::EquationSystem::m_npointsX
protected

number of points in X direction (if homogeneous)

Definition at line 459 of file EquationSystem.h.

◆ m_npointsY

int Nektar::SolverUtils::EquationSystem::m_npointsY
protected

number of points in Y direction (if homogeneous)

Definition at line 460 of file EquationSystem.h.

Referenced by SessionSummary(), and v_InitObject().

◆ m_npointsZ

int Nektar::SolverUtils::EquationSystem::m_npointsZ
protected

◆ m_NumQuadPointsError

int Nektar::SolverUtils::EquationSystem::m_NumQuadPointsError
protected

Number of Quadrature points used to work out the error.

Definition at line 442 of file EquationSystem.h.

Referenced by ErrorExtraPoints(), v_InitObject(), Nektar::MMFSWE::v_L2Error(), v_L2Error(), Nektar::PulseWaveSystem::v_L2Error(), v_LinfError(), and Nektar::PulseWaveSystem::v_LinfError().

◆ m_projectionType

enum MultiRegions::ProjectionType Nektar::SolverUtils::EquationSystem::m_projectionType
protected

Type of projection; e.g continuous or discontinuous.

Definition at line 418 of file EquationSystem.h.

Referenced by Nektar::LinearSWE::AddCoriolis(), Nektar::NonlinearPeregrine::AddCoriolis(), Nektar::NonlinearSWE::AddCoriolis(), Nektar::NonlinearPeregrine::AddVariableDepth(), Nektar::NonlinearSWE::AddVariableDepth(), Nektar::UnsteadyAdvectionDiffusion::DoImplicitSolve(), Nektar::UnsteadyViscousBurgers::DoImplicitSolve(), Nektar::MMFAdvection::DoOdeProjection(), Nektar::UnsteadyAdvection::DoOdeProjection(), Nektar::UnsteadyDiffusion::DoOdeProjection(), Nektar::UnsteadyInviscidBurgers::DoOdeProjection(), Nektar::CompressibleFlowSystem::DoOdeProjection(), Nektar::ImageWarpingSystem::DoOdeProjection(), Nektar::LinearSWE::DoOdeProjection(), Nektar::MMFSWE::DoOdeProjection(), Nektar::NonlinearPeregrine::DoOdeProjection(), Nektar::NonlinearSWE::DoOdeProjection(), Nektar::MMFAdvection::DoOdeRhs(), Nektar::ImageWarpingSystem::DoOdeRhs(), Nektar::LinearSWE::DoOdeRhs(), Nektar::NonlinearPeregrine::DoOdeRhs(), Nektar::NonlinearSWE::DoOdeRhs(), Nektar::CompressibleFlowSystem::GetStabilityLimit(), Nektar::CompressibleFlowSystem::InitAdvection(), SessionSummary(), Nektar::EigenValuesAdvection::v_DoSolve(), v_InitObject(), Nektar::PulseWaveSystem::v_InitObject(), Nektar::SmoothedProfileMethod::v_InitObject(), Nektar::AcousticSystem::v_InitObject(), Nektar::EigenValuesAdvection::v_InitObject(), Nektar::UnsteadyAdvection::v_InitObject(), Nektar::UnsteadyAdvectionDiffusion::v_InitObject(), Nektar::UnsteadyDiffusion::v_InitObject(), Nektar::UnsteadyInviscidBurgers::v_InitObject(), Nektar::UnsteadyViscousBurgers::v_InitObject(), Nektar::LinearSWE::v_InitObject(), Nektar::NonlinearPeregrine::v_InitObject(), Nektar::NonlinearSWE::v_InitObject(), Nektar::ShallowWaterSystem::v_InitObject(), and v_SetInitialConditions().

◆ m_session

LibUtilities::SessionReaderSharedPtr Nektar::SolverUtils::EquationSystem::m_session
protected

The session reader.

Definition at line 352 of file EquationSystem.h.

Referenced by Nektar::LinearElasticSystem::BuildMatrixSystem(), Nektar::CFSImplicit::CalcTraceNumericalFlux(), Nektar::SolverUtils::UnsteadySystem::CheckForRestartTime(), Checkpoint_Output(), Nektar::SolverUtils::UnsteadySystem::CheckSteadyState(), Nektar::SolverUtils::MMFSystem::CopyBoundaryTrace(), Nektar::IncNavierStokes::DefinedForcing(), Nektar::CoupledLinearNS::DefineForcingTerm(), Nektar::Bidomain::DoImplicitSolve(), Nektar::Bidomain::DoOdeRhs(), Nektar::BidomainRoth::DoOdeRhs(), Nektar::ImageWarpingSystem::DoOdeRhs(), EquationSystem(), ErrorExtraPoints(), Nektar::CompressibleFlowSystem::EvaluateIsentropicVortex(), Nektar::PulseWavePropagation::GetFluxVector(), GetFunction(), Nektar::SmoothedProfileMethod::GetFunctionHdl(), GetNvariables(), GetSession(), Nektar::UnsteadyAdvectionDiffusion::GetSubstepTimeStep(), GetVariable(), Nektar::Helmholtz::Helmholtz(), ImportFld(), ImportFldToMultiDomains(), Nektar::CompressibleFlowSystem::InitAdvection(), Nektar::CFSImplicit::InitialiseNonlinSysSolver(), Nektar::CompressibleFlowSystem::InitialiseParameters(), Nektar::SolverUtils::UnsteadySystem::InitializeSteadyState(), Nektar::NavierStokesCFE::InitObject_Explicit(), Nektar::VelocityCorrectionScheme::MeasureFlowrate(), Nektar::SolverUtils::MMFSystem::MMFInitObject(), PrintSummary(), Nektar::SmoothedProfileMethod::ReadPhi(), SessionSummary(), Nektar::AcousticSystem::SetBoundaryConditions(), Nektar::LinearSWE::SetBoundaryConditions(), Nektar::NonlinearSWE::SetBoundaryConditions(), SetBoundaryConditions(), Nektar::IncNavierStokes::SetBoundaryConditions(), Nektar::PulseWavePropagation::SetPulseWaveBoundaryConditions(), Nektar::CoupledLinearNS::SetUpCoupledMatrix(), Nektar::PulseWaveSystem::SetUpDomainInterfaceBCs(), Nektar::PulseWaveSystem::SetUpDomainInterfaces(), Nektar::VelocityCorrectionScheme::SetUpExtrapolation(), Nektar::VelocityCorrectionScheme::SetupFlowrate(), Nektar::SolverUtils::MMFSystem::SetUpMovingFrames(), Nektar::VelocityCorrectionScheme::SetUpSVV(), Nektar::SmoothedProfileMethod::SolveCorrectedVelocity(), Nektar::UnsteadyAdvectionDiffusion::SubStepAdvance(), Nektar::SolverUtils::FileSolution::UpdateField(), Nektar::VCSImplicit::v_DoInitialise(), Nektar::SteadyAdvectionDiffusion::v_DoInitialise(), Nektar::PulseWaveSystem::v_DoInitialise(), Nektar::CoupledLinearNS::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoSolve(), Nektar::MMFAdvection::v_DoSolve(), Nektar::IterativeElasticSystem::v_DoSolve(), Nektar::LinearElasticSystem::v_DoSolve(), Nektar::MMFMaxwell::v_DoSolve(), Nektar::PulseWaveSystem::v_DoSolve(), Nektar::MMFSWE::v_DoSolve(), v_EvaluateExactSolution(), Nektar::CompressibleFlowSystem::v_EvaluateExactSolution(), Nektar::AcousticSystem::v_ExtraFldOutput(), Nektar::CompressibleFlowSystem::v_ExtraFldOutput(), Nektar::NavierStokesCFE::v_ExtraFldOutput(), Nektar::Poisson::v_GenerateSummary(), Nektar::Projection::v_GenerateSummary(), Nektar::UnsteadyAdvection::v_GenerateSummary(), Nektar::CompressibleFlowSystem::v_GenerateSummary(), Nektar::VelocityCorrectionScheme::v_GenerateSummary(), Nektar::VCSImplicit::v_GenerateSummary(), Nektar::VCSWeakPressure::v_GenerateSummary(), Nektar::LinearSWE::v_GenerateSummary(), Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary(), Nektar::Monodomain::v_GenerateSummary(), Nektar::SolverUtils::FileSolution::v_GetDensity(), Nektar::VelocityCorrectionScheme::v_GetForceDimension(), Nektar::CoupledLinearNS::v_GetForceDimension(), v_GetSystemSingularChecks(), Nektar::Helmholtz::v_GetSystemSingularChecks(), Nektar::Laplace::v_GetSystemSingularChecks(), Nektar::Poisson::v_GetSystemSingularChecks(), Nektar::VelocityCorrectionScheme::v_GetSystemSingularChecks(), Nektar::SolverUtils::FileSolution::v_GetVelocity(), Nektar::SolverUtils::FileSolution::v_HasConstantDensity(), v_InitObject(), Nektar::PulseWavePropagation::v_InitObject(), Nektar::PulseWaveSystem::v_InitObject(), Nektar::SolverUtils::AdvectionSystem::v_InitObject(), Nektar::SolverUtils::UnsteadySystem::v_InitObject(), Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), Nektar::MMFDiffusion::v_InitObject(), Nektar::ImageWarpingSystem::v_InitObject(), Nektar::CoupledLinearNS::v_InitObject(), Nektar::IncNavierStokes::v_InitObject(), Nektar::SmoothedProfileMethod::v_InitObject(), Nektar::VCSMapping::v_InitObject(), Nektar::VelocityCorrectionScheme::v_InitObject(), Nektar::SolverUtils::FileSolution::v_InitObject(), Nektar::AcousticSystem::v_InitObject(), Nektar::APE::v_InitObject(), Nektar::LEE::v_InitObject(), Nektar::EigenValuesAdvection::v_InitObject(), Nektar::MMFAdvection::v_InitObject(), Nektar::Poisson::v_InitObject(), Nektar::Projection::v_InitObject(), Nektar::SteadyAdvectionDiffusion::v_InitObject(), Nektar::SteadyAdvectionDiffusionReaction::v_InitObject(), Nektar::UnsteadyAdvection::v_InitObject(), Nektar::UnsteadyAdvectionDiffusion::v_InitObject(), Nektar::UnsteadyDiffusion::v_InitObject(), Nektar::UnsteadyInviscidBurgers::v_InitObject(), Nektar::UnsteadyReactionDiffusion::v_InitObject(), Nektar::UnsteadyViscousBurgers::v_InitObject(), Nektar::CompressibleFlowSystem::v_InitObject(), Nektar::CFSImplicit::v_InitObject(), Nektar::Dummy::v_InitObject(), Nektar::IterativeElasticSystem::v_InitObject(), Nektar::LinearElasticSystem::v_InitObject(), Nektar::MMFMaxwell::v_InitObject(), Nektar::LinearSWE::v_InitObject(), Nektar::MMFSWE::v_InitObject(), Nektar::NonlinearPeregrine::v_InitObject(), Nektar::NonlinearSWE::v_InitObject(), Nektar::ShallowWaterSystem::v_InitObject(), v_L2Error(), Nektar::PulseWaveSystem::v_L2Error(), v_LinfError(), Nektar::PulseWaveSystem::v_LinfError(), Nektar::Dummy::v_Output(), Nektar::Dummy::v_PostIntegrate(), Nektar::AcousticSystem::v_PreIntegrate(), Nektar::Dummy::v_PreIntegrate(), Nektar::SolverUtils::UnsteadySystem::v_PrintStatusInformation(), Nektar::CFSImplicit::v_PrintStatusInformation(), Nektar::SolverUtils::UnsteadySystem::v_PrintSummaryStatistics(), Nektar::CFSImplicit::v_PrintSummaryStatistics(), v_SetInitialConditions(), Nektar::CompressibleFlowSystem::v_SetInitialConditions(), Nektar::VCSMapping::v_SolvePressure(), Nektar::VCSMapping::v_SolveViscous(), WriteFld(), Nektar::IterativeElasticSystem::WriteGeometry(), and Nektar::PulseWaveSystem::WriteVessels().

◆ m_sessionFunctions

std::map<std::string, SolverUtils::SessionFunctionSharedPtr> Nektar::SolverUtils::EquationSystem::m_sessionFunctions
protected

Map of known SessionFunctions.

Definition at line 355 of file EquationSystem.h.

Referenced by GetFunction().

◆ m_sessionName

std::string Nektar::SolverUtils::EquationSystem::m_sessionName
protected

◆ m_singleMode

bool Nektar::SolverUtils::EquationSystem::m_singleMode
protected

◆ m_spacedim

int Nektar::SolverUtils::EquationSystem::m_spacedim
protected

Spatial dimension (>= expansion dim).

Definition at line 396 of file EquationSystem.h.

Referenced by Nektar::CFSImplicit::AddMatNSBlkDiagBnd(), Nektar::CFSImplicit::AddMatNSBlkDiagVol(), Nektar::NonlinearPeregrine::AddVariableDepth(), Nektar::NonlinearSWE::AddVariableDepth(), Nektar::CFSImplicit::CalcVolJacStdMat(), Nektar::SolverUtils::MMFSystem::CheckMovingFrames(), Nektar::MMFMaxwell::Checkpoint_EDFluxOutput(), Nektar::MMFMaxwell::Checkpoint_EnergyOutput(), Nektar::MMFSWE::Checkpoint_Output_Cartesian(), Nektar::MMFMaxwell::Checkpoint_PlotOutput(), Nektar::MMFMaxwell::Checkpoint_TotPlotOutput(), Nektar::MMFSWE::Compute_demdt_cdot_ek(), Nektar::SolverUtils::MMFSystem::ComputeCurl(), Nektar::SolverUtils::MMFSystem::Computedemdxicdote(), Nektar::SolverUtils::MMFSystem::ComputeDivCurlMF(), Nektar::MMFSWE::ComputeEnstrophy(), Nektar::SolverUtils::MMFSystem::ComputeMFtrace(), Nektar::MMFAdvection::ComputeNablaCdotVelocity(), Nektar::MMFSWE::ComputeNablaCdotVelocity(), Nektar::SolverUtils::MMFSystem::ComputencdotMF(), Nektar::SolverUtils::MMFSystem::ComputeNtimesF12(), Nektar::SolverUtils::MMFSystem::ComputeNtimesFz(), Nektar::SolverUtils::MMFSystem::ComputeNtimesMF(), Nektar::SolverUtils::MMFSystem::ComputeNtimestimesdFz(), Nektar::MMFAdvection::ComputeveldotMF(), Nektar::SolverUtils::MMFSystem::DeriveCrossProductMF(), Nektar::CompressibleFlowSystem::DoAdvection(), Nektar::CFSImplicit::DoAdvectionCoeff(), Nektar::Bidomain::DoImplicitSolve(), Nektar::AcousticSystem::DoOdeRhs(), Nektar::MMFAdvection::DoOdeRhs(), Nektar::PulseWavePropagation::DoOdeRhs(), Nektar::LinearSWE::DoOdeRhs(), Nektar::NonlinearSWE::DoOdeRhs(), Nektar::MMFAdvection::EvaluateAdvectionVelocity(), Nektar::CompressibleFlowSystem::EvaluateIsentropicVortex(), Nektar::LinearSWE::GetFluxVector(), Nektar::NonlinearPeregrine::GetFluxVector(), Nektar::NonlinearSWE::GetFluxVector(), Nektar::CompressibleFlowSystem::GetFluxVector(), Nektar::UnsteadyAdvection::GetFluxVectorDeAlias(), Nektar::CompressibleFlowSystem::GetFluxVectorDeAlias(), Nektar::CFSImplicit::GetFluxVectorJacPoint(), Nektar::UnsteadyInviscidBurgers::GetNormalVelocity(), Nektar::CFSImplicit::GetTraceJac(), Nektar::LinearSWE::GetVelocityVector(), Nektar::NonlinearPeregrine::GetVelocityVector(), Nektar::NonlinearSWE::GetVelocityVector(), Nektar::SolverUtils::MMFSystem::GramSchumitz(), Nektar::CFSImplicit::InitialiseNonlinSysSolver(), Nektar::MMFSWE::IsolatedMountainFlow(), Nektar::VelocityCorrectionScheme::MeasureFlowrate(), Nektar::SolverUtils::MMFSystem::MMFInitObject(), Nektar::CFSImplicit::NumCalcRiemFluxJac(), Nektar::SolverUtils::MMFSystem::NumericalMaxwellFluxTE(), Nektar::SolverUtils::MMFSystem::NumericalMaxwellFluxTM(), Nektar::MMFSWE::RossbyWave(), SessionSummary(), Nektar::IncNavierStokes::SetMRFDomainVelBCs(), Nektar::IncNavierStokes::SetMRFWallBCs(), Nektar::VelocityCorrectionScheme::SetupFlowrate(), Nektar::SolverUtils::MMFSystem::SetUpMovingFrames(), Nektar::IncNavierStokes::SetZeroNormalVelocity(), Nektar::MMFSWE::SteadyZonalFlow(), Nektar::MMFMaxwell::TestMaxwellSphere(), Nektar::MMFSWE::TestSWE2Dproblem(), Nektar::MMFSWE::TestVorticityComputation(), Nektar::MMFSWE::UnstableJetFlow(), Nektar::MMFSWE::UnsteadyZonalFlow(), Nektar::LEE::v_AddLinTerm(), Nektar::NavierStokesImplicitCFE::v_CalcPhysDeriv(), Nektar::SolverUtils::UnsteadySystem::v_DoSolve(), Nektar::SteadyAdvectionDiffusion::v_DoSolve(), Nektar::CompressibleFlowSystem::v_ExtraFldOutput(), Nektar::NavierStokesCFE::v_ExtraFldOutput(), Nektar::NavierStokesImplicitCFE::v_GetDiffusionFluxJacPoint(), Nektar::APE::v_GetFluxVector(), Nektar::LEE::v_GetFluxVector(), Nektar::AcousticSystem::v_GetMaxStdVelocity(), Nektar::CompressibleFlowSystem::v_GetMaxStdVelocity(), Nektar::IncNavierStokes::v_GetVelocity(), Nektar::NavierStokesCFE::v_GetViscousFluxVector(), Nektar::NavierStokesCFEAxisym::v_GetViscousFluxVector(), Nektar::NavierStokesCFE::v_GetViscousFluxVectorDeAlias(), v_InitObject(), Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), Nektar::MMFDiffusion::v_InitObject(), Nektar::ImageWarpingSystem::v_InitObject(), Nektar::IncNavierStokes::v_InitObject(), Nektar::AcousticSystem::v_InitObject(), Nektar::EigenValuesAdvection::v_InitObject(), Nektar::MMFAdvection::v_InitObject(), Nektar::SteadyAdvectionDiffusion::v_InitObject(), Nektar::UnsteadyAdvection::v_InitObject(), Nektar::CompressibleFlowSystem::v_InitObject(), Nektar::NavierStokesImplicitCFE::v_InitObject(), Nektar::MMFMaxwell::v_InitObject(), Nektar::ShallowWaterSystem::v_InitObject(), Nektar::APE::v_RiemannInvariantBC(), Nektar::LEE::v_RiemannInvariantBC(), Nektar::VelocityCorrectionScheme::v_SolveUnsteadyStokesSystem(), Nektar::SolverUtils::MMFSystem::VectorAvgMagnitude(), Nektar::AcousticSystem::WallBC(), Nektar::LinearSWE::WallBoundary(), Nektar::NonlinearPeregrine::WallBoundary(), Nektar::NonlinearSWE::WallBoundary(), and Nektar::AcousticSystem::WhiteNoiseBC().

◆ m_specHP_dealiasing

bool Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing
protected

◆ m_steps

int Nektar::SolverUtils::EquationSystem::m_steps
protected

◆ m_time

NekDouble Nektar::SolverUtils::EquationSystem::m_time
protected

Current time of simulation.

Definition at line 367 of file EquationSystem.h.

Referenced by Nektar::SolverUtils::UnsteadySystem::CheckSteadyState(), Nektar::AcousticSystem::DoOdeRhs(), ErrorExtraPoints(), Nektar::CoupledLinearNS::EvaluateNewtonRHS(), GetTime(), SetTime(), Nektar::IncNavierStokes::SetWomersleyBoundary(), Nektar::SolverUtils::FileSolution::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoInitialise(), Nektar::VelocityCorrectionScheme::v_DoInitialise(), Nektar::SolverUtils::UnsteadySystem::v_DoSolve(), Nektar::MMFAdvection::v_DoSolve(), Nektar::IterativeElasticSystem::v_DoSolve(), Nektar::MMFMaxwell::v_DoSolve(), Nektar::PulseWaveSystem::v_DoSolve(), Nektar::MMFSWE::v_DoSolve(), v_InitObject(), Nektar::PulseWaveSystem::v_InitObject(), Nektar::SolverUtils::UnsteadySystem::v_InitObject(), Nektar::IncNavierStokes::v_InitObject(), Nektar::APE::v_InitObject(), Nektar::LEE::v_InitObject(), Nektar::MMFSWE::v_L2Error(), v_L2Error(), Nektar::PulseWaveSystem::v_L2Error(), Nektar::MMFSWE::v_LinfError(), v_LinfError(), Nektar::PulseWaveSystem::v_LinfError(), Nektar::Dummy::v_PostIntegrate(), Nektar::VelocityCorrectionScheme::v_PostIntegrate(), Nektar::SolverUtils::FileSolution::v_PostIntegrate(), Nektar::AcousticSystem::v_PreIntegrate(), Nektar::UnsteadyAdvectionDiffusion::v_PreIntegrate(), Nektar::Dummy::v_PreIntegrate(), Nektar::IncNavierStokes::v_PreIntegrate(), Nektar::SolverUtils::UnsteadySystem::v_PrintStatusInformation(), v_SetInitialConditions(), Nektar::VCSImplicit::v_SetUpPressureForcing(), Nektar::VCSImplicit::v_SetUpViscousForcing(), Nektar::CompressibleFlowSystem::v_SteadyStateResidual(), Nektar::CFSImplicit::v_UpdateTimeStepCheck(), Nektar::AcousticSystem::WhiteNoiseBC(), WriteFld(), and Nektar::PulseWaveSystem::WriteVessels().

◆ m_TimeIncrementFactor

NekDouble Nektar::SolverUtils::EquationSystem::m_TimeIncrementFactor
protected

◆ m_timestep

NekDouble Nektar::SolverUtils::EquationSystem::m_timestep
protected

◆ m_traceNormals

Array<OneD, Array<OneD, NekDouble> > Nektar::SolverUtils::EquationSystem::m_traceNormals
protected

◆ m_useFFT

bool Nektar::SolverUtils::EquationSystem::m_useFFT
protected

Flag to determine if FFT is used for homogeneous transform.

Definition at line 406 of file EquationSystem.h.

Referenced by SessionSummary(), v_InitObject(), and Nektar::CoupledLinearNS::v_InitObject().

◆ m_verbose

bool Nektar::SolverUtils::EquationSystem::m_verbose
protected

Definition at line 350 of file EquationSystem.h.

Referenced by Nektar::CFSImplicit::CalcRefValues(), and v_InitObject().

◆ m_windowPIT

int Nektar::SolverUtils::EquationSystem::m_windowPIT = 0
protected

Index of windows for parallel-in-time time iteration.

Definition at line 394 of file EquationSystem.h.

Referenced by SetWindowNumberPIT(), v_Output(), and Nektar::CoupledLinearNS::v_Output().

◆ projectionTypeLookupIds

std::string Nektar::SolverUtils::EquationSystem::projectionTypeLookupIds
staticprotected