Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
Nektar::CFSImplicit Class Reference

#include <CompressibleFlowSystemImplicit.h>

Inheritance diagram for Nektar::CFSImplicit:
[legend]

Public Member Functions

 CFSImplicit (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
 ~CFSImplicit () override=default
 
- Public Member Functions inherited from Nektar::CompressibleFlowSystem
 ~CompressibleFlowSystem () override=default
 
NekDouble GetStabilityLimit (int n)
 Function to calculate the stability limit for DG/CG. More...
 
Array< OneD, NekDoubleGetStabilityLimitVector (const Array< OneD, int > &ExpOrder)
 Function to calculate the stability limit for DG/CG (a vector of them). More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
SOLVER_UTILS_EXPORT ~AdvectionSystem () override
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp)
 
SOLVER_UTILS_EXPORT void GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp)
 
SOLVER_UTILS_EXPORT void SetAeroForce (Array< OneD, NekDouble > forces)
 Set aerodynamic force and moment. More...
 
SOLVER_UTILS_EXPORT void GetAeroForce (Array< OneD, NekDouble > forces)
 Get aerodynamic force and moment. More...
 

Protected Member Functions

void v_InitObject (bool DeclareFields=true) override
 Initialization object for CFSImplicit class. More...
 
void InitialiseNonlinSysSolver ()
 
void v_DoSolve () override
 Solves an unsteady problem. More...
 
void v_PrintStatusInformation (const int step, const NekDouble cpuTime) override
 Print Status Information. More...
 
void v_PrintSummaryStatistics (const NekDouble intTime) override
 Print Summary Statistics. More...
 
void NonlinSysEvaluatorCoeff1D (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const bool &flag=true)
 
void NonlinSysEvaluatorCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &out)
 
void DoOdeImplicitRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void DoOdeRhsCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoAdvectionCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, const Array< OneD, NekDouble > > &pFwd, const Array< OneD, const Array< OneD, NekDouble > > &pBwd)
 Compute the advection terms for the right-hand side. More...
 
void DoDiffusionCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, const Array< OneD, NekDouble > > &pFwd, const Array< OneD, const Array< OneD, NekDouble > > &pBwd)
 Add the diffusions terms to the right-hand side Similar to DoDiffusion() but with outarray in coefficient space. More...
 
void DoImplicitSolve (const Array< OneD, const Array< OneD, NekDouble > > &inpnts, Array< OneD, Array< OneD, NekDouble > > &outpnt, const NekDouble time, const NekDouble lambda)
 
void DoImplicitSolveCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inpnts, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const NekDouble time, const NekDouble lambda)
 
void MatrixMultiplyMatrixFreeCoeff (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const bool &flag=false)
 
void CalcRefValues (const Array< OneD, const NekDouble > &inarray)
 
void PreconCoeff (const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const bool &flag)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void AddMatNSBlkDiagVol (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const TensorOfArray2D< NekDouble > > &qfield, Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, TensorOfArray4D< DataType > &StdMatDataDBB, TensorOfArray5D< DataType > &StdMatDataDBDB)
 
template<typename DataType >
void CalcVolJacStdMat (TensorOfArray4D< DataType > &StdMatDataDBB, TensorOfArray5D< DataType > &StdMatDataDBDB)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void AddMatNSBlkDiagBnd (const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield, TensorOfArray2D< TypeNekBlkMatSharedPtr > &gmtxarray, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJac, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJacDeriv, Array< OneD, Array< OneD, DataType > > &TraceJacDerivSign, TensorOfArray5D< DataType > &TraceIPSymJacArray)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void ElmtVarInvMtrx (Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, TypeNekBlkMatSharedPtr &gmtVar, const DataType &tmpDatatype)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void GetTraceJac (const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJac, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJacDeriv, Array< OneD, Array< OneD, DataType > > &TraceJacDerivSign, TensorOfArray5D< DataType > &TraceIPSymJacArray)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void NumCalcRiemFluxJac (const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, const Array< OneD, NekDouble > > &AdvVel, const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield, const NekDouble &time, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, TypeNekBlkMatSharedPtr &FJac, TypeNekBlkMatSharedPtr &BJac, TensorOfArray5D< DataType > &TraceIPSymJacArray)
 
void PointFluxJacobianPoint (const Array< OneD, NekDouble > &Fwd, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &FJac, const NekDouble efix, const NekDouble fsw)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void TranSamesizeBlkDiagMatIntoArray (const TypeNekBlkMatSharedPtr &BlkMat, TensorOfArray3D< DataType > &MatArray)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void TransTraceJacMatToArray (const Array< OneD, TypeNekBlkMatSharedPtr > &TraceJac, TensorOfArray4D< DataType > &TraceJacDerivArray)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Fill2DArrayOfBlkDiagonalMat (Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, const DataType valu)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Fill1DArrayOfBlkDiagonalMat (Array< OneD, TypeNekBlkMatSharedPtr > &gmtxarray, const DataType valu)
 
void AllocateNekBlkMatDig (SNekBlkMatSharedPtr &mat, const Array< OneD, unsigned int > nrow, const Array< OneD, unsigned int > ncol)
 
void CalcPreconMatBRJCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, SNekBlkMatSharedPtr > > &gmtxarray, SNekBlkMatSharedPtr &gmtVar, Array< OneD, SNekBlkMatSharedPtr > &TraceJac, Array< OneD, SNekBlkMatSharedPtr > &TraceJacDeriv, Array< OneD, Array< OneD, NekSingle > > &TraceJacDerivSign, TensorOfArray4D< NekSingle > &TraceJacArray, TensorOfArray4D< NekSingle > &TraceJacDerivArray, TensorOfArray5D< NekSingle > &TraceIPSymJacArray)
 
template<typename DataType , typename TypeNekBlkMatSharedPtr >
void MultiplyElmtInvMassPlusSource (Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, const NekDouble dtlamda)
 
void GetFluxVectorJacDirElmt (const int nConvectiveFields, const int nElmtPnt, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
 
void GetFluxVectorJacPoint (const int nConvectiveFields, const Array< OneD, NekDouble > &conservVar, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &fluxJac)
 
void CalcTraceNumericalFlux (const int nConvectiveFields, const int nDim, const int nPts, const int nTracePts, const NekDouble PenaltyFactor2, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, const Array< OneD, NekDouble > > &AdvVel, const Array< OneD, const Array< OneD, NekDouble > > &inarray, const NekDouble time, TensorOfArray3D< NekDouble > &qfield, const Array< OneD, const Array< OneD, NekDouble > > &vFwd, const Array< OneD, const Array< OneD, NekDouble > > &vBwd, const Array< OneD, const TensorOfArray2D< NekDouble > > &qFwd, const Array< OneD, const TensorOfArray2D< NekDouble > > &qBwd, const Array< OneD, NekDouble > &MuVarTrace, Array< OneD, int > &nonZeroIndex, Array< OneD, Array< OneD, NekDouble > > &traceflux)
 
void MinusDiffusionFluxJacPoint (const int nConvectiveFields, const int nElmtPnt, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const TensorOfArray3D< NekDouble > &locDerv, const Array< OneD, NekDouble > &locmu, const Array< OneD, NekDouble > &locDmuDT, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
 
void GetFluxDerivJacDirctn (const MultiRegions::ExpListSharedPtr &explist, const Array< OneD, const Array< OneD, NekDouble > > &normals, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray5D< NekDouble > &ElmtJacArray, const int nFluxDir)
 
void GetFluxDerivJacDirctnElmt (const int nConvectiveFields, const int nElmtPnt, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const Array< OneD, NekDouble > &locmu, const Array< OneD, const Array< OneD, NekDouble > > &locnormal, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
 
void GetFluxDerivJacDirctn (const MultiRegions::ExpListSharedPtr &explist, const Array< OneD, const Array< OneD, NekDouble > > &normals, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, DNekMatSharedPtr > > &ElmtJac)
 
void CalcPhysDeriv (const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield)
 
void CalcMuDmuDT (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &DmuDT)
 
virtual void v_DoDiffusionCoeff (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, const Array< OneD, NekDouble > > &pFwd, const Array< OneD, const Array< OneD, NekDouble > > &pBwd)
 
virtual void v_CalcMuDmuDT (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &DmuDT)
 
virtual void v_CalcPhysDeriv (const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield)
 
virtual void v_MinusDiffusionFluxJacPoint (const int nConvectiveFields, const int nElmtPnt, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const TensorOfArray3D< NekDouble > &locDerv, const Array< OneD, NekDouble > &locmu, const Array< OneD, NekDouble > &locDmuDT, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
 
virtual void v_GetFluxDerivJacDirctn (const MultiRegions::ExpListSharedPtr &explist, const Array< OneD, const Array< OneD, NekDouble > > &normals, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray5D< NekDouble > &ElmtJacArray, const int nFluxDir)
 
virtual void v_GetFluxDerivJacDirctnElmt (const int nConvectiveFields, const int nElmtPnt, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const Array< OneD, NekDouble > &locmu, const Array< OneD, const Array< OneD, NekDouble > > &locnormal, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
 
virtual void v_GetFluxDerivJacDirctn (const MultiRegions::ExpListSharedPtr &explist, const Array< OneD, const Array< OneD, NekDouble > > &normals, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, DNekMatSharedPtr > > &ElmtJac)
 
bool v_UpdateTimeStepCheck () override
 
- Protected Member Functions inherited from Nektar::CompressibleFlowSystem
 CompressibleFlowSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
void v_InitObject (bool DeclareFields=true) override
 Initialization object for CompressibleFlowSystem class. More...
 
void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
bool v_HasConstantDensity () override
 
void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
void InitialiseParameters ()
 Load CFS parameters from the session file. More...
 
void InitAdvection ()
 Create advection and diffusion objects for CFS. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void DoAdvection (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Compute the advection terms for the right-hand side. More...
 
void DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Add the diffusions terms to the right-hand side. More...
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations. More...
 
void GetFluxVectorDeAlias (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations by using the de-aliasing technique. More...
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void SetBoundaryConditionsBwdWeight ()
 Set up a weight on physical boundaries for boundary condition applications. More...
 
void GetElmtTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
 Calculate the maximum timestep on each element subject to CFL restrictions. More...
 
NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray) override
 Calculate the maximum timestep subject to CFL restrictions. More...
 
void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0) override
 Set up logic for residual calculation. More...
 
void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time=0.0) override
 
NekDouble GetGamma ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 
MultiRegions::ExpListSharedPtr v_GetPressure () override
 
void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables) override
 
virtual void v_DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)=0
 
Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2) override
 
virtual bool v_SupportsShockCaptType (const std::string type) const =0
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp)
 
virtual SOLVER_UTILS_EXPORT void v_SetAeroForce (Array< OneD, NekDouble > forces)
 
virtual SOLVER_UTILS_EXPORT void v_GetAeroForce (Array< OneD, NekDouble > forces)
 

Protected Attributes

bool m_viscousJacFlag
 
bool m_advectionJacFlag
 
bool m_flagImplicitItsStatistics
 
int m_nPadding = 1
 
int m_TotNewtonIts = 0
 
int m_TotLinIts = 0
 
int m_TotImpStages = 0
 
Array< OneD, NekDoublem_magnitdEstimat
 Estimate the magnitude of each conserved varibles. More...
 
Array< OneD, Array< OneD, NekDouble > > m_solutionPhys
 
NekDouble m_TimeIntegLambda = 0.0
 coefff of spacial derivatives(rhs or m_F in GLM) in calculating the residual of the whole equation(used in unsteady time integrations) More...
 
NekDouble m_inArrayNorm = -1.0
 
NekDouble m_jacobiFreeEps
 
NekDouble m_newtonRelativeIteTol
 
TensorOfArray4D< NekSinglem_stdSMatDataDBB
 
TensorOfArray5D< NekSinglem_stdSMatDataDBDB
 
LibUtilities::NekNonlinSysSharedPtr m_nonlinsol
 
PreconCfsSharedPtr m_preconCfs
 
bool m_updateShockCaptPhys {true}
 
- Protected Attributes inherited from Nektar::CompressibleFlowSystem
SolverUtils::DiffusionSharedPtr m_diffusion
 
ArtificialDiffusionSharedPtr m_artificialDiffusion
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
NekDouble m_gamma
 
std::string m_shockCaptureType
 
NekDouble m_filterAlpha
 
NekDouble m_filterExponent
 
NekDouble m_filterCutoff
 
bool m_useFiltering
 
bool m_useLocalTimeStep
 
Array< OneD, NekDoublem_muav
 
Array< OneD, NekDoublem_muavTrace
 
VariableConverterSharedPtr m_varConv
 
std::vector< CFSBndCondSharedPtrm_bndConds
 
NekDouble m_bndEvaluateTime
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities (u, v, w, omega_x, omega_y, omega_z, a_x, a_y, a_z, domega_x, domega_y, domega_z) More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Additional Inherited Members

- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Definition at line 46 of file CompressibleFlowSystemImplicit.h.

Constructor & Destructor Documentation

◆ CFSImplicit()

Nektar::CFSImplicit::CFSImplicit ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)

Definition at line 44 of file CompressibleFlowSystemImplicit.cpp.

46 : UnsteadySystem(pSession, pGraph), CompressibleFlowSystem(pSession, pGraph)
47{
48}
CompressibleFlowSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

◆ ~CFSImplicit()

Nektar::CFSImplicit::~CFSImplicit ( )
overridedefault

Member Function Documentation

◆ AddMatNSBlkDiagBnd()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::AddMatNSBlkDiagBnd ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray3D< NekDouble > &  qfield,
TensorOfArray2D< TypeNekBlkMatSharedPtr > &  gmtxarray,
Array< OneD, TypeNekBlkMatSharedPtr > &  TraceJac,
Array< OneD, TypeNekBlkMatSharedPtr > &  TraceJacDeriv,
Array< OneD, Array< OneD, DataType > > &  TraceJacDerivSign,
TensorOfArray5D< DataType > &  TraceIPSymJacArray 
)
protected

Definition at line 1050 of file CompressibleFlowSystemImplicit.cpp.

1058{
1059 int nvariables = inarray.size();
1060
1061 LibUtilities::Timer timer;
1062 timer.Start();
1063 GetTraceJac(inarray, qfield, TraceJac, TraceJacDeriv, TraceJacDerivSign,
1064 TraceIPSymJacArray);
1065 timer.Stop();
1066 timer.AccumulateRegion("CFSImplicit::GetTraceJac", 10);
1067
1068 Array<OneD, TypeNekBlkMatSharedPtr> tmpJac;
1069 Array<OneD, Array<OneD, DataType>> tmpSign;
1070
1071 timer.Start();
1072 m_advObject->AddTraceJacToMat(nvariables, m_spacedim, m_fields, TraceJac,
1073 gmtxarray, tmpJac, tmpSign);
1074 timer.Stop();
1075 timer.AccumulateRegion("Advection::AddTraceJacToMap", 10);
1076}
void GetTraceJac(const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJac, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJacDeriv, Array< OneD, Array< OneD, DataType > > &TraceJacDerivSign, TensorOfArray5D< DataType > &TraceIPSymJacArray)
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.

References Nektar::LibUtilities::Timer::AccumulateRegion(), GetTraceJac(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by CalcPreconMatBRJCoeff().

◆ AddMatNSBlkDiagVol()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::AddMatNSBlkDiagVol ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
const Array< OneD, const TensorOfArray2D< NekDouble > > &  qfield,
Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &  gmtxarray,
TensorOfArray4D< DataType > &  StdMatDataDBB,
TensorOfArray5D< DataType > &  StdMatDataDBDB 
)
protected

Definition at line 578 of file CompressibleFlowSystemImplicit.cpp.

584{
585 if (StdMatDataDBB.size() == 0)
586 {
587 CalcVolJacStdMat(StdMatDataDBB, StdMatDataDBDB);
588 }
589
590 int nSpaceDim = m_graph->GetSpaceDimension();
591 int nvariable = inarray.size();
592 int npoints = m_fields[0]->GetTotPoints();
593 int nVar2 = nvariable * nvariable;
594 std::shared_ptr<LocalRegions::ExpansionVector> expvect =
595 m_fields[0]->GetExp();
596 int nTotElmt = (*expvect).size();
597
598 Array<OneD, NekDouble> mu(npoints, 0.0);
599 Array<OneD, NekDouble> DmuDT(npoints, 0.0);
601 {
602 CalcMuDmuDT(inarray, mu, DmuDT);
603 }
604
605 Array<OneD, NekDouble> normals;
606 Array<OneD, Array<OneD, NekDouble>> normal3D(3);
607 for (int i = 0; i < 3; i++)
608 {
609 normal3D[i] = Array<OneD, NekDouble>(3, 0.0);
610 }
611 normal3D[0][0] = 1.0;
612 normal3D[1][1] = 1.0;
613 normal3D[2][2] = 1.0;
614 Array<OneD, Array<OneD, NekDouble>> normalPnt(3);
615
616 DNekMatSharedPtr wspMat =
617 MemoryManager<DNekMat>::AllocateSharedPtr(nvariable, nvariable, 0.0);
619 nvariable - 1, nvariable, 0.0);
620
621 Array<OneD, DataType> GmatxData;
622 Array<OneD, DataType> MatData;
623
624 Array<OneD, NekDouble> tmppnts;
625 TensorOfArray3D<NekDouble> PntJacCons(
626 m_spacedim); // Nvar*Nvar*Ndir*Nelmt*Npnt
627 TensorOfArray3D<DataType> PntJacConsStd(
628 m_spacedim); // Nvar*Nvar*Ndir*Nelmt*Npnt
629 Array<OneD, Array<OneD, NekDouble>> ConsStdd(m_spacedim);
630 Array<OneD, Array<OneD, NekDouble>> ConsCurv(m_spacedim);
631 TensorOfArray4D<NekDouble> PntJacDerv(
632 m_spacedim); // Nvar*Nvar*Ndir*Nelmt*Npnt
633 TensorOfArray4D<DataType> PntJacDervStd(
634 m_spacedim); // Nvar*Nvar*Ndir*Nelmt*Npnt
635 TensorOfArray3D<NekDouble> DervStdd(
636 m_spacedim); // Nvar*Nvar*Ndir*Nelmt*Npnt
637 TensorOfArray3D<NekDouble> DervCurv(
638 m_spacedim); // Nvar*Nvar*Ndir*Nelmt*Npnt
639 for (int ndir = 0; ndir < m_spacedim; ndir++)
640 {
641 PntJacDerv[ndir] = TensorOfArray3D<NekDouble>(m_spacedim);
642 PntJacDervStd[ndir] = TensorOfArray3D<DataType>(m_spacedim);
643 DervStdd[ndir] = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
644 DervCurv[ndir] = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
645 }
646
647 Array<OneD, NekDouble> locmu;
648 Array<OneD, NekDouble> locDmuDT;
649 Array<OneD, Array<OneD, NekDouble>> locVars(nvariable);
650 TensorOfArray3D<NekDouble> locDerv(m_spacedim);
651 for (int ndir = 0; ndir < m_spacedim; ndir++)
652 {
653 locDerv[ndir] = Array<OneD, Array<OneD, NekDouble>>(nvariable);
654 }
655
656 int nElmtCoefOld = -1;
657 for (int ne = 0; ne < nTotElmt; ne++)
658 {
659 int nElmtCoef = (*expvect)[ne]->GetNcoeffs();
660 int nElmtCoef2 = nElmtCoef * nElmtCoef;
661 int nElmtPnt = (*expvect)[ne]->GetTotPoints();
662
663 int nQuot = nElmtCoef2 / m_nPadding;
664 int nRemd = nElmtCoef2 - nQuot * m_nPadding;
665 int nQuotPlus = nQuot;
666 if (nRemd > 0)
667 {
668 nQuotPlus++;
669 }
670 int nElmtCoef2Paded = nQuotPlus * m_nPadding;
671
672 if (nElmtPnt > PntJacCons[0].size() || nElmtCoef > nElmtCoefOld)
673 {
674 nElmtCoefOld = nElmtCoef;
675 for (int ndir = 0; ndir < 3; ndir++)
676 {
677 normalPnt[ndir] = Array<OneD, NekDouble>(npoints, 0.0);
678 }
679 tmppnts = Array<OneD, NekDouble>(nElmtPnt);
680 MatData = Array<OneD, DataType>(nElmtCoef2Paded * nVar2);
681 for (int ndir = 0; ndir < m_spacedim; ndir++)
682 {
683 ConsCurv[ndir] = Array<OneD, NekDouble>(nElmtPnt);
684 ConsStdd[ndir] = Array<OneD, NekDouble>(nElmtPnt);
685 PntJacCons[ndir] =
686 Array<OneD, Array<OneD, NekDouble>>(nElmtPnt);
687 PntJacConsStd[ndir] =
688 Array<OneD, Array<OneD, DataType>>(nElmtPnt);
689 for (int i = 0; i < nElmtPnt; i++)
690 {
691 PntJacCons[ndir][i] = Array<OneD, NekDouble>(nVar2);
692 PntJacConsStd[ndir][i] = Array<OneD, DataType>(nVar2);
693 }
694
695 for (int ndir1 = 0; ndir1 < m_spacedim; ndir1++)
696 {
697 PntJacDerv[ndir][ndir1] =
698 Array<OneD, Array<OneD, NekDouble>>(nElmtPnt);
699 PntJacDervStd[ndir][ndir1] =
700 Array<OneD, Array<OneD, DataType>>(nElmtPnt);
701 DervStdd[ndir][ndir1] = Array<OneD, NekDouble>(nElmtPnt);
702 DervCurv[ndir][ndir1] = Array<OneD, NekDouble>(nElmtPnt);
703 for (int i = 0; i < nElmtPnt; i++)
704 {
705 PntJacDerv[ndir][ndir1][i] =
706 Array<OneD, NekDouble>(nVar2);
707 PntJacDervStd[ndir][ndir1][i] =
708 Array<OneD, DataType>(nVar2);
709 }
710 }
711 }
712 }
713
714 int noffset = GetPhys_Offset(ne);
715 for (int j = 0; j < nvariable; j++)
716 {
717 locVars[j] = inarray[j] + noffset;
718 }
719
721 {
722 for (int nFluxDir = 0; nFluxDir < nSpaceDim; nFluxDir++)
723 {
724 normals = normal3D[nFluxDir];
725 GetFluxVectorJacDirElmt(nvariable, nElmtPnt, locVars, normals,
726 wspMat, PntJacCons[nFluxDir]);
727 }
728 }
729
731 {
732 for (int j = 0; j < nSpaceDim; j++)
733 {
734 for (int k = 0; k < nvariable; k++)
735 {
736 locDerv[j][k] = qfield[j][k] + noffset;
737 }
738 }
739 locmu = mu + noffset;
740 locDmuDT = DmuDT + noffset;
741 for (int nFluxDir = 0; nFluxDir < nSpaceDim; nFluxDir++)
742 {
743 normals = normal3D[nFluxDir];
744 MinusDiffusionFluxJacPoint(nvariable, nElmtPnt, locVars,
745 locDerv, locmu, locDmuDT, normals,
746 wspMatDrv, PntJacCons[nFluxDir]);
747 }
748 }
749
751 {
752 locmu = mu + noffset;
753 for (int nFluxDir = 0; nFluxDir < nSpaceDim; nFluxDir++)
754 {
755 Vmath::Fill(npoints, 1.0, normalPnt[nFluxDir], 1);
756 for (int nDervDir = 0; nDervDir < nSpaceDim; nDervDir++)
757 {
759 nvariable, nElmtPnt, nDervDir, locVars, locmu,
760 normalPnt, wspMatDrv, PntJacDerv[nFluxDir][nDervDir]);
761 }
762 Vmath::Fill(npoints, 0.0, normalPnt[nFluxDir], 1);
763 }
764 }
765
766 for (int n = 0; n < nvariable; n++)
767 {
768 for (int m = 0; m < nvariable; m++)
769 {
770 int nVarOffset = m + n * nvariable;
771 GmatxData = gmtxarray[m][n]->GetBlock(ne, ne)->GetPtr();
772
773 for (int ndStd0 = 0; ndStd0 < m_spacedim; ndStd0++)
774 {
775 Vmath::Zero(nElmtPnt, ConsStdd[ndStd0], 1);
776 }
777 for (int ndir = 0; ndir < m_spacedim; ndir++)
778 {
779 for (int i = 0; i < nElmtPnt; i++)
780 {
781 tmppnts[i] = PntJacCons[ndir][i][nVarOffset];
782 }
783 (*expvect)[ne]->AlignVectorToCollapsedDir(ndir, tmppnts,
784 ConsCurv);
785 for (int nd = 0; nd < m_spacedim; nd++)
786 {
787 Vmath::Vadd(nElmtPnt, ConsCurv[nd], 1, ConsStdd[nd], 1,
788 ConsStdd[nd], 1);
789 }
790 }
791
792 for (int ndir = 0; ndir < m_spacedim; ndir++)
793 {
794 (*expvect)[ne]->MultiplyByQuadratureMetric(
795 ConsStdd[ndir], ConsStdd[ndir]); // weight with metric
796 for (int i = 0; i < nElmtPnt; i++)
797 {
798 PntJacConsStd[ndir][i][nVarOffset] =
799 DataType(ConsStdd[ndir][i]);
800 }
801 }
802 }
803 }
804
806 {
807 for (int m = 0; m < nvariable; m++)
808 {
809 for (int n = 0; n < nvariable; n++)
810 {
811 int nVarOffset = m + n * nvariable;
812 for (int ndStd0 = 0; ndStd0 < m_spacedim; ndStd0++)
813 {
814 for (int ndStd1 = 0; ndStd1 < m_spacedim; ndStd1++)
815 {
816 Vmath::Zero(nElmtPnt, DervStdd[ndStd0][ndStd1], 1);
817 }
818 }
819 for (int nd0 = 0; nd0 < m_spacedim; nd0++)
820 {
821 for (int nd1 = 0; nd1 < m_spacedim; nd1++)
822 {
823 for (int i = 0; i < nElmtPnt; i++)
824 {
825 tmppnts[i] =
826 PntJacDerv[nd0][nd1][i][nVarOffset];
827 }
828
829 (*expvect)[ne]->AlignVectorToCollapsedDir(
830 nd0, tmppnts, ConsCurv);
831 for (int nd = 0; nd < m_spacedim; nd++)
832 {
833 (*expvect)[ne]->AlignVectorToCollapsedDir(
834 nd1, ConsCurv[nd], DervCurv[nd]);
835 }
836
837 for (int ndStd0 = 0; ndStd0 < m_spacedim; ndStd0++)
838 {
839 for (int ndStd1 = 0; ndStd1 < m_spacedim;
840 ndStd1++)
841 {
842 Vmath::Vadd(nElmtPnt,
843 DervCurv[ndStd0][ndStd1], 1,
844 DervStdd[ndStd0][ndStd1], 1,
845 DervStdd[ndStd0][ndStd1], 1);
846 }
847 }
848 }
849 }
850 for (int nd0 = 0; nd0 < m_spacedim; nd0++)
851 {
852 for (int nd1 = 0; nd1 < m_spacedim; nd1++)
853 {
854 (*expvect)[ne]->MultiplyByQuadratureMetric(
855 DervStdd[nd0][nd1],
856 DervStdd[nd0][nd1]); // weight with metric
857 for (int i = 0; i < nElmtPnt; i++)
858 {
859 PntJacDervStd[nd0][nd1][i][nVarOffset] =
860 -DataType(DervStdd[nd0][nd1][i]);
861 }
862 }
863 }
864 }
865 }
866 }
867
868 Vmath::Zero(nElmtCoef2Paded * nVar2, MatData, 1);
869 DataType one = 1.0;
870 for (int ndir = 0; ndir < m_spacedim; ndir++)
871 {
872 for (int i = 0; i < nElmtPnt; i++)
873 {
874 Blas::Ger(nElmtCoef2Paded, nVar2, one,
875 &StdMatDataDBB[ne][ndir][i][0], 1,
876 &PntJacConsStd[ndir][i][0], 1, &MatData[0],
877 nElmtCoef2Paded);
878 }
879 }
880
882 {
883 for (int nd0 = 0; nd0 < m_spacedim; nd0++)
884 {
885 for (int nd1 = 0; nd1 < m_spacedim; nd1++)
886 {
887 for (int i = 0; i < nElmtPnt; i++)
888 {
889 Blas::Ger(nElmtCoef2Paded, nVar2, one,
890 &StdMatDataDBDB[ne][nd0][nd1][i][0], 1,
891 &PntJacDervStd[nd0][nd1][i][0], 1,
892 &MatData[0], nElmtCoef2Paded);
893 }
894 }
895 }
896 }
897
898 Array<OneD, DataType> tmpA;
899
900 for (int n = 0; n < nvariable; n++)
901 {
902 for (int m = 0; m < nvariable; m++)
903 {
904 int nVarOffset = m + n * nvariable;
905 GmatxData = gmtxarray[m][n]->GetBlock(ne, ne)->GetPtr();
906 Vmath::Vcopy(nElmtCoef2,
907 tmpA = MatData + nVarOffset * nElmtCoef2Paded, 1,
908 GmatxData, 1);
909 }
910 }
911 }
912}
void CalcVolJacStdMat(TensorOfArray4D< DataType > &StdMatDataDBB, TensorOfArray5D< DataType > &StdMatDataDBDB)
void GetFluxDerivJacDirctnElmt(const int nConvectiveFields, const int nElmtPnt, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const Array< OneD, NekDouble > &locmu, const Array< OneD, const Array< OneD, NekDouble > > &locnormal, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
void GetFluxVectorJacDirElmt(const int nConvectiveFields, const int nElmtPnt, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
void MinusDiffusionFluxJacPoint(const int nConvectiveFields, const int nElmtPnt, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const TensorOfArray3D< NekDouble > &locDerv, const Array< OneD, NekDouble > &locmu, const Array< OneD, NekDouble > &locDmuDT, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)
void CalcMuDmuDT(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &DmuDT)
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
SOLVER_UTILS_EXPORT int GetPhys_Offset(int n)
static void Ger(const int &m, const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy, double *a, const int &lda)
BLAS level 2: Matrix vector multiply A = alpha*x*y**T + A where A[m x n].
Definition: Blas.hpp:335
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), CalcMuDmuDT(), CalcVolJacStdMat(), Vmath::Fill(), Blas::Ger(), GetFluxDerivJacDirctnElmt(), GetFluxVectorJacDirElmt(), Nektar::SolverUtils::EquationSystem::GetPhys_Offset(), m_advectionJacFlag, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_graph, m_nPadding, Nektar::SolverUtils::EquationSystem::m_spacedim, m_viscousJacFlag, MinusDiffusionFluxJacPoint(), Vmath::Vadd(), Vmath::Vcopy(), and Vmath::Zero().

Referenced by CalcPreconMatBRJCoeff().

◆ AllocateNekBlkMatDig()

void Nektar::CFSImplicit::AllocateNekBlkMatDig ( SNekBlkMatSharedPtr mat,
const Array< OneD, unsigned int >  nrow,
const Array< OneD, unsigned int >  ncol 
)
inlineprotected

Definition at line 220 of file CompressibleFlowSystemImplicit.h.

223 {
224 mat =
226 SNekMatSharedPtr loc_matNvar;
227 for (int nelm = 0; nelm < nrow.size(); ++nelm)
228 {
229 int nrowsVars = nrow[nelm];
230 int ncolsVars = ncol[nelm];
231
233 nrowsVars, ncolsVars, 0.0);
234 mat->SetBlock(nelm, nelm, loc_matNvar);
235 }
236 }
std::shared_ptr< SNekMat > SNekMatSharedPtr

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::eDIAGONAL.

Referenced by ElmtVarInvMtrx(), and GetTraceJac().

◆ CalcMuDmuDT()

void Nektar::CFSImplicit::CalcMuDmuDT ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, NekDouble > &  mu,
Array< OneD, NekDouble > &  DmuDT 
)
inlineprotected

Definition at line 333 of file CompressibleFlowSystemImplicit.h.

335 {
336 v_CalcMuDmuDT(inarray, mu, DmuDT);
337 }
virtual void v_CalcMuDmuDT(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &DmuDT)

References v_CalcMuDmuDT().

Referenced by AddMatNSBlkDiagVol().

◆ CalcPhysDeriv()

void Nektar::CFSImplicit::CalcPhysDeriv ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray3D< NekDouble > &  qfield 
)
inlineprotected

Definition at line 327 of file CompressibleFlowSystemImplicit.h.

329 {
330 v_CalcPhysDeriv(inarray, qfield);
331 }
virtual void v_CalcPhysDeriv(const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield)

References v_CalcPhysDeriv().

Referenced by CalcPreconMatBRJCoeff().

◆ CalcPreconMatBRJCoeff()

void Nektar::CFSImplicit::CalcPreconMatBRJCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, SNekBlkMatSharedPtr > > &  gmtxarray,
SNekBlkMatSharedPtr gmtVar,
Array< OneD, SNekBlkMatSharedPtr > &  TraceJac,
Array< OneD, SNekBlkMatSharedPtr > &  TraceJacDeriv,
Array< OneD, Array< OneD, NekSingle > > &  TraceJacDerivSign,
TensorOfArray4D< NekSingle > &  TraceJacArray,
TensorOfArray4D< NekSingle > &  TraceJacDerivArray,
TensorOfArray5D< NekSingle > &  TraceIPSymJacArray 
)
protected

Definition at line 1492 of file CompressibleFlowSystemImplicit.cpp.

1501{
1502 TensorOfArray3D<NekDouble> qfield;
1503
1504 if (m_viscousJacFlag)
1505 {
1506 CalcPhysDeriv(inarray, qfield);
1507 }
1508
1509 NekSingle zero = 0.0;
1510 Fill2DArrayOfBlkDiagonalMat(gmtxarray, zero);
1511
1512 LibUtilities::Timer timer;
1513 timer.Start();
1514 AddMatNSBlkDiagVol(inarray, qfield, gmtxarray, m_stdSMatDataDBB,
1516 timer.Stop();
1517 timer.AccumulateRegion("CFSImplicit::AddMatNSBlkDiagVol", 2);
1518
1519 timer.Start();
1520 AddMatNSBlkDiagBnd(inarray, qfield, gmtxarray, TraceJac, TraceJacDeriv,
1521 TraceJacDerivSign, TraceIPSymJacArray);
1522 timer.Stop();
1523 timer.AccumulateRegion("CFSImplicit::AddMatNSBlkDiagBnd", 2);
1524
1525 MultiplyElmtInvMassPlusSource<NekSingle>(gmtxarray, m_TimeIntegLambda);
1526
1527 timer.Start();
1528 ElmtVarInvMtrx(gmtxarray, gmtVar, zero);
1529 timer.Stop();
1530 timer.AccumulateRegion("CFSImplicit::ElmtVarInvMtrx", 2);
1531
1532 TransTraceJacMatToArray(TraceJac, TraceJacArray);
1533}
void AddMatNSBlkDiagVol(const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const TensorOfArray2D< NekDouble > > &qfield, Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, TensorOfArray4D< DataType > &StdMatDataDBB, TensorOfArray5D< DataType > &StdMatDataDBDB)
void ElmtVarInvMtrx(Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, TypeNekBlkMatSharedPtr &gmtVar, const DataType &tmpDatatype)
void TransTraceJacMatToArray(const Array< OneD, TypeNekBlkMatSharedPtr > &TraceJac, TensorOfArray4D< DataType > &TraceJacDerivArray)
void CalcPhysDeriv(const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield)
TensorOfArray4D< NekSingle > m_stdSMatDataDBB
TensorOfArray5D< NekSingle > m_stdSMatDataDBDB
NekDouble m_TimeIntegLambda
coefff of spacial derivatives(rhs or m_F in GLM) in calculating the residual of the whole equation(us...
void Fill2DArrayOfBlkDiagonalMat(Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &gmtxarray, const DataType valu)
void AddMatNSBlkDiagBnd(const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield, TensorOfArray2D< TypeNekBlkMatSharedPtr > &gmtxarray, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJac, Array< OneD, TypeNekBlkMatSharedPtr > &TraceJacDeriv, Array< OneD, Array< OneD, DataType > > &TraceJacDerivSign, TensorOfArray5D< DataType > &TraceIPSymJacArray)

References Nektar::LibUtilities::Timer::AccumulateRegion(), AddMatNSBlkDiagBnd(), AddMatNSBlkDiagVol(), CalcPhysDeriv(), ElmtVarInvMtrx(), Fill2DArrayOfBlkDiagonalMat(), m_stdSMatDataDBB, m_stdSMatDataDBDB, m_TimeIntegLambda, m_viscousJacFlag, Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), and TransTraceJacMatToArray().

Referenced by InitialiseNonlinSysSolver().

◆ CalcRefValues()

void Nektar::CFSImplicit::CalcRefValues ( const Array< OneD, const NekDouble > &  inarray)
protected

Definition at line 461 of file CompressibleFlowSystemImplicit.cpp.

462{
463 unsigned int nvariables = m_fields.size();
464 unsigned int ntotal = inarray.size();
465 unsigned int npoints = ntotal / nvariables;
466
467 unsigned int nTotalGlobal = ntotal;
468 m_comm->GetSpaceComm()->AllReduce(nTotalGlobal,
470 unsigned int nTotalDOF = nTotalGlobal / nvariables;
471 NekDouble invTotalDOF = 1.0 / nTotalDOF;
472
473 m_inArrayNorm = 0.0;
474 m_magnitdEstimat = Array<OneD, NekDouble>(nvariables, 0.0);
475
476 for (int i = 0; i < nvariables; ++i)
477 {
478 int offset = i * npoints;
480 Vmath::Dot(npoints, inarray + offset, inarray + offset);
481 }
482 m_comm->GetSpaceComm()->AllReduce(m_magnitdEstimat,
484
485 for (int i = 0; i < nvariables; ++i)
486 {
488 }
489
490 for (int i = 2; i < nvariables - 1; ++i)
491 {
493 }
494
495 for (int i = 2; i < nvariables - 1; ++i)
496 {
498 }
499
500 for (int i = 0; i < nvariables; ++i)
501 {
502 m_magnitdEstimat[i] = sqrt(m_magnitdEstimat[i] * invTotalDOF);
503 }
504 if (m_comm->GetRank() == 0 && m_verbose)
505 {
506 for (int i = 0; i < nvariables; ++i)
507 {
508 cout << "m_magnitdEstimat[" << i << "] = " << m_magnitdEstimat[i]
509 << endl;
510 }
511 cout << "m_inArrayNorm = " << m_inArrayNorm << endl;
512 }
513}
Array< OneD, NekDouble > m_magnitdEstimat
Estimate the magnitude of each conserved varibles.
LibUtilities::CommSharedPtr m_comm
Communicator.
double NekDouble
T Dot(int n, const T *w, const T *x)
dot product
Definition: Vmath.hpp:761
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Vmath::Dot(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_inArrayNorm, m_magnitdEstimat, Nektar::SolverUtils::EquationSystem::m_verbose, Nektar::LibUtilities::ReduceSum, and tinysimd::sqrt().

Referenced by DoImplicitSolveCoeff().

◆ CalcTraceNumericalFlux()

void Nektar::CFSImplicit::CalcTraceNumericalFlux ( const int  nConvectiveFields,
const int  nDim,
const int  nPts,
const int  nTracePts,
const NekDouble  PenaltyFactor2,
const Array< OneD, MultiRegions::ExpListSharedPtr > &  fields,
const Array< OneD, const Array< OneD, NekDouble > > &  AdvVel,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
const NekDouble  time,
TensorOfArray3D< NekDouble > &  qfield,
const Array< OneD, const Array< OneD, NekDouble > > &  vFwd,
const Array< OneD, const Array< OneD, NekDouble > > &  vBwd,
const Array< OneD, const TensorOfArray2D< NekDouble > > &  qFwd,
const Array< OneD, const TensorOfArray2D< NekDouble > > &  qBwd,
const Array< OneD, NekDouble > &  MuVarTrace,
Array< OneD, int > &  nonZeroIndex,
Array< OneD, Array< OneD, NekDouble > > &  traceflux 
)
protected

Definition at line 1417 of file CompressibleFlowSystemImplicit.cpp.

1432{
1434 {
1435 auto advWeakDGObject =
1436 std::dynamic_pointer_cast<SolverUtils::AdvectionWeakDG>(
1437 m_advObject);
1438 ASSERTL0(advWeakDGObject,
1439 "Use WeakDG for implicit compressible flow solver!");
1440 advWeakDGObject->AdvectTraceFlux(nConvectiveFields, m_fields, AdvVel,
1441 inarray, traceflux, m_bndEvaluateTime,
1442 vFwd, vBwd);
1443 }
1444 else
1445 {
1446 for (int i = 0; i < nConvectiveFields; i++)
1447 {
1448 traceflux[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1449 }
1450 }
1451
1452 if (m_viscousJacFlag)
1453 {
1454 Array<OneD, Array<OneD, NekDouble>> visflux(nConvectiveFields);
1455 for (int i = 0; i < nConvectiveFields; i++)
1456 {
1457 visflux[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1458 }
1459
1460 string diffName;
1461 m_session->LoadSolverInfo("DiffusionType", diffName, "InteriorPenalty");
1462 if (diffName == "InteriorPenalty")
1463 {
1464 m_diffusion->DiffuseTraceFlux(fields, inarray, qfield,
1466 vFwd, vBwd, nonZeroIndex);
1467 }
1468 else
1469 {
1470 ASSERTL1(false, "LDGNS not yet validated for implicit compressible "
1471 "flow solver");
1472 // For LDGNS, the array size should be nConvectiveFields - 1
1473 Array<OneD, Array<OneD, NekDouble>> inBwd(nConvectiveFields - 1);
1474 Array<OneD, Array<OneD, NekDouble>> inFwd(nConvectiveFields - 1);
1475 for (int i = 0; i < nConvectiveFields - 1; ++i)
1476 {
1477 inBwd[i] = vBwd[i];
1478 inFwd[i] = vFwd[i];
1479 }
1480 m_diffusion->DiffuseTraceFlux(fields, inarray, qfield,
1482 inFwd, inBwd, nonZeroIndex);
1483 }
1484 for (int i = 0; i < nConvectiveFields; i++)
1485 {
1486 Vmath::Vsub(nTracePts, traceflux[i], 1, visflux[i], 1, traceflux[i],
1487 1);
1488 }
1489 }
1490}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
SolverUtils::DiffusionSharedPtr m_diffusion
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
static Array< OneD, Array< OneD, Array< OneD, NekDouble > > > NullNekDoubleTensorOfArray3D
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220

References ASSERTL0, ASSERTL1, m_advectionJacFlag, Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::CompressibleFlowSystem::m_bndEvaluateTime, Nektar::CompressibleFlowSystem::m_diffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, m_viscousJacFlag, Nektar::NullNekDoubleTensorOfArray3D, and Vmath::Vsub().

Referenced by NumCalcRiemFluxJac().

◆ CalcVolJacStdMat()

template<typename DataType >
void Nektar::CFSImplicit::CalcVolJacStdMat ( TensorOfArray4D< DataType > &  StdMatDataDBB,
TensorOfArray5D< DataType > &  StdMatDataDBDB 
)
protected

Definition at line 915 of file CompressibleFlowSystemImplicit.cpp.

917{
918 std::shared_ptr<LocalRegions::ExpansionVector> expvect =
919 m_fields[0]->GetExp();
920 int nTotElmt = (*expvect).size();
921
922 StdMatDataDBB = TensorOfArray4D<DataType>(nTotElmt);
923 StdMatDataDBDB = TensorOfArray5D<DataType>(nTotElmt);
924
925 vector<DNekMatSharedPtr> VectStdDerivBase0;
926 vector<TensorOfArray3D<DataType>> VectStdDerivBase_Base;
927 vector<TensorOfArray4D<DataType>> VectStdDervBase_DervBase;
928 DNekMatSharedPtr MatStdDerivBase0;
929 Array<OneD, DNekMatSharedPtr> ArrayStdMat(m_spacedim);
930 Array<OneD, Array<OneD, NekDouble>> ArrayStdMatData(m_spacedim);
931 for (int ne = 0; ne < nTotElmt; ne++)
932 {
934 stdExp = (*expvect)[ne]->GetStdExp();
935 StdRegions::StdMatrixKey matkey(StdRegions::eDerivBase0,
936 stdExp->DetShapeType(), *stdExp);
937 MatStdDerivBase0 = stdExp->GetStdMatrix(matkey);
938
939 int nTotStdExp = VectStdDerivBase0.size();
940 int nFoundStdExp = -1;
941 for (int i = 0; i < nTotStdExp; i++)
942 {
943 if ((*VectStdDerivBase0[i]) == (*MatStdDerivBase0))
944 {
945 nFoundStdExp = i;
946 }
947 }
948 if (nFoundStdExp >= 0)
949 {
950 StdMatDataDBB[ne] = VectStdDerivBase_Base[nFoundStdExp];
951 StdMatDataDBDB[ne] = VectStdDervBase_DervBase[nFoundStdExp];
952 }
953 else
954 {
955 int nElmtCoef = (*expvect)[ne]->GetNcoeffs();
956 int nElmtCoef2 = nElmtCoef * nElmtCoef;
957 int nElmtPnt = (*expvect)[ne]->GetTotPoints();
958
959 int nQuot = nElmtCoef2 / m_nPadding;
960 int nRemd = nElmtCoef2 - nQuot * m_nPadding;
961 int nQuotPlus = nQuot;
962 if (nRemd > 0)
963 {
964 nQuotPlus++;
965 }
966 int nPaded = nQuotPlus * m_nPadding;
967
968 ArrayStdMat[0] = MatStdDerivBase0;
969 if (m_spacedim > 1)
970 {
971 StdRegions::StdMatrixKey matkey(
972 StdRegions::eDerivBase1, stdExp->DetShapeType(), *stdExp);
973 ArrayStdMat[1] = stdExp->GetStdMatrix(matkey);
974
975 if (m_spacedim > 2)
976 {
977 StdRegions::StdMatrixKey matkey(StdRegions::eDerivBase2,
978 stdExp->DetShapeType(),
979 *stdExp);
980 ArrayStdMat[2] = stdExp->GetStdMatrix(matkey);
981 }
982 }
983 for (int nd0 = 0; nd0 < m_spacedim; nd0++)
984 {
985 ArrayStdMatData[nd0] = ArrayStdMat[nd0]->GetPtr();
986 }
987
988 StdRegions::StdMatrixKey matkey(StdRegions::eBwdMat,
989 stdExp->DetShapeType(), *stdExp);
990 DNekMatSharedPtr BwdMat = stdExp->GetStdMatrix(matkey);
991 Array<OneD, NekDouble> BwdMatData = BwdMat->GetPtr();
992
993 TensorOfArray3D<DataType> tmpStdDBB(m_spacedim);
994 TensorOfArray4D<DataType> tmpStdDBDB(m_spacedim);
995
996 for (int nd0 = 0; nd0 < m_spacedim; nd0++)
997 {
998 tmpStdDBB[nd0] = Array<OneD, Array<OneD, DataType>>(nElmtPnt);
999 for (int i = 0; i < nElmtPnt; i++)
1000 {
1001 tmpStdDBB[nd0][i] = Array<OneD, DataType>(nPaded, 0.0);
1002 for (int nc1 = 0; nc1 < nElmtCoef; nc1++)
1003 {
1004 int noffset = nc1 * nElmtCoef;
1005 for (int nc0 = 0; nc0 < nElmtCoef; nc0++)
1006 {
1007 tmpStdDBB[nd0][i][nc0 + noffset] = DataType(
1008 ArrayStdMatData[nd0][i * nElmtCoef + nc0] *
1009 BwdMatData[i * nElmtCoef + nc1]);
1010 }
1011 }
1012 }
1013
1014 tmpStdDBDB[nd0] = TensorOfArray3D<DataType>(m_spacedim);
1015 for (int nd1 = 0; nd1 < m_spacedim; nd1++)
1016 {
1017 tmpStdDBDB[nd0][nd1] =
1018 Array<OneD, Array<OneD, DataType>>(nElmtPnt);
1019 for (int i = 0; i < nElmtPnt; i++)
1020 {
1021 tmpStdDBDB[nd0][nd1][i] =
1022 Array<OneD, DataType>(nPaded, 0.0);
1023 for (int nc1 = 0; nc1 < nElmtCoef; nc1++)
1024 {
1025 int noffset = nc1 * nElmtCoef;
1026 for (int nc0 = 0; nc0 < nElmtCoef; nc0++)
1027 {
1028 tmpStdDBDB[nd0][nd1][i][nc0 + noffset] =
1029 DataType(
1030 ArrayStdMatData[nd0]
1031 [i * nElmtCoef + nc0] *
1032 ArrayStdMatData[nd1]
1033 [i * nElmtCoef + nc1]);
1034 }
1035 }
1036 }
1037 }
1038 }
1039 VectStdDerivBase0.push_back(MatStdDerivBase0);
1040 VectStdDerivBase_Base.push_back(tmpStdDBB);
1041 VectStdDervBase_DervBase.push_back(tmpStdDBDB);
1042
1043 StdMatDataDBB[ne] = tmpStdDBB;
1044 StdMatDataDBDB[ne] = tmpStdDBDB;
1045 }
1046 }
1047}
std::shared_ptr< StdExpansion > StdExpansionSharedPtr

References Nektar::StdRegions::eBwdMat, Nektar::StdRegions::eDerivBase0, Nektar::StdRegions::eDerivBase1, Nektar::StdRegions::eDerivBase2, Nektar::SolverUtils::EquationSystem::m_fields, m_nPadding, and Nektar::SolverUtils::EquationSystem::m_spacedim.

Referenced by AddMatNSBlkDiagVol().

◆ DoAdvectionCoeff()

void Nektar::CFSImplicit::DoAdvectionCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const Array< OneD, const Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, const Array< OneD, NekDouble > > &  pBwd 
)
protected

Compute the advection terms for the right-hand side.

Definition at line 374 of file CompressibleFlowSystemImplicit.cpp.

379{
380 int nvariables = inarray.size();
381 Array<OneD, Array<OneD, NekDouble>> advVel(m_spacedim);
382
383 auto advWeakDGObject =
384 std::dynamic_pointer_cast<SolverUtils::AdvectionWeakDG>(m_advObject);
385 ASSERTL0(advWeakDGObject,
386 "Use WeakDG for implicit compressible flow solver!");
387 advWeakDGObject->AdvectCoeffs(nvariables, m_fields, advVel, inarray,
388 outarray, time, pFwd, pBwd);
389}

References ASSERTL0, Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, and Nektar::SolverUtils::EquationSystem::m_spacedim.

Referenced by DoOdeRhsCoeff().

◆ DoDiffusionCoeff()

void Nektar::CFSImplicit::DoDiffusionCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, const Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, const Array< OneD, NekDouble > > &  pBwd 
)
protected

Add the diffusions terms to the right-hand side Similar to DoDiffusion() but with outarray in coefficient space.

Definition at line 395 of file CompressibleFlowSystemImplicit.cpp.

400{
401 v_DoDiffusionCoeff(inarray, outarray, pFwd, pBwd);
402}
virtual void v_DoDiffusionCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, const Array< OneD, NekDouble > > &pFwd, const Array< OneD, const Array< OneD, NekDouble > > &pBwd)

References v_DoDiffusionCoeff().

Referenced by DoOdeRhsCoeff().

◆ DoImplicitSolve()

void Nektar::CFSImplicit::DoImplicitSolve ( const Array< OneD, const Array< OneD, NekDouble > > &  inpnts,
Array< OneD, Array< OneD, NekDouble > > &  outpnt,
const NekDouble  time,
const NekDouble  lambda 
)
protected

Definition at line 404 of file CompressibleFlowSystemImplicit.cpp.

408{
409 unsigned int nvariables = inpnts.size();
410 unsigned int ncoeffs = m_fields[0]->GetNcoeffs();
411 unsigned int ntotal = nvariables * ncoeffs;
412
413 Array<OneD, NekDouble> inarray(ntotal);
414 Array<OneD, NekDouble> outarray(ntotal);
415 Array<OneD, NekDouble> tmpArray;
416
417 // Switch flag to make sure the physical shock capturing AV is updated
419
420 for (int i = 0; i < nvariables; ++i)
421 {
422 int noffset = i * ncoeffs;
423 tmpArray = inarray + noffset;
424 m_fields[i]->FwdTrans(inpnts[i], tmpArray);
425 }
426
427 DoImplicitSolveCoeff(inpnts, inarray, outarray, time, lambda);
428
429 for (int i = 0; i < nvariables; ++i)
430 {
431 int noffset = i * ncoeffs;
432 tmpArray = outarray + noffset;
433 m_fields[i]->BwdTrans(tmpArray, outpnt[i]);
434 }
435}
void DoImplicitSolveCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inpnts, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const NekDouble time, const NekDouble lambda)

References DoImplicitSolveCoeff(), Nektar::SolverUtils::EquationSystem::m_fields, and m_updateShockCaptPhys.

Referenced by v_InitObject().

◆ DoImplicitSolveCoeff()

void Nektar::CFSImplicit::DoImplicitSolveCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inpnts,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out,
const NekDouble  time,
const NekDouble  lambda 
)
protected

Definition at line 437 of file CompressibleFlowSystemImplicit.cpp.

441{
442 m_TimeIntegLambda = lambda;
443 m_bndEvaluateTime = time;
444 m_solutionPhys = inpnts;
445 unsigned int ntotal = inarray.size();
446
447 if (m_inArrayNorm < 0.0)
448 {
449 CalcRefValues(inarray);
450 }
451
453
454 m_TotNewtonIts += m_nonlinsol->SolveSystem(ntotal, inarray, out, 0, tol);
455
456 m_TotLinIts += m_nonlinsol->GetNtotLinSysIts();
457
459}
LibUtilities::NekNonlinSysSharedPtr m_nonlinsol
void CalcRefValues(const Array< OneD, const NekDouble > &inarray)
Array< OneD, Array< OneD, NekDouble > > m_solutionPhys

References CalcRefValues(), Nektar::CompressibleFlowSystem::m_bndEvaluateTime, m_inArrayNorm, m_newtonRelativeIteTol, m_nonlinsol, m_solutionPhys, m_TimeIntegLambda, m_TotImpStages, m_TotLinIts, m_TotNewtonIts, and tinysimd::sqrt().

Referenced by DoImplicitSolve().

◆ DoOdeImplicitRhs()

void Nektar::CFSImplicit::DoOdeImplicitRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 267 of file CompressibleFlowSystemImplicit.cpp.

270{
271 int nvariables = inarray.size();
272 int ncoeffs = m_fields[0]->GetNcoeffs();
273
274 Array<OneD, Array<OneD, NekDouble>> tmpOut(nvariables);
275 for (int i = 0; i < nvariables; ++i)
276 {
277 tmpOut[i] = Array<OneD, NekDouble>(ncoeffs);
278 }
279
280 DoOdeRhsCoeff(inarray, tmpOut, time);
281
282 for (int i = 0; i < nvariables; ++i)
283 {
284 m_fields[i]->BwdTrans(tmpOut[i], outarray[i]);
285 }
286}
void DoOdeRhsCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.

References DoOdeRhsCoeff(), and Nektar::SolverUtils::EquationSystem::m_fields.

Referenced by v_InitObject().

◆ DoOdeRhsCoeff()

void Nektar::CFSImplicit::DoOdeRhsCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the right-hand side.

Definition at line 291 of file CompressibleFlowSystemImplicit.cpp.

294{
295 LibUtilities::Timer timer;
296
297 int nvariables = inarray.size();
298 int nTracePts = GetTraceTotPoints();
299 int ncoeffs = GetNcoeffs();
300
301 m_bndEvaluateTime = time;
302
303 // Store forwards/backwards space along trace space
304 Array<OneD, Array<OneD, NekDouble>> Fwd(nvariables);
305 Array<OneD, Array<OneD, NekDouble>> Bwd(nvariables);
306
308 {
311 }
312 else
313 {
314 for (int i = 0; i < nvariables; ++i)
315 {
316 Fwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
317 Bwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
318 m_fields[i]->GetFwdBwdTracePhys(inarray[i], Fwd[i], Bwd[i]);
319 }
320 }
321
322 // Calculate advection
323 timer.Start();
324 DoAdvectionCoeff(inarray, outarray, time, Fwd, Bwd);
325 timer.Stop();
326 timer.AccumulateRegion("CFSImplicit::DoAdvectionCoeff", 2);
327
328 // Negate results
329 for (int i = 0; i < nvariables; ++i)
330 {
331 Vmath::Neg(ncoeffs, outarray[i], 1);
332 }
333
334 // Add diffusion terms
335 timer.Start();
336 DoDiffusionCoeff(inarray, outarray, Fwd, Bwd);
337 timer.Stop();
338 timer.AccumulateRegion("CFSImplicit::DoDiffusionCoeff", 2);
339
340 // Add forcing terms
341 for (auto &x : m_forcing)
342 {
343 x->ApplyCoeff(m_fields, inarray, outarray, time);
344 }
345
347 {
348 int nElements = m_fields[0]->GetExpSize();
349 int nq, offset;
350 NekDouble fac;
351 Array<OneD, NekDouble> tmp;
352
353 Array<OneD, NekDouble> tstep(nElements, 0.0);
354 GetElmtTimeStep(inarray, tstep);
355
356 // Loop over elements
357 for (int n = 0; n < nElements; ++n)
358 {
359 nq = m_fields[0]->GetExp(n)->GetNcoeffs();
360 offset = m_fields[0]->GetCoeff_Offset(n);
361 fac = tstep[n] / m_timestep;
362 for (int i = 0; i < nvariables; ++i)
363 {
364 Vmath::Smul(nq, fac, outarray[i] + offset, 1,
365 tmp = outarray[i] + offset, 1);
366 }
367 }
368 }
369}
void DoDiffusionCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, const Array< OneD, NekDouble > > &pFwd, const Array< OneD, const Array< OneD, NekDouble > > &pBwd)
Add the diffusions terms to the right-hand side Similar to DoDiffusion() but with outarray in coeffic...
void DoAdvectionCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, const Array< OneD, NekDouble > > &pFwd, const Array< OneD, const Array< OneD, NekDouble > > &pBwd)
Compute the advection terms for the right-hand side.
void GetElmtTimeStep(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
Calculate the maximum timestep on each element subject to CFL restrictions.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
NekDouble m_timestep
Time step size.
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
enum HomogeneousType m_HomogeneousType
SOLVER_UTILS_EXPORT int GetNcoeffs()
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::LibUtilities::Timer::AccumulateRegion(), DoAdvectionCoeff(), DoDiffusionCoeff(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::CompressibleFlowSystem::GetElmtTimeStep(), Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::CompressibleFlowSystem::m_bndEvaluateTime, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::CompressibleFlowSystem::m_forcing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::CompressibleFlowSystem::m_useLocalTimeStep, Vmath::Neg(), Nektar::NullNekDoubleArrayOfArray, Vmath::Smul(), Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by DoOdeImplicitRhs(), and NonlinSysEvaluatorCoeff().

◆ ElmtVarInvMtrx()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::ElmtVarInvMtrx ( Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &  gmtxarray,
TypeNekBlkMatSharedPtr &  gmtVar,
const DataType &  tmpDatatype 
)
protected

Definition at line 1079 of file CompressibleFlowSystemImplicit.cpp.

1083{
1084 int n1d = gmtxarray.size();
1085 int n2d = gmtxarray[0].size();
1086 int nConvectiveFields = n1d;
1087
1088 ASSERTL0(n1d == n2d, "ElmtVarInvMtrx requires n1d==n2d");
1089
1090 Array<OneD, unsigned int> rowSizes;
1091 Array<OneD, unsigned int> colSizes;
1092
1093 gmtxarray[0][0]->GetBlockSizes(rowSizes, colSizes);
1094 int nTotElmt = rowSizes.size();
1095 int nElmtCoef = rowSizes[0] - 1;
1096 int nElmtCoef0 = -1;
1097 int blocksize = -1;
1098
1099 Array<OneD, unsigned int> tmprow(1);
1100 TypeNekBlkMatSharedPtr tmpGmtx;
1101
1102 Array<OneD, DataType> GMatData, ElmtMatData;
1103 Array<OneD, DataType> tmpArray1, tmpArray2;
1104
1105 for (int nelmt = 0; nelmt < nTotElmt; nelmt++)
1106 {
1107 int nrows = gmtxarray[0][0]->GetBlock(nelmt, nelmt)->GetRows();
1108 int ncols = gmtxarray[0][0]->GetBlock(nelmt, nelmt)->GetColumns();
1109 ASSERTL0(nrows == ncols, "ElmtVarInvMtrx requires nrows==ncols");
1110
1111 nElmtCoef = nrows;
1112
1113 if (nElmtCoef0 != nElmtCoef)
1114 {
1115 nElmtCoef0 = nElmtCoef;
1116 int nElmtCoefVar = nElmtCoef0 * nConvectiveFields;
1117 blocksize = nElmtCoefVar * nElmtCoefVar;
1118 tmprow[0] = nElmtCoefVar;
1119 AllocateNekBlkMatDig(tmpGmtx, tmprow, tmprow);
1120 GMatData = tmpGmtx->GetBlock(0, 0)->GetPtr();
1121 }
1122
1123 for (int n = 0; n < nConvectiveFields; n++)
1124 {
1125 for (int m = 0; m < nConvectiveFields; m++)
1126 {
1127 ElmtMatData = gmtxarray[m][n]->GetBlock(nelmt, nelmt)->GetPtr();
1128
1129 for (int ncl = 0; ncl < nElmtCoef; ncl++)
1130 {
1131 int Goffset =
1132 (n * nElmtCoef + ncl) * nConvectiveFields * nElmtCoef +
1133 m * nElmtCoef;
1134 int Eoffset = ncl * nElmtCoef;
1135
1136 Vmath::Vcopy(nElmtCoef, tmpArray1 = ElmtMatData + Eoffset,
1137 1, tmpArray2 = GMatData + Goffset, 1);
1138 }
1139 }
1140 }
1141
1142 tmpGmtx->GetBlock(0, 0)->Invert();
1143
1144 for (int m = 0; m < nConvectiveFields; m++)
1145 {
1146 for (int n = 0; n < nConvectiveFields; n++)
1147 {
1148 ElmtMatData = gmtxarray[m][n]->GetBlock(nelmt, nelmt)->GetPtr();
1149
1150 for (int ncl = 0; ncl < nElmtCoef; ncl++)
1151 {
1152 int Goffset =
1153 (n * nElmtCoef + ncl) * nConvectiveFields * nElmtCoef +
1154 m * nElmtCoef;
1155 int Eoffset = ncl * nElmtCoef;
1156
1157 Vmath::Vcopy(nElmtCoef, tmpArray1 = GMatData + Goffset, 1,
1158 tmpArray2 = ElmtMatData + Eoffset, 1);
1159 }
1160 }
1161 }
1162 ElmtMatData = gmtVar->GetBlock(nelmt, nelmt)->GetPtr();
1163 Vmath::Vcopy(blocksize, GMatData, 1, ElmtMatData, 1);
1164 }
1165 return;
1166}
void AllocateNekBlkMatDig(SNekBlkMatSharedPtr &mat, const Array< OneD, unsigned int > nrow, const Array< OneD, unsigned int > ncol)

References AllocateNekBlkMatDig(), ASSERTL0, and Vmath::Vcopy().

Referenced by CalcPreconMatBRJCoeff().

◆ Fill1DArrayOfBlkDiagonalMat()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::Fill1DArrayOfBlkDiagonalMat ( Array< OneD, TypeNekBlkMatSharedPtr > &  gmtxarray,
const DataType  valu 
)
protected

Definition at line 1847 of file CompressibleFlowSystemImplicit.cpp.

1849{
1850 int n1d = gmtxarray.size();
1851
1852 Array<OneD, unsigned int> rowSizes;
1853 Array<OneD, unsigned int> colSizes;
1854
1855 Array<OneD, DataType> loc_mat_arr;
1856
1857 for (int n1 = 0; n1 < n1d; ++n1)
1858 {
1859 gmtxarray[n1]->GetBlockSizes(rowSizes, colSizes);
1860 int nelmts = rowSizes.size();
1861
1862 for (int i = 0; i < nelmts; ++i)
1863 {
1864 loc_mat_arr = gmtxarray[n1]->GetBlock(i, i)->GetPtr();
1865
1866 int nrows = gmtxarray[n1]->GetBlock(i, i)->GetRows();
1867 int ncols = gmtxarray[n1]->GetBlock(i, i)->GetColumns();
1868
1869 Vmath::Fill(nrows * ncols, valu, loc_mat_arr, 1);
1870 }
1871 }
1872}

References Vmath::Fill().

Referenced by Fill2DArrayOfBlkDiagonalMat().

◆ Fill2DArrayOfBlkDiagonalMat()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::Fill2DArrayOfBlkDiagonalMat ( Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &  gmtxarray,
const DataType  valu 
)
protected

Definition at line 1834 of file CompressibleFlowSystemImplicit.cpp.

1837{
1838 int n1d = gmtxarray.size();
1839
1840 for (int n1 = 0; n1 < n1d; ++n1)
1841 {
1842 Fill1DArrayOfBlkDiagonalMat(gmtxarray[n1], valu);
1843 }
1844}
void Fill1DArrayOfBlkDiagonalMat(Array< OneD, TypeNekBlkMatSharedPtr > &gmtxarray, const DataType valu)

References Fill1DArrayOfBlkDiagonalMat().

Referenced by CalcPreconMatBRJCoeff().

◆ GetFluxDerivJacDirctn() [1/2]

void Nektar::CFSImplicit::GetFluxDerivJacDirctn ( const MultiRegions::ExpListSharedPtr explist,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
const int  nDervDir,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, DNekMatSharedPtr > > &  ElmtJac 
)
inlineprotected

Definition at line 317 of file CompressibleFlowSystemImplicit.h.

323 {
324 v_GetFluxDerivJacDirctn(explist, normals, nDervDir, inarray, ElmtJac);
325 }
virtual void v_GetFluxDerivJacDirctn(const MultiRegions::ExpListSharedPtr &explist, const Array< OneD, const Array< OneD, NekDouble > > &normals, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray5D< NekDouble > &ElmtJacArray, const int nFluxDir)

References v_GetFluxDerivJacDirctn().

◆ GetFluxDerivJacDirctn() [2/2]

void Nektar::CFSImplicit::GetFluxDerivJacDirctn ( const MultiRegions::ExpListSharedPtr explist,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
const int  nDervDir,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray5D< NekDouble > &  ElmtJacArray,
const int  nFluxDir 
)
inlineprotected

Definition at line 293 of file CompressibleFlowSystemImplicit.h.

299 {
300 v_GetFluxDerivJacDirctn(explist, normals, nDervDir, inarray,
301 ElmtJacArray, nFluxDir);
302 }

References v_GetFluxDerivJacDirctn().

◆ GetFluxDerivJacDirctnElmt()

void Nektar::CFSImplicit::GetFluxDerivJacDirctnElmt ( const int  nConvectiveFields,
const int  nElmtPnt,
const int  nDervDir,
const Array< OneD, const Array< OneD, NekDouble > > &  locVars,
const Array< OneD, NekDouble > &  locmu,
const Array< OneD, const Array< OneD, NekDouble > > &  locnormal,
DNekMatSharedPtr wspMat,
Array< OneD, Array< OneD, NekDouble > > &  PntJacArray 
)
inlineprotected

Definition at line 304 of file CompressibleFlowSystemImplicit.h.

311 {
312 v_GetFluxDerivJacDirctnElmt(nConvectiveFields, nElmtPnt, nDervDir,
313 locVars, locmu, locnormal, wspMat,
314 PntJacArray);
315 }
virtual void v_GetFluxDerivJacDirctnElmt(const int nConvectiveFields, const int nElmtPnt, const int nDervDir, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const Array< OneD, NekDouble > &locmu, const Array< OneD, const Array< OneD, NekDouble > > &locnormal, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)

References v_GetFluxDerivJacDirctnElmt().

Referenced by AddMatNSBlkDiagVol().

◆ GetFluxVectorJacDirElmt()

void Nektar::CFSImplicit::GetFluxVectorJacDirElmt ( const int  nConvectiveFields,
const int  nElmtPnt,
const Array< OneD, const Array< OneD, NekDouble > > &  locVars,
const Array< OneD, NekDouble > &  normals,
DNekMatSharedPtr wspMat,
Array< OneD, Array< OneD, NekDouble > > &  PntJacArray 
)
protected

Definition at line 1712 of file CompressibleFlowSystemImplicit.cpp.

1717{
1718 Array<OneD, NekDouble> wspMatData = wspMat->GetPtr();
1719
1720 int matsize = nConvectiveFields * nConvectiveFields;
1721
1722 Array<OneD, NekDouble> pointVar(nConvectiveFields);
1723
1724 for (int npnt = 0; npnt < nElmtPnt; npnt++)
1725 {
1726 for (int j = 0; j < nConvectiveFields; j++)
1727 {
1728 pointVar[j] = locVars[j][npnt];
1729 }
1730
1731 GetFluxVectorJacPoint(nConvectiveFields, pointVar, normals, wspMat);
1732
1733 Vmath::Vcopy(matsize, wspMatData, 1, PntJacArray[npnt], 1);
1734 }
1735 return;
1736}
void GetFluxVectorJacPoint(const int nConvectiveFields, const Array< OneD, NekDouble > &conservVar, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &fluxJac)

References GetFluxVectorJacPoint(), and Vmath::Vcopy().

Referenced by AddMatNSBlkDiagVol().

◆ GetFluxVectorJacPoint()

void Nektar::CFSImplicit::GetFluxVectorJacPoint ( const int  nConvectiveFields,
const Array< OneD, NekDouble > &  conservVar,
const Array< OneD, NekDouble > &  normals,
DNekMatSharedPtr fluxJac 
)
protected

Definition at line 1738 of file CompressibleFlowSystemImplicit.cpp.

1741{
1742 int nvariables = conservVar.size();
1743 const int nvariables3D = 5;
1744 int expDim = m_spacedim;
1745
1746 NekDouble fsw, efix_StegerWarming;
1747 efix_StegerWarming = 0.0;
1748 fsw = 0.0; // exact flux Jacobian if fsw=0.0
1749 if (nvariables > expDim + 2)
1750 {
1751 NEKERROR(ErrorUtil::efatal, "nvariables > expDim+2 case not coded")
1752 }
1753
1754 Array<OneD, NekDouble> fluxJacData;
1755 ;
1756 fluxJacData = fluxJac->GetPtr();
1757
1758 if (nConvectiveFields == nvariables3D)
1759 {
1760 PointFluxJacobianPoint(conservVar, normals, fluxJac, efix_StegerWarming,
1761 fsw);
1762 }
1763 else
1764 {
1765 DNekMatSharedPtr PointFJac3D =
1767 nvariables3D, 0.0);
1768
1769 Array<OneD, NekDouble> PointFJac3DData;
1770 PointFJac3DData = PointFJac3D->GetPtr();
1771
1772 Array<OneD, NekDouble> PointFwd(nvariables3D, 0.0);
1773
1774 Array<OneD, unsigned int> index(nvariables);
1775
1776 index[nvariables - 1] = 4;
1777 for (int i = 0; i < nvariables - 1; i++)
1778 {
1779 index[i] = i;
1780 }
1781
1782 int nj = 0;
1783 int nk = 0;
1784 for (int j = 0; j < nvariables; j++)
1785 {
1786 nj = index[j];
1787 PointFwd[nj] = conservVar[j];
1788 }
1789
1790 PointFluxJacobianPoint(PointFwd, normals, PointFJac3D,
1791 efix_StegerWarming, fsw);
1792
1793 for (int j = 0; j < nvariables; j++)
1794 {
1795 nj = index[j];
1796 for (int k = 0; k < nvariables; k++)
1797 {
1798 nk = index[k];
1799 fluxJacData[j + k * nConvectiveFields] =
1800 PointFJac3DData[nj + nk * nvariables3D];
1801 }
1802 }
1803 }
1804}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202
void PointFluxJacobianPoint(const Array< OneD, NekDouble > &Fwd, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &FJac, const NekDouble efix, const NekDouble fsw)

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::ErrorUtil::efatal, Nektar::SolverUtils::EquationSystem::m_spacedim, NEKERROR, and PointFluxJacobianPoint().

Referenced by GetFluxVectorJacDirElmt().

◆ GetTraceJac()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::GetTraceJac ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray3D< NekDouble > &  qfield,
Array< OneD, TypeNekBlkMatSharedPtr > &  TraceJac,
Array< OneD, TypeNekBlkMatSharedPtr > &  TraceJacDeriv,
Array< OneD, Array< OneD, DataType > > &  TraceJacDerivSign,
TensorOfArray5D< DataType > &  TraceIPSymJacArray 
)
protected

Definition at line 1169 of file CompressibleFlowSystemImplicit.cpp.

1176{
1177 int nvariables = inarray.size();
1178 int nTracePts = GetTraceTotPoints();
1179
1180 // Store forwards/backwards space along trace space
1181 Array<OneD, Array<OneD, NekDouble>> Fwd(nvariables);
1182 Array<OneD, Array<OneD, NekDouble>> Bwd(nvariables);
1183
1184 TypeNekBlkMatSharedPtr FJac, BJac;
1185 Array<OneD, unsigned int> n_blks1(nTracePts, nvariables);
1186
1187 if (TraceJac.size() > 0)
1188 {
1189 FJac = TraceJac[0];
1190 BJac = TraceJac[1];
1191 }
1192 else
1193 {
1194 TraceJac = Array<OneD, TypeNekBlkMatSharedPtr>(2);
1195
1196 AllocateNekBlkMatDig(FJac, n_blks1, n_blks1);
1197 AllocateNekBlkMatDig(BJac, n_blks1, n_blks1);
1198 }
1199
1201 {
1204 }
1205 else
1206 {
1207 for (int i = 0; i < nvariables; ++i)
1208 {
1209 Fwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1210 Bwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1211 m_fields[i]->GetFwdBwdTracePhys(inarray[i], Fwd[i], Bwd[i]);
1212 }
1213 }
1214
1215 Array<OneD, Array<OneD, NekDouble>> AdvVel(m_spacedim);
1216
1217 NumCalcRiemFluxJac(nvariables, m_fields, AdvVel, inarray, qfield,
1218 m_bndEvaluateTime, Fwd, Bwd, FJac, BJac,
1219 TraceIPSymJacArray);
1220
1221 TraceJac[0] = FJac;
1222 TraceJac[1] = BJac;
1223}
void NumCalcRiemFluxJac(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, const Array< OneD, NekDouble > > &AdvVel, const Array< OneD, const Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &qfield, const NekDouble &time, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, TypeNekBlkMatSharedPtr &FJac, TypeNekBlkMatSharedPtr &BJac, TensorOfArray5D< DataType > &TraceIPSymJacArray)

References AllocateNekBlkMatDig(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::CompressibleFlowSystem::m_bndEvaluateTime, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::NullNekDoubleArrayOfArray, and NumCalcRiemFluxJac().

Referenced by AddMatNSBlkDiagBnd().

◆ InitialiseNonlinSysSolver()

void Nektar::CFSImplicit::InitialiseNonlinSysSolver ( )
protected

Definition at line 87 of file CompressibleFlowSystemImplicit.cpp.

88{
89 int nvariables = m_fields.size();
90 int ntotal = m_fields[0]->GetNcoeffs() * nvariables;
91
92 std::string SolverType = "Newton";
93 if (m_session->DefinesSolverInfo("NonlinSysIterSolver"))
94 {
95 SolverType = m_session->GetSolverInfo("NonlinSysIterSolver");
96 }
98 "NekNonlinSys '" + SolverType + "' is not defined.\n");
99
100 // Create the key to hold settings for nonlin solver
101 LibUtilities::NekSysKey key = LibUtilities::NekSysKey();
102 // Load required LinSys parameters:
103 m_session->LoadParameter("NekLinSysMaxIterations",
104 key.m_NekLinSysMaxIterations, 30);
105 m_session->LoadParameter("LinSysMaxStorage", key.m_LinSysMaxStorage, 30);
106 m_session->LoadParameter("GMRESMaxHessMatBand", key.m_KrylovMaxHessMatBand,
107 31);
108 m_session->MatchSolverInfo("GMRESLeftPrecon", "True",
109 key.m_NekLinSysLeftPrecon, false);
110 m_session->MatchSolverInfo("GMRESRightPrecon", "True",
111 key.m_NekLinSysRightPrecon, true);
112 // Load required NonLinSys parameters:
113 m_session->LoadParameter("NekNonlinSysMaxIterations",
114 key.m_NekNonlinSysMaxIterations, 10);
115 m_session->LoadParameter("NonlinIterTolRelativeL2",
116 key.m_NonlinIterTolRelativeL2, 1.0E-3);
117 m_session->LoadParameter("LinSysRelativeTolInNonlin",
118 key.m_LinSysRelativeTolInNonlin, 5.0E-2);
119 m_session->LoadSolverInfo("LinSysIterSolverTypeInNonlin",
120 key.m_LinSysIterSolverTypeInNonlin, "GMRES");
121
122 int GMRESCentralDifference = 0;
123 m_session->LoadParameter("GMRESCentralDifference", GMRESCentralDifference,
124 0);
125 switch (GMRESCentralDifference)
126 {
127 case 1:
128 key.m_DifferenceFlag0 = true;
129 key.m_DifferenceFlag1 = false;
130 break;
131 case 2:
132 key.m_DifferenceFlag0 = true;
133 key.m_DifferenceFlag1 = true;
134 break;
135 default:
136 key.m_DifferenceFlag0 = false;
137 key.m_DifferenceFlag1 = false;
138 break;
139 }
140
141 // Initialize operator
142 LibUtilities::NekSysOperators nekSysOp;
143 nekSysOp.DefineNekSysResEval(&CFSImplicit::NonlinSysEvaluatorCoeff1D, this);
144 nekSysOp.DefineNekSysLhsEval(&CFSImplicit::MatrixMultiplyMatrixFreeCoeff,
145 this);
146 nekSysOp.DefineNekSysPrecon(&CFSImplicit::PreconCoeff, this);
147
148 // Initialize trace
149 const auto locTraceToTraceMap = m_fields[0]->GetLocTraceToTraceMap();
150 locTraceToTraceMap->CalcLocTracePhysToTraceIDMap(m_fields[0]->GetTrace(),
151 m_spacedim);
152 for (int i = 1; i < nvariables; i++)
153 {
154 m_fields[i]->GetLocTraceToTraceMap()->SetLocTracePhysToTraceIDMap(
155 locTraceToTraceMap->GetLocTracephysToTraceIDMap());
156 }
157
158 // Initialize non-linear system
160 "Newton", m_session, m_comm->GetRowComm(), ntotal, key);
161 m_nonlinsol->SetSysOperators(nekSysOp);
162
163 // Initialize preconditioner
164 NekPreconCfsOperators preconOp;
165 preconOp.DefineCalcPreconMatBRJCoeff(&CFSImplicit::CalcPreconMatBRJCoeff,
166 this);
169 m_preconCfs->SetOperators(preconOp);
170}
void CalcPreconMatBRJCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, SNekBlkMatSharedPtr > > &gmtxarray, SNekBlkMatSharedPtr &gmtVar, Array< OneD, SNekBlkMatSharedPtr > &TraceJac, Array< OneD, SNekBlkMatSharedPtr > &TraceJacDeriv, Array< OneD, Array< OneD, NekSingle > > &TraceJacDerivSign, TensorOfArray4D< NekSingle > &TraceJacArray, TensorOfArray4D< NekSingle > &TraceJacDerivArray, TensorOfArray5D< NekSingle > &TraceIPSymJacArray)
void PreconCoeff(const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const bool &flag)
void NonlinSysEvaluatorCoeff1D(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const bool &flag=true)
void MatrixMultiplyMatrixFreeCoeff(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const bool &flag=false)
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:143
NekNonlinSysFactory & GetNekNonlinSysFactory()
PreconCfsFactory & GetPreconCfsFactory()
Declaration of the boundary condition factory singleton.
Definition: PreconCfs.cpp:42

References ASSERTL0, CalcPreconMatBRJCoeff(), Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::NekPreconCfsOperators::DefineCalcPreconMatBRJCoeff(), Nektar::LibUtilities::NekSysOperators::DefineNekSysLhsEval(), Nektar::LibUtilities::NekSysOperators::DefineNekSysPrecon(), Nektar::LibUtilities::NekSysOperators::DefineNekSysResEval(), Nektar::LibUtilities::GetNekNonlinSysFactory(), Nektar::GetPreconCfsFactory(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::LibUtilities::NekSysKey::m_DifferenceFlag0, Nektar::LibUtilities::NekSysKey::m_DifferenceFlag1, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::LibUtilities::NekSysKey::m_KrylovMaxHessMatBand, Nektar::LibUtilities::NekSysKey::m_LinSysIterSolverTypeInNonlin, Nektar::LibUtilities::NekSysKey::m_LinSysMaxStorage, Nektar::LibUtilities::NekSysKey::m_LinSysRelativeTolInNonlin, Nektar::LibUtilities::NekSysKey::m_NekLinSysLeftPrecon, Nektar::LibUtilities::NekSysKey::m_NekLinSysMaxIterations, Nektar::LibUtilities::NekSysKey::m_NekLinSysRightPrecon, Nektar::LibUtilities::NekSysKey::m_NekNonlinSysMaxIterations, Nektar::LibUtilities::NekSysKey::m_NonlinIterTolRelativeL2, m_nonlinsol, m_preconCfs, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, MatrixMultiplyMatrixFreeCoeff(), NonlinSysEvaluatorCoeff1D(), and PreconCoeff().

Referenced by v_InitObject().

◆ MatrixMultiplyMatrixFreeCoeff()

void Nektar::CFSImplicit::MatrixMultiplyMatrixFreeCoeff ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out,
const bool &  flag = false 
)
protected

Definition at line 515 of file CompressibleFlowSystemImplicit.cpp.

518{
519 const Array<OneD, const NekDouble> solref = m_nonlinsol->GetRefSolution();
520 const Array<OneD, const NekDouble> resref = m_nonlinsol->GetRefResidual();
521
522 unsigned int ntotal = inarray.size();
523 NekDouble magninarray = Vmath::Dot(ntotal, inarray, inarray);
524 m_comm->GetSpaceComm()->AllReduce(magninarray,
526 NekDouble eps =
527 m_jacobiFreeEps * sqrt((sqrt(m_inArrayNorm) + 1.0) / magninarray);
528
529 Array<OneD, NekDouble> solplus{ntotal};
530 Array<OneD, NekDouble> resplus{ntotal};
531
532 Vmath::Svtvp(ntotal, eps, inarray, 1, solref, 1, solplus, 1);
533 NonlinSysEvaluatorCoeff1D(solplus, resplus, flag);
534 Vmath::Vsub(ntotal, resplus, 1, resref, 1, out, 1);
535 Vmath::Smul(ntotal, 1.0 / eps, out, 1, out, 1);
536}
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396

References Vmath::Dot(), Nektar::SolverUtils::EquationSystem::m_comm, m_inArrayNorm, m_jacobiFreeEps, m_nonlinsol, NonlinSysEvaluatorCoeff1D(), Nektar::LibUtilities::ReduceSum, Vmath::Smul(), tinysimd::sqrt(), Vmath::Svtvp(), and Vmath::Vsub().

Referenced by InitialiseNonlinSysSolver().

◆ MinusDiffusionFluxJacPoint()

void Nektar::CFSImplicit::MinusDiffusionFluxJacPoint ( const int  nConvectiveFields,
const int  nElmtPnt,
const Array< OneD, const Array< OneD, NekDouble > > &  locVars,
const TensorOfArray3D< NekDouble > &  locDerv,
const Array< OneD, NekDouble > &  locmu,
const Array< OneD, NekDouble > &  locDmuDT,
const Array< OneD, NekDouble > &  normals,
DNekMatSharedPtr wspMat,
Array< OneD, Array< OneD, NekDouble > > &  PntJacArray 
)
inlineprotected

Definition at line 279 of file CompressibleFlowSystemImplicit.h.

287 {
288 v_MinusDiffusionFluxJacPoint(nConvectiveFields, nElmtPnt, locVars,
289 locDerv, locmu, locDmuDT, normals, wspMat,
290 PntJacArray);
291 }
virtual void v_MinusDiffusionFluxJacPoint(const int nConvectiveFields, const int nElmtPnt, const Array< OneD, const Array< OneD, NekDouble > > &locVars, const TensorOfArray3D< NekDouble > &locDerv, const Array< OneD, NekDouble > &locmu, const Array< OneD, NekDouble > &locDmuDT, const Array< OneD, NekDouble > &normals, DNekMatSharedPtr &wspMat, Array< OneD, Array< OneD, NekDouble > > &PntJacArray)

References v_MinusDiffusionFluxJacPoint().

Referenced by AddMatNSBlkDiagVol().

◆ MultiplyElmtInvMassPlusSource()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::MultiplyElmtInvMassPlusSource ( Array< OneD, Array< OneD, TypeNekBlkMatSharedPtr > > &  gmtxarray,
const NekDouble  dtlamda 
)
protected

Definition at line 1550 of file CompressibleFlowSystemImplicit.cpp.

1553{
1555 std::shared_ptr<LocalRegions::ExpansionVector> pexp = explist->GetExp();
1556 int nTotElmt = (*pexp).size();
1557 int nConvectiveFields = m_fields.size();
1558
1559 NekDouble Negdtlamda = -dtlamda;
1560
1561 Array<OneD, NekDouble> pseudotimefactor(nTotElmt, 0.0);
1562 Vmath::Fill(nTotElmt, Negdtlamda, pseudotimefactor, 1);
1563
1564 Array<OneD, DataType> GMatData;
1565 for (int m = 0; m < nConvectiveFields; m++)
1566 {
1567 for (int n = 0; n < nConvectiveFields; n++)
1568 {
1569 for (int nelmt = 0; nelmt < nTotElmt; nelmt++)
1570 {
1571 GMatData = gmtxarray[m][n]->GetBlock(nelmt, nelmt)->GetPtr();
1572 DataType factor = DataType(pseudotimefactor[nelmt]);
1573
1574 Vmath::Smul(GMatData.size(), factor, GMatData, 1, GMatData, 1);
1575 }
1576 }
1577 }
1578
1579 DNekMatSharedPtr MassMat;
1580 Array<OneD, NekDouble> BwdMatData, MassMatData, tmp;
1581 Array<OneD, NekDouble> tmp2;
1582 Array<OneD, DataType> MassMatDataDataType;
1584
1585 for (int nelmt = 0; nelmt < nTotElmt; nelmt++)
1586 {
1587 int nelmtcoef = GetNcoeffs(nelmt);
1588 int nelmtpnts = GetTotPoints(nelmt);
1589 LibUtilities::ShapeType ElmtTypeNow =
1590 explist->GetExp(nelmt)->DetShapeType();
1591
1592 if (tmp.size() != nelmtcoef || (ElmtTypeNow != ElmtTypePrevious))
1593 {
1595 stdExp = explist->GetExp(nelmt)->GetStdExp();
1596 StdRegions::StdMatrixKey matkey(StdRegions::eBwdTrans,
1597 stdExp->DetShapeType(), *stdExp);
1598
1599 DNekMatSharedPtr BwdMat = stdExp->GetStdMatrix(matkey);
1600 BwdMatData = BwdMat->GetPtr();
1601
1602 if (nelmtcoef != tmp.size())
1603 {
1604 tmp = Array<OneD, NekDouble>(nelmtcoef, 0.0);
1606 nelmtcoef, nelmtcoef, 0.0);
1607 MassMatData = MassMat->GetPtr();
1608 MassMatDataDataType =
1609 Array<OneD, DataType>(nelmtcoef * nelmtcoef);
1610 }
1611
1612 ElmtTypePrevious = ElmtTypeNow;
1613 }
1614
1615 for (int np = 0; np < nelmtcoef; np++)
1616 {
1617 explist->GetExp(nelmt)->IProductWRTBase(BwdMatData + np * nelmtpnts,
1618 tmp);
1619 Vmath::Vcopy(nelmtcoef, tmp, 1, tmp2 = MassMatData + np * nelmtcoef,
1620 1);
1621 }
1622 for (int i = 0; i < MassMatData.size(); i++)
1623 {
1624 MassMatDataDataType[i] = DataType(MassMatData[i]);
1625 }
1626
1627 for (int m = 0; m < nConvectiveFields; m++)
1628 {
1629 GMatData = gmtxarray[m][m]->GetBlock(nelmt, nelmt)->GetPtr();
1630 Vmath::Vadd(MassMatData.size(), MassMatDataDataType, 1, GMatData, 1,
1631 GMatData, 1);
1632 }
1633 }
1634 return;
1635}
SOLVER_UTILS_EXPORT int GetTotPoints()
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::eBwdTrans, Nektar::LibUtilities::eNoShapeType, Vmath::Fill(), Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::Array< OneD, const DataType >::size(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vcopy().

◆ NonlinSysEvaluatorCoeff()

void Nektar::CFSImplicit::NonlinSysEvaluatorCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  out 
)
protected

Definition at line 231 of file CompressibleFlowSystemImplicit.cpp.

234{
235 LibUtilities::Timer timer;
236 unsigned int nvariable = inarray.size();
237 unsigned int ncoeffs = m_fields[0]->GetNcoeffs();
238 unsigned int npoints = m_fields[0]->GetNpoints();
239
240 Array<OneD, Array<OneD, NekDouble>> inpnts(nvariable);
241
242 for (int i = 0; i < nvariable; ++i)
243 {
244 inpnts[i] = Array<OneD, NekDouble>(npoints, 0.0);
245 m_fields[i]->BwdTrans(inarray[i], inpnts[i]);
246 }
247
248 timer.Start();
249 DoOdeProjection(inpnts, inpnts, m_bndEvaluateTime);
250 timer.Stop();
251 timer.AccumulateRegion("CompressibleFlowSystem::DoOdeProjection", 1);
252
253 timer.Start();
254 DoOdeRhsCoeff(inpnts, out, m_bndEvaluateTime);
255 timer.Stop();
256 timer.AccumulateRegion("CFSImplicit::DoOdeRhsCoeff", 1);
257
258 for (int i = 0; i < nvariable; ++i)
259 {
260 Vmath::Svtvp(ncoeffs, -m_TimeIntegLambda, out[i], 1, inarray[i], 1,
261 out[i], 1);
262 Vmath::Vsub(ncoeffs, out[i], 1,
263 m_nonlinsol->GetRefSourceVec() + i * ncoeffs, 1, out[i], 1);
264 }
265}
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::CompressibleFlowSystem::DoOdeProjection(), DoOdeRhsCoeff(), Nektar::CompressibleFlowSystem::m_bndEvaluateTime, Nektar::SolverUtils::EquationSystem::m_fields, m_nonlinsol, m_TimeIntegLambda, Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), Vmath::Svtvp(), and Vmath::Vsub().

Referenced by NonlinSysEvaluatorCoeff1D().

◆ NonlinSysEvaluatorCoeff1D()

void Nektar::CFSImplicit::NonlinSysEvaluatorCoeff1D ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out,
const bool &  flag = true 
)
protected

Definition at line 209 of file CompressibleFlowSystemImplicit.cpp.

212{
213 LibUtilities::Timer timer;
214 unsigned int nvariables = m_fields.size();
215 unsigned int npoints = m_fields[0]->GetNcoeffs();
216 Array<OneD, Array<OneD, NekDouble>> in2D(nvariables);
217 Array<OneD, Array<OneD, NekDouble>> out2D(nvariables);
218 for (int i = 0; i < nvariables; ++i)
219 {
220 int offset = i * npoints;
221 in2D[i] = inarray + offset;
222 out2D[i] = out + offset;
223 }
224
225 timer.Start();
226 NonlinSysEvaluatorCoeff(in2D, out2D);
227 timer.Stop();
228 timer.AccumulateRegion("CFSImplicit::NonlinSysEvaluatorCoeff1D");
229}
void NonlinSysEvaluatorCoeff(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &out)

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::SolverUtils::EquationSystem::m_fields, NonlinSysEvaluatorCoeff(), Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by InitialiseNonlinSysSolver(), and MatrixMultiplyMatrixFreeCoeff().

◆ NumCalcRiemFluxJac()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::NumCalcRiemFluxJac ( const int  nConvectiveFields,
const Array< OneD, MultiRegions::ExpListSharedPtr > &  fields,
const Array< OneD, const Array< OneD, NekDouble > > &  AdvVel,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray3D< NekDouble > &  qfield,
const NekDouble time,
const Array< OneD, const Array< OneD, NekDouble > > &  Fwd,
const Array< OneD, const Array< OneD, NekDouble > > &  Bwd,
TypeNekBlkMatSharedPtr &  FJac,
TypeNekBlkMatSharedPtr &  BJac,
TensorOfArray5D< DataType > &  TraceIPSymJacArray 
)
protected

Definition at line 1226 of file CompressibleFlowSystemImplicit.cpp.

1236{
1237 const NekDouble PenaltyFactor2 = 0.0;
1238 int nvariables = nConvectiveFields;
1239 int npoints = GetNpoints();
1240 int nTracePts = GetTraceTotPoints();
1241 int nDim = m_spacedim;
1242
1243 Array<OneD, int> nonZeroIndex;
1244
1245 Array<OneD, Array<OneD, NekDouble>> tmpinarry(nvariables);
1246 for (int i = 0; i < nvariables; i++)
1247 {
1248 tmpinarry[i] = Array<OneD, NekDouble>(npoints, 0.0);
1249 Vmath::Vcopy(npoints, inarray[i], 1, tmpinarry[i], 1);
1250 }
1251
1252 // DmuDT of artificial diffusion is neglected
1253 // TODO: to consider the Jacobian of AV seperately
1254 Array<OneD, NekDouble> muvar = NullNekDouble1DArray;
1255 Array<OneD, NekDouble> MuVarTrace = NullNekDouble1DArray;
1256
1257 Array<OneD, Array<OneD, NekDouble>> numflux(nvariables);
1258 for (int i = 0; i < nvariables; ++i)
1259 {
1260 numflux[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1261 }
1262
1264 fields[0]->GetTraceMap();
1265 TensorOfArray3D<NekDouble> qBwd(nDim);
1266 TensorOfArray3D<NekDouble> qFwd(nDim);
1267 if (m_viscousJacFlag)
1268 {
1269 for (int nd = 0; nd < nDim; ++nd)
1270 {
1271 qBwd[nd] = Array<OneD, Array<OneD, NekDouble>>(nConvectiveFields);
1272 qFwd[nd] = Array<OneD, Array<OneD, NekDouble>>(nConvectiveFields);
1273 for (int i = 0; i < nConvectiveFields; ++i)
1274 {
1275 qBwd[nd][i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1276 qFwd[nd][i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1277
1278 fields[i]->GetFwdBwdTracePhys(qfield[nd][i], qFwd[nd][i],
1279 qBwd[nd][i], true, true, false);
1280 TraceMap->GetAssemblyCommDG()->PerformExchange(qFwd[nd][i],
1281 qBwd[nd][i]);
1282 }
1283 }
1284 }
1285
1286 CalcTraceNumericalFlux(nConvectiveFields, nDim, npoints, nTracePts,
1287 PenaltyFactor2, fields, AdvVel, inarray, time,
1288 qfield, Fwd, Bwd, qFwd, qBwd, MuVarTrace,
1289 nonZeroIndex, numflux);
1290
1291 int nFields = nvariables;
1292 Array<OneD, Array<OneD, NekDouble>> plusFwd(nFields), plusBwd(nFields);
1293 Array<OneD, Array<OneD, NekDouble>> Jacvect(nFields);
1294 Array<OneD, Array<OneD, NekDouble>> FwdBnd(nFields);
1295 Array<OneD, Array<OneD, NekDouble>> plusflux(nFields);
1296 for (int i = 0; i < nFields; i++)
1297 {
1298 Jacvect[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1299 plusFwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1300 plusBwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1301 plusflux[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1302 FwdBnd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1303 }
1304
1305 for (int i = 0; i < nFields; i++)
1306 {
1307 Vmath::Vcopy(nTracePts, Fwd[i], 1, plusFwd[i], 1);
1308 Vmath::Vcopy(nTracePts, Bwd[i], 1, plusBwd[i], 1);
1309 }
1310
1311 NekDouble eps = 1.0E-6;
1312
1313 Array<OneD, DataType> tmpMatData;
1314 // Fwd Jacobian
1315 for (int i = 0; i < nFields; i++)
1316 {
1317 NekDouble epsvar = eps * m_magnitdEstimat[i];
1318 NekDouble oepsvar = 1.0 / epsvar;
1319 Vmath::Sadd(nTracePts, epsvar, Fwd[i], 1, plusFwd[i], 1);
1320
1321 if (m_bndConds.size())
1322 {
1323 for (int i = 0; i < nFields; i++)
1324 {
1325 Vmath::Vcopy(nTracePts, plusFwd[i], 1, FwdBnd[i], 1);
1326 }
1327 // Loop over user-defined boundary conditions
1328 for (auto &x : m_bndConds)
1329 {
1330 x->Apply(FwdBnd, tmpinarry, time);
1331 }
1332 }
1333
1334 for (int j = 0; j < nFields; j++)
1335 {
1336 m_fields[j]->FillBwdWithBoundCond(plusFwd[j], plusBwd[j]);
1337 }
1338
1339 CalcTraceNumericalFlux(nConvectiveFields, nDim, npoints, nTracePts,
1340 PenaltyFactor2, fields, AdvVel, inarray, time,
1341 qfield, plusFwd, plusBwd, qFwd, qBwd, MuVarTrace,
1342 nonZeroIndex, plusflux);
1343
1344 for (int n = 0; n < nFields; n++)
1345 {
1346 Vmath::Vsub(nTracePts, plusflux[n], 1, numflux[n], 1, Jacvect[n],
1347 1);
1348 Vmath::Smul(nTracePts, oepsvar, Jacvect[n], 1, Jacvect[n], 1);
1349 }
1350 for (int j = 0; j < nTracePts; j++)
1351 {
1352 tmpMatData = FJac->GetBlock(j, j)->GetPtr();
1353 for (int n = 0; n < nFields; n++)
1354 {
1355 tmpMatData[n + i * nFields] = DataType(Jacvect[n][j]);
1356 }
1357 }
1358
1359 Vmath::Vcopy(nTracePts, Fwd[i], 1, plusFwd[i], 1);
1360 }
1361
1362 // Reset the boundary conditions
1363 if (m_bndConds.size())
1364 {
1365 for (int i = 0; i < nFields; i++)
1366 {
1367 Vmath::Vcopy(nTracePts, Fwd[i], 1, FwdBnd[i], 1);
1368 }
1369 // Loop over user-defined boundary conditions
1370 for (auto &x : m_bndConds)
1371 {
1372 x->Apply(FwdBnd, tmpinarry, time);
1373 }
1374 }
1375
1376 for (int i = 0; i < nFields; i++)
1377 {
1378 Vmath::Vcopy(nTracePts, Bwd[i], 1, plusBwd[i], 1);
1379 }
1380
1381 for (int i = 0; i < nFields; i++)
1382 {
1383 NekDouble epsvar = eps * m_magnitdEstimat[i];
1384 NekDouble oepsvar = 1.0 / epsvar;
1385
1386 Vmath::Sadd(nTracePts, epsvar, Bwd[i], 1, plusBwd[i], 1);
1387
1388 for (int j = 0; j < nFields; j++)
1389 {
1390 m_fields[j]->FillBwdWithBoundCond(Fwd[j], plusBwd[j]);
1391 }
1392
1393 CalcTraceNumericalFlux(nConvectiveFields, nDim, npoints, nTracePts,
1394 PenaltyFactor2, fields, AdvVel, inarray, time,
1395 qfield, Fwd, plusBwd, qFwd, qBwd, MuVarTrace,
1396 nonZeroIndex, plusflux);
1397
1398 for (int n = 0; n < nFields; n++)
1399 {
1400 Vmath::Vsub(nTracePts, plusflux[n], 1, numflux[n], 1, Jacvect[n],
1401 1);
1402 Vmath::Smul(nTracePts, oepsvar, Jacvect[n], 1, Jacvect[n], 1);
1403 }
1404 for (int j = 0; j < nTracePts; j++)
1405 {
1406 tmpMatData = BJac->GetBlock(j, j)->GetPtr();
1407 for (int n = 0; n < nFields; n++)
1408 {
1409 tmpMatData[n + i * nFields] = DataType(Jacvect[n][j]);
1410 }
1411 }
1412
1413 Vmath::Vcopy(nTracePts, Bwd[i], 1, plusBwd[i], 1);
1414 }
1415}
void CalcTraceNumericalFlux(const int nConvectiveFields, const int nDim, const int nPts, const int nTracePts, const NekDouble PenaltyFactor2, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, const Array< OneD, NekDouble > > &AdvVel, const Array< OneD, const Array< OneD, NekDouble > > &inarray, const NekDouble time, TensorOfArray3D< NekDouble > &qfield, const Array< OneD, const Array< OneD, NekDouble > > &vFwd, const Array< OneD, const Array< OneD, NekDouble > > &vBwd, const Array< OneD, const TensorOfArray2D< NekDouble > > &qFwd, const Array< OneD, const TensorOfArray2D< NekDouble > > &qBwd, const Array< OneD, NekDouble > &MuVarTrace, Array< OneD, int > &nonZeroIndex, Array< OneD, Array< OneD, NekDouble > > &traceflux)
std::vector< CFSBndCondSharedPtr > m_bndConds
SOLVER_UTILS_EXPORT int GetNpoints()
std::shared_ptr< AssemblyMapDG > AssemblyMapDGSharedPtr
Definition: AssemblyMapDG.h:46
static Array< OneD, NekDouble > NullNekDouble1DArray
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.hpp:194

References CalcTraceNumericalFlux(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::CompressibleFlowSystem::m_bndConds, Nektar::SolverUtils::EquationSystem::m_fields, m_magnitdEstimat, Nektar::SolverUtils::EquationSystem::m_spacedim, m_viscousJacFlag, Nektar::NullNekDouble1DArray, Vmath::Sadd(), Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vsub().

Referenced by GetTraceJac().

◆ PointFluxJacobianPoint()

void Nektar::CFSImplicit::PointFluxJacobianPoint ( const Array< OneD, NekDouble > &  Fwd,
const Array< OneD, NekDouble > &  normals,
DNekMatSharedPtr FJac,
const NekDouble  efix,
const NekDouble  fsw 
)
protected

Definition at line 1878 of file CompressibleFlowSystemImplicit.cpp.

1883{
1884 Array<OneD, NekDouble> FJacData = FJac->GetPtr();
1885 const int nvariables3D = 5;
1886
1887 NekDouble ro, vx, vy, vz, ps, gama, ae;
1888 NekDouble a, a2, h, h0, v2, vn, eps, eps2;
1889 NekDouble nx, ny, nz;
1890 NekDouble sn, osn, nxa, nya, nza, vna;
1891 NekDouble l1, l4, l5, al1, al4, al5, x1, x2, x3, y1;
1892 NekDouble c1, d1, c2, d2, c3, d3, c4, d4, c5, d5;
1893 NekDouble sml_ssf = 1.0E-12;
1894
1895 NekDouble fExactorSplt = 2.0 - abs(fsw); // if fsw=+-1 calculate
1896
1897 NekDouble rhoL = Fwd[0];
1898 NekDouble rhouL = Fwd[1];
1899 NekDouble rhovL = Fwd[2];
1900 NekDouble rhowL = Fwd[3];
1901 NekDouble EL = Fwd[4];
1902
1903 ro = rhoL;
1904 vx = rhouL / rhoL;
1905 vy = rhovL / rhoL;
1906 vz = rhowL / rhoL;
1907
1908 // Internal energy (per unit mass)
1909 NekDouble eL = (EL - 0.5 * (rhouL * vx + rhovL * vy + rhowL * vz)) / rhoL;
1910
1911 ps = m_varConv->Geteos()->GetPressure(rhoL, eL);
1912 gama = m_gamma;
1913
1914 ae = gama - 1.0;
1915 v2 = vx * vx + vy * vy + vz * vz;
1916 a2 = gama * ps / ro;
1917 h = a2 / ae;
1918
1919 h0 = h + 0.5 * v2;
1920 a = sqrt(a2);
1921
1922 nx = normals[0];
1923 ny = normals[1];
1924 nz = normals[2];
1925 vn = nx * vx + ny * vy + nz * vz;
1926 sn = std::max(sqrt(nx * nx + ny * ny + nz * nz), sml_ssf);
1927 osn = 1.0 / sn;
1928
1929 nxa = nx * osn;
1930 nya = ny * osn;
1931 nza = nz * osn;
1932 vna = vn * osn;
1933 l1 = vn;
1934 l4 = vn + sn * a;
1935 l5 = vn - sn * a;
1936
1937 eps = efix * sn;
1938 eps2 = eps * eps;
1939
1940 al1 = sqrt(l1 * l1 + eps2);
1941 al4 = sqrt(l4 * l4 + eps2);
1942 al5 = sqrt(l5 * l5 + eps2);
1943
1944 l1 = 0.5 * (fExactorSplt * l1 + fsw * al1);
1945 l4 = 0.5 * (fExactorSplt * l4 + fsw * al4);
1946 l5 = 0.5 * (fExactorSplt * l5 + fsw * al5);
1947
1948 x1 = 0.5 * (l4 + l5);
1949 x2 = 0.5 * (l4 - l5);
1950 x3 = x1 - l1;
1951 y1 = 0.5 * v2;
1952 c1 = ae * x3 / a2;
1953 d1 = x2 / a;
1954
1955 int nVar0 = 0;
1956 int nVar1 = nvariables3D;
1957 int nVar2 = 2 * nvariables3D;
1958 int nVar3 = 3 * nvariables3D;
1959 int nVar4 = 4 * nvariables3D;
1960 FJacData[nVar0] = c1 * y1 - d1 * vna + l1;
1961 FJacData[nVar1] = -c1 * vx + d1 * nxa;
1962 FJacData[nVar2] = -c1 * vy + d1 * nya;
1963 FJacData[nVar3] = -c1 * vz + d1 * nza;
1964 FJacData[nVar4] = c1;
1965 c2 = c1 * vx + d1 * nxa * ae;
1966 d2 = x3 * nxa + d1 * vx;
1967 FJacData[1 + nVar0] = c2 * y1 - d2 * vna;
1968 FJacData[1 + nVar1] = -c2 * vx + d2 * nxa + l1;
1969 FJacData[1 + nVar2] = -c2 * vy + d2 * nya;
1970 FJacData[1 + nVar3] = -c2 * vz + d2 * nza;
1971 FJacData[1 + nVar4] = c2;
1972 c3 = c1 * vy + d1 * nya * ae;
1973 d3 = x3 * nya + d1 * vy;
1974 FJacData[2 + nVar0] = c3 * y1 - d3 * vna;
1975 FJacData[2 + nVar1] = -c3 * vx + d3 * nxa;
1976 FJacData[2 + nVar2] = -c3 * vy + d3 * nya + l1;
1977 FJacData[2 + nVar3] = -c3 * vz + d3 * nza;
1978 FJacData[2 + nVar4] = c3;
1979 c4 = c1 * vz + d1 * nza * ae;
1980 d4 = x3 * nza + d1 * vz;
1981 FJacData[3 + nVar0] = c4 * y1 - d4 * vna;
1982 FJacData[3 + nVar1] = -c4 * vx + d4 * nxa;
1983 FJacData[3 + nVar2] = -c4 * vy + d4 * nya;
1984 FJacData[3 + nVar3] = -c4 * vz + d4 * nza + l1;
1985 FJacData[3 + nVar4] = c4;
1986 c5 = c1 * h0 + d1 * vna * ae;
1987 d5 = x3 * vna + d1 * h0;
1988 FJacData[4 + nVar0] = c5 * y1 - d5 * vna;
1989 FJacData[4 + nVar1] = -c5 * vx + d5 * nxa;
1990 FJacData[4 + nVar2] = -c5 * vy + d5 * nya;
1991 FJacData[4 + nVar3] = -c5 * vz + d5 * nza;
1992 FJacData[4 + nVar4] = c5 + l1;
1993}
VariableConverterSharedPtr m_varConv
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298

References tinysimd::abs(), Nektar::CompressibleFlowSystem::m_gamma, Nektar::CompressibleFlowSystem::m_varConv, and tinysimd::sqrt().

Referenced by GetFluxVectorJacPoint().

◆ PreconCoeff()

void Nektar::CFSImplicit::PreconCoeff ( const Array< OneD, NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const bool &  flag 
)
protected

Definition at line 538 of file CompressibleFlowSystemImplicit.cpp.

541{
542 LibUtilities::Timer timer, Gtimer;
543
544 Gtimer.Start();
545 if (m_preconCfs->UpdatePreconMatCheck(NullNekDouble1DArray,
547 {
548 int nvariables = m_solutionPhys.size();
549 int nphspnt = m_solutionPhys[nvariables - 1].size();
550 Array<OneD, Array<OneD, NekDouble>> intmp(nvariables);
551 for (int i = 0; i < nvariables; i++)
552 {
553 intmp[i] = Array<OneD, NekDouble>(nphspnt, 0.0);
554 }
555
556 timer.Start();
558 timer.Stop();
559 timer.AccumulateRegion("CompressibleFlowSystem::DoOdeProjection", 1);
560
561 timer.Start();
562 m_preconCfs->BuildPreconCfs(m_fields, intmp, m_bndEvaluateTime,
564 timer.Stop();
565 timer.AccumulateRegion("PreconCfsOp::BuildPreconCfs", 1);
566 }
567
568 timer.Start();
569 m_preconCfs->DoPreconCfs(m_fields, inarray, outarray, flag);
570 timer.Stop();
571 timer.AccumulateRegion("PreconCfsOp::DoPreconCfs", 1);
572
573 Gtimer.Stop();
574 Gtimer.AccumulateRegion("CFSImplicit::PreconCoeff");
575}

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::CompressibleFlowSystem::DoOdeProjection(), Nektar::CompressibleFlowSystem::m_bndEvaluateTime, Nektar::SolverUtils::EquationSystem::m_fields, m_preconCfs, m_solutionPhys, m_TimeIntegLambda, Nektar::NullNekDouble1DArray, Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by InitialiseNonlinSysSolver().

◆ TranSamesizeBlkDiagMatIntoArray()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::TranSamesizeBlkDiagMatIntoArray ( const TypeNekBlkMatSharedPtr &  BlkMat,
TensorOfArray3D< DataType > &  MatArray 
)
protected

Definition at line 1807 of file CompressibleFlowSystemImplicit.cpp.

1809{
1810 Array<OneD, unsigned int> rowSizes;
1811 Array<OneD, unsigned int> colSizes;
1812 BlkMat->GetBlockSizes(rowSizes, colSizes);
1813 int nDiagBlks = rowSizes.size();
1814 int nvar0 = rowSizes[1] - rowSizes[0];
1815 int nvar1 = colSizes[1] - colSizes[0];
1816
1817 Array<OneD, DataType> ElmtMatData;
1818
1819 for (int i = 0; i < nDiagBlks; i++)
1820 {
1821 ElmtMatData = BlkMat->GetBlock(i, i)->GetPtr();
1822 for (int n = 0; n < nvar1; n++)
1823 {
1824 int noffset = n * nvar0;
1825 for (int m = 0; m < nvar0; m++)
1826 {
1827 MatArray[m][n][i] = ElmtMatData[m + noffset];
1828 }
1829 }
1830 }
1831}

Referenced by TransTraceJacMatToArray().

◆ TransTraceJacMatToArray()

template<typename DataType , typename TypeNekBlkMatSharedPtr >
void Nektar::CFSImplicit::TransTraceJacMatToArray ( const Array< OneD, TypeNekBlkMatSharedPtr > &  TraceJac,
TensorOfArray4D< DataType > &  TraceJacDerivArray 
)
protected

Definition at line 1638 of file CompressibleFlowSystemImplicit.cpp.

1641{
1642 int nFwdBwd, nDiagBlks, nvar0Jac, nvar1Jac;
1643
1644 Array<OneD, unsigned int> rowSizes;
1645 Array<OneD, unsigned int> colSizes;
1646 nFwdBwd = TraceJac.size();
1647 TraceJac[0]->GetBlockSizes(rowSizes, colSizes);
1648 nDiagBlks = rowSizes.size();
1649 nvar0Jac = rowSizes[1] - rowSizes[0];
1650 nvar1Jac = colSizes[1] - colSizes[0];
1651
1652 if (0 == TraceJacArray.size())
1653 {
1654 TraceJacArray = TensorOfArray4D<DataType>(nFwdBwd);
1655 for (int nlr = 0; nlr < nFwdBwd; nlr++)
1656 {
1657 TraceJacArray[nlr] = TensorOfArray3D<DataType>(nvar0Jac);
1658 for (int m = 0; m < nvar0Jac; m++)
1659 {
1660 TraceJacArray[nlr][m] =
1661 Array<OneD, Array<OneD, DataType>>(nvar1Jac);
1662 for (int n = 0; n < nvar1Jac; n++)
1663 {
1664 TraceJacArray[nlr][m][n] = Array<OneD, DataType>(nDiagBlks);
1665 }
1666 }
1667 }
1668 }
1669
1670 for (int nlr = 0; nlr < nFwdBwd; nlr++)
1671 {
1672 const TypeNekBlkMatSharedPtr tmpMat = TraceJac[nlr];
1673 TensorOfArray3D<DataType> tmpaa = TraceJacArray[nlr];
1674 TranSamesizeBlkDiagMatIntoArray(tmpMat, tmpaa);
1675 }
1676
1677 return;
1678}
void TranSamesizeBlkDiagMatIntoArray(const TypeNekBlkMatSharedPtr &BlkMat, TensorOfArray3D< DataType > &MatArray)

References TranSamesizeBlkDiagMatIntoArray().

Referenced by CalcPreconMatBRJCoeff().

◆ v_CalcMuDmuDT()

virtual void Nektar::CFSImplicit::v_CalcMuDmuDT ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, NekDouble > &  mu,
Array< OneD, NekDouble > &  DmuDT 
)
inlineprotectedvirtual

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 348 of file CompressibleFlowSystemImplicit.h.

353 {
354 }

Referenced by CalcMuDmuDT().

◆ v_CalcPhysDeriv()

virtual void Nektar::CFSImplicit::v_CalcPhysDeriv ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray3D< NekDouble > &  qfield 
)
inlineprotectedvirtual

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 356 of file CompressibleFlowSystemImplicit.h.

360 {
361 }

Referenced by CalcPhysDeriv().

◆ v_DoDiffusionCoeff()

virtual void Nektar::CFSImplicit::v_DoDiffusionCoeff ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, const Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, const Array< OneD, NekDouble > > &  pBwd 
)
inlineprotectedvirtual

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 339 of file CompressibleFlowSystemImplicit.h.

345 {
346 }

Referenced by DoDiffusionCoeff().

◆ v_DoSolve()

void Nektar::CFSImplicit::v_DoSolve ( void  )
overrideprotectedvirtual

Solves an unsteady problem.

Initialises the time integration scheme (as specified in the session file), and perform the time integration.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 172 of file CompressibleFlowSystemImplicit.cpp.

173{
174 m_TotNewtonIts = 0;
175 m_TotLinIts = 0;
176 m_TotImpStages = 0;
178}
SOLVER_UTILS_EXPORT void v_DoSolve() override
Solves an unsteady problem.

References m_TotImpStages, m_TotLinIts, m_TotNewtonIts, and Nektar::SolverUtils::UnsteadySystem::v_DoSolve().

◆ v_GetFluxDerivJacDirctn() [1/2]

virtual void Nektar::CFSImplicit::v_GetFluxDerivJacDirctn ( const MultiRegions::ExpListSharedPtr explist,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
const int  nDervDir,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, DNekMatSharedPtr > > &  ElmtJac 
)
protectedvirtual

◆ v_GetFluxDerivJacDirctn() [2/2]

void Nektar::CFSImplicit::v_GetFluxDerivJacDirctn ( const MultiRegions::ExpListSharedPtr explist,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
const int  nDervDir,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
TensorOfArray5D< NekDouble > &  ElmtJacArray,
const int  nFluxDir 
)
protectedvirtual

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 1680 of file CompressibleFlowSystemImplicit.cpp.

1687{
1688 NEKERROR(ErrorUtil::efatal, "v_GetFluxDerivJacDirctn not coded");
1689}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetFluxDerivJacDirctn().

◆ v_GetFluxDerivJacDirctnElmt()

void Nektar::CFSImplicit::v_GetFluxDerivJacDirctnElmt ( const int  nConvectiveFields,
const int  nElmtPnt,
const int  nDervDir,
const Array< OneD, const Array< OneD, NekDouble > > &  locVars,
const Array< OneD, NekDouble > &  locmu,
const Array< OneD, const Array< OneD, NekDouble > > &  locnormal,
DNekMatSharedPtr wspMat,
Array< OneD, Array< OneD, NekDouble > > &  PntJacArray 
)
protectedvirtual

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 1691 of file CompressibleFlowSystemImplicit.cpp.

1699{
1700 NEKERROR(ErrorUtil::efatal, "v_GetFluxDerivJacDirctn not coded");
1701}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetFluxDerivJacDirctnElmt().

◆ v_InitObject()

void Nektar::CFSImplicit::v_InitObject ( bool  DeclareFields = true)
overrideprotectedvirtual

Initialization object for CFSImplicit class.

Reimplemented from Nektar::CompressibleFlowSystem.

Reimplemented in Nektar::EulerImplicitCFE, and Nektar::NavierStokesImplicitCFE.

Definition at line 53 of file CompressibleFlowSystemImplicit.cpp.

54{
56 m_explicitAdvection = false;
57 m_explicitDiffusion = false;
58
59 // Initialise implicit parameters
60 m_session->MatchSolverInfo("FLAGIMPLICITITSSTATISTICS", "True",
62
63 m_session->LoadParameter("JacobiFreeEps", m_jacobiFreeEps, 5.0E-8);
64
65 m_session->LoadParameter("nPadding", m_nPadding, 4);
66
67 m_session->LoadParameter("NewtonRelativeIteTol", m_newtonRelativeIteTol,
68 1.0E-12);
69 WARNINGL0(!m_session->DefinesParameter("NewtonAbsoluteIteTol"),
70 "Please specify NewtonRelativeIteTol instead of "
71 "NewtonAbsoluteIteTol in XML session file");
72
73 int ntmp;
74 m_session->LoadParameter("AdvectionJacFlag", ntmp, 1);
75 m_advectionJacFlag = (ntmp != 0);
76
77 m_session->LoadParameter("ViscousJacFlag", ntmp, 1);
78 m_viscousJacFlag = (ntmp != 0);
79
80 // Initialise implicit functors
83
85}
#define WARNINGL0(condition, msg)
Definition: ErrorUtil.hpp:215
void DoOdeImplicitRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inpnts, Array< OneD, Array< OneD, NekDouble > > &outpnt, const NekDouble time, const NekDouble lambda)
void v_InitObject(bool DeclareFields=true) override
Initialization object for CompressibleFlowSystem class.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.

References Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), DoImplicitSolve(), DoOdeImplicitRhs(), InitialiseNonlinSysSolver(), m_advectionJacFlag, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, m_flagImplicitItsStatistics, m_jacobiFreeEps, m_newtonRelativeIteTol, m_nPadding, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_session, m_viscousJacFlag, Nektar::CompressibleFlowSystem::v_InitObject(), and WARNINGL0.

Referenced by Nektar::EulerImplicitCFE::v_InitObject(), and Nektar::NavierStokesImplicitCFE::v_InitObject().

◆ v_MinusDiffusionFluxJacPoint()

void Nektar::CFSImplicit::v_MinusDiffusionFluxJacPoint ( const int  nConvectiveFields,
const int  nElmtPnt,
const Array< OneD, const Array< OneD, NekDouble > > &  locVars,
const TensorOfArray3D< NekDouble > &  locDerv,
const Array< OneD, NekDouble > &  locmu,
const Array< OneD, NekDouble > &  locDmuDT,
const Array< OneD, NekDouble > &  normals,
DNekMatSharedPtr wspMat,
Array< OneD, Array< OneD, NekDouble > > &  PntJacArray 
)
protectedvirtual

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 1535 of file CompressibleFlowSystemImplicit.cpp.

1545{
1546 // Do nothing by default
1547}

Referenced by MinusDiffusionFluxJacPoint().

◆ v_PrintStatusInformation()

void Nektar::CFSImplicit::v_PrintStatusInformation ( const int  step,
const NekDouble  cpuTime 
)
overrideprotectedvirtual

Print Status Information.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 180 of file CompressibleFlowSystemImplicit.cpp.

182{
184
185 if (m_infosteps && m_session->GetComm()->GetSpaceComm()->GetRank() == 0 &&
186 !((step + 1) % m_infosteps) && m_flagImplicitItsStatistics)
187 {
188 cout << " &&"
189 << " TotImpStages= " << m_TotImpStages
190 << " TotNewtonIts= " << m_TotNewtonIts
191 << " TotLinearIts = " << m_TotLinIts << endl;
192 }
193}
int m_infosteps
Number of time steps between outputting status information.
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation(const int step, const NekDouble cpuTime)
Print Status Information.

References m_flagImplicitItsStatistics, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_session, m_TotImpStages, m_TotLinIts, m_TotNewtonIts, and Nektar::SolverUtils::UnsteadySystem::v_PrintStatusInformation().

◆ v_PrintSummaryStatistics()

void Nektar::CFSImplicit::v_PrintSummaryStatistics ( const NekDouble  intTime)
overrideprotectedvirtual

Print Summary Statistics.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 195 of file CompressibleFlowSystemImplicit.cpp.

196{
198
199 if (m_session->GetComm()->GetRank() == 0 && m_flagImplicitItsStatistics)
200 {
201 cout << "-------------------------------------------" << endl
202 << "Total Implicit Stages: " << m_TotImpStages << endl
203 << "Total Newton Its : " << m_TotNewtonIts << endl
204 << "Total Linear Its : " << m_TotLinIts << endl
205 << "-------------------------------------------" << endl;
206 }
207}
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics(const NekDouble intTime)
Print Summary Statistics.

References m_flagImplicitItsStatistics, Nektar::SolverUtils::EquationSystem::m_session, m_TotImpStages, m_TotLinIts, m_TotNewtonIts, and Nektar::SolverUtils::UnsteadySystem::v_PrintSummaryStatistics().

◆ v_UpdateTimeStepCheck()

bool Nektar::CFSImplicit::v_UpdateTimeStepCheck ( void  )
overrideprotectedvirtual

Member Data Documentation

◆ m_advectionJacFlag

bool Nektar::CFSImplicit::m_advectionJacFlag
protected

◆ m_flagImplicitItsStatistics

bool Nektar::CFSImplicit::m_flagImplicitItsStatistics
protected

◆ m_inArrayNorm

NekDouble Nektar::CFSImplicit::m_inArrayNorm = -1.0
protected

◆ m_jacobiFreeEps

NekDouble Nektar::CFSImplicit::m_jacobiFreeEps
protected

Definition at line 76 of file CompressibleFlowSystemImplicit.h.

Referenced by MatrixMultiplyMatrixFreeCoeff(), and v_InitObject().

◆ m_magnitdEstimat

Array<OneD, NekDouble> Nektar::CFSImplicit::m_magnitdEstimat
protected

Estimate the magnitude of each conserved varibles.

Definition at line 68 of file CompressibleFlowSystemImplicit.h.

Referenced by CalcRefValues(), and NumCalcRiemFluxJac().

◆ m_newtonRelativeIteTol

NekDouble Nektar::CFSImplicit::m_newtonRelativeIteTol
protected

Definition at line 77 of file CompressibleFlowSystemImplicit.h.

Referenced by DoImplicitSolveCoeff(), and v_InitObject().

◆ m_nonlinsol

LibUtilities::NekNonlinSysSharedPtr Nektar::CFSImplicit::m_nonlinsol
protected

◆ m_nPadding

int Nektar::CFSImplicit::m_nPadding = 1
protected

◆ m_preconCfs

PreconCfsSharedPtr Nektar::CFSImplicit::m_preconCfs
protected

◆ m_solutionPhys

Array<OneD, Array<OneD, NekDouble> > Nektar::CFSImplicit::m_solutionPhys
protected

Definition at line 70 of file CompressibleFlowSystemImplicit.h.

Referenced by DoImplicitSolveCoeff(), and PreconCoeff().

◆ m_stdSMatDataDBB

TensorOfArray4D<NekSingle> Nektar::CFSImplicit::m_stdSMatDataDBB
protected

Definition at line 79 of file CompressibleFlowSystemImplicit.h.

Referenced by CalcPreconMatBRJCoeff().

◆ m_stdSMatDataDBDB

TensorOfArray5D<NekSingle> Nektar::CFSImplicit::m_stdSMatDataDBDB
protected

Definition at line 80 of file CompressibleFlowSystemImplicit.h.

Referenced by CalcPreconMatBRJCoeff().

◆ m_TimeIntegLambda

NekDouble Nektar::CFSImplicit::m_TimeIntegLambda = 0.0
protected

coefff of spacial derivatives(rhs or m_F in GLM) in calculating the residual of the whole equation(used in unsteady time integrations)

Definition at line 74 of file CompressibleFlowSystemImplicit.h.

Referenced by CalcPreconMatBRJCoeff(), DoImplicitSolveCoeff(), NonlinSysEvaluatorCoeff(), PreconCoeff(), and v_UpdateTimeStepCheck().

◆ m_TotImpStages

int Nektar::CFSImplicit::m_TotImpStages = 0
protected

◆ m_TotLinIts

int Nektar::CFSImplicit::m_TotLinIts = 0
protected

◆ m_TotNewtonIts

int Nektar::CFSImplicit::m_TotNewtonIts = 0
protected

◆ m_updateShockCaptPhys

bool Nektar::CFSImplicit::m_updateShockCaptPhys {true}
protected

◆ m_viscousJacFlag

bool Nektar::CFSImplicit::m_viscousJacFlag
protected