Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | Friends | List of all members
Nektar::Bidomain Class Reference

A model for cardiac conduction. More...

#include <Bidomain.h>

Inheritance diagram for Nektar::Bidomain:
[legend]

Public Member Functions

 ~Bidomain () override
 Desctructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

 Bidomain (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
void DoImplicitSolve (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
 Solve for the diffusion term. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Computes the reaction terms \(f(u,v)\) and \(g(u,v)\). More...
 
void v_SetInitialConditions (NekDouble initialtime, bool dumpInitialConditions, const int domain) override
 Sets a custom initial condition. More...
 
void v_GenerateSummary (SummaryList &s) override
 Prints a summary of the model parameters. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Private Attributes

CellModelSharedPtr m_cell
 Cell model. More...
 
NekDouble m_chi
 
NekDouble m_capMembrane
 
NekDouble m_sigmaix
 
NekDouble m_sigmaiy
 
NekDouble m_sigmaiz
 
NekDouble m_sigmaex
 
NekDouble m_sigmaey
 
NekDouble m_sigmaez
 
StdRegions::VarCoeffMap m_vardiffi
 
StdRegions::VarCoeffMap m_vardiffie
 
Array< OneD, Array< OneD, NekDouble > > tmp1
 
Array< OneD, Array< OneD, NekDouble > > tmp2
 
Array< OneD, Array< OneD, NekDouble > > tmp3
 
NekDouble m_stimDuration
 Stimulus current. More...
 

Friends

class MemoryManager< Bidomain >
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities (u, v, w, omega_x, omega_y, omega_z, a_x, a_y, a_z, domega_x, domega_y, domega_z) More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

A model for cardiac conduction.

Base model of cardiac electrophysiology of the form

\begin{align*} \frac{\partial u}{\partial t} = \nabla^2 u + J_{ion}, \end{align*}

where the reaction term, \(J_{ion}\) is defined by a specific cell model.

This implementation, at present, treats the reaction terms explicitly and the diffusive element implicitly.

Definition at line 47 of file Bidomain.h.

Constructor & Destructor Documentation

◆ ~Bidomain()

Nektar::Bidomain::~Bidomain ( )
override

Desctructor.

Definition at line 166 of file Bidomain.cpp.

167{
168}

◆ Bidomain()

Nektar::Bidomain::Bidomain ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Constructor.

Definition at line 68 of file Bidomain.cpp.

70 : UnsteadySystem(pSession, pGraph)
71{
72}
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

Member Function Documentation

◆ create()

static EquationSystemSharedPtr Nektar::Bidomain::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 53 of file Bidomain.h.

56 {
59 p->InitObject();
60 return p;
61 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ DoImplicitSolve()

void Nektar::Bidomain::DoImplicitSolve ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
NekDouble  time,
NekDouble  lambda 
)
protected

Solve for the diffusion term.

Parameters
inarrayInput array.
outarrayOutput array.
timeCurrent simulation time.
lambdaTimestep.

Definition at line 176 of file Bidomain.cpp.

180{
181 int nvariables = inarray.size();
182 int nq = m_fields[0]->GetNpoints();
183
184 Array<OneD, NekDouble> grad0(nq), grad1(nq), grad2(nq), grad(nq);
185 Array<OneD, NekDouble> ggrad0(nq), ggrad1(nq), ggrad2(nq), ggrad(nq),
186 temp(nq);
187
188 // We solve ( \sigma\nabla^2 - HHlambda ) Y[i] = rhs [i]
189 // inarray = input: \hat{rhs} -> output: \hat{Y}
190 // outarray = output: nabla^2 \hat{Y}
191 // where \hat = modal coeffs
192 for (int i = 0; i < nvariables; ++i)
193 {
194 // Only apply diffusion to first variable.
195 if (i > 1)
196 {
197 Vmath::Vcopy(nq, &inarray[i][0], 1, &outarray[i][0], 1);
198 continue;
199 }
200 if (i == 0)
201 {
204 (1.0 / lambda) * (m_capMembrane * m_chi);
205 if (m_spacedim == 1)
206 {
207 // Take first partial derivative
208 m_fields[i]->PhysDeriv(inarray[1], ggrad0);
209 // Take second partial derivative
210 m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
211 // Multiply by Intracellular-Conductivity
212 if (m_session->DefinesFunction("IntracellularConductivity") &&
213 m_session->DefinesFunction("ExtracellularConductivity"))
214 {
215 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
216 1, ggrad0, 1);
217 }
218 // Add partial derivatives together
219 Vmath::Vcopy(nq, ggrad0, 1, ggrad, 1);
220 Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
221 // Multiply 1.0/timestep/lambda
223 1, temp, 1);
224 Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
225 1);
226 // Solve a system of equations with Helmholtz solver and
227 // transform back into physical space.
228 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
229 m_fields[i]->UpdateCoeffs(), factors);
230 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
231 m_fields[i]->UpdatePhys());
232 m_fields[i]->SetPhysState(true);
233 // Copy the solution vector (required as m_fields must be set).
234 outarray[i] = m_fields[i]->GetPhys();
235 }
236
237 if (m_spacedim == 2)
238 {
239 // Take first partial derivative
240 m_fields[i]->PhysDeriv(inarray[1], ggrad0, ggrad1);
241 // Take second partial derivative
242 m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
243 m_fields[i]->PhysDeriv(1, ggrad1, ggrad1);
244 // Multiply by Intracellular-Conductivity
245 if (m_session->DefinesFunction("IntracellularConductivity") &&
246 m_session->DefinesFunction("ExtracellularConductivity"))
247 {
248 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
249 1, ggrad0, 1);
250 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1,
251 1, ggrad1, 1);
252 }
253 // Add partial derivatives together
254 Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
255 Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
256 // Multiply 1.0/timestep/lambda
258 1, temp, 1);
259 Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
260 1);
261 // Solve a system of equations with Helmholtz solver and
262 // transform back into physical space.
263 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
264 m_fields[i]->UpdateCoeffs(), factors,
265 m_vardiffi);
266 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
267 m_fields[i]->UpdatePhys());
268 m_fields[i]->SetPhysState(true);
269 // Copy the solution vector (required as m_fields must be set).
270 outarray[i] = m_fields[i]->GetPhys();
271 }
272
273 if (m_spacedim == 3)
274 {
275 // Take first partial derivative
276 m_fields[i]->PhysDeriv(inarray[1], ggrad0, ggrad1, ggrad2);
277 // Take second partial derivative
278 m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
279 m_fields[i]->PhysDeriv(1, ggrad1, ggrad1);
280 m_fields[i]->PhysDeriv(2, ggrad2, ggrad2);
281 // Multiply by Intracellular-Conductivity
282 if (m_session->DefinesFunction("IntracellularConductivity") &&
283 m_session->DefinesFunction("ExtracellularConductivity"))
284 {
285 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
286 1, ggrad0, 1);
287 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1,
288 1, ggrad1, 1);
289 Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), ggrad2,
290 1, ggrad2, 1);
291 }
292 // Add partial derivatives together
293 Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
294 Vmath::Vadd(nq, ggrad2, 1, ggrad, 1, ggrad, 1);
295 Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
296 // Multiply 1.0/timestep/lambda
298 1, temp, 1);
299 Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
300 1);
301 // Solve a system of equations with Helmholtz solver and
302 // transform back into physical space.
303 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
304 m_fields[i]->UpdateCoeffs(), factors,
305 m_vardiffi);
306 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
307 m_fields[i]->UpdatePhys());
308 m_fields[i]->SetPhysState(true);
309 // Copy the solution vector (required as m_fields must be set).
310 outarray[i] = m_fields[i]->GetPhys();
311 }
312 }
313 if (i == 1)
314 {
317 if (m_spacedim == 1)
318 {
319 // Take first partial derivative
320 m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0);
321 // Take second derivative
322 m_fields[i]->PhysDeriv(0, grad0, grad0);
323 // Multiply by Intracellular-Conductivity
324 if (m_session->DefinesFunction("IntracellularConductivity") &&
325 m_session->DefinesFunction("ExtracellularConductivity"))
326 {
327 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
328 1, grad0, 1);
329 }
330 // and sum terms
331 Vmath::Vcopy(nq, grad0, 1, grad, 1);
332 Vmath::Smul(nq,
333 (-1.0 * m_session->GetParameter("sigmaix")) /
334 (m_session->GetParameter("sigmaix") +
335 m_session->GetParameter("sigmaix")),
336 grad, 1, grad, 1);
337 // Now solve Poisson problem for \phi_e
338 m_fields[i]->SetPhys(grad);
339 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
340 m_fields[i]->UpdateCoeffs(), factors);
341 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
342 m_fields[i]->UpdatePhys());
343 m_fields[i]->SetPhysState(true);
344 // Copy the solution vector (required as m_fields must be set).
345 outarray[i] = m_fields[i]->GetPhys();
346 }
347
348 if (m_spacedim == 2)
349 {
350 // Take first partial derivative
351 m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0, grad1);
352 // Take second derivative
353 m_fields[i]->PhysDeriv(0, grad0, grad0);
354 m_fields[i]->PhysDeriv(1, grad1, grad1);
355 // Multiply by Intracellular-Conductivity
356 if (m_session->DefinesFunction("IntracellularConductivity") &&
357 m_session->DefinesFunction("ExtracellularConductivity"))
358 {
359 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
360 1, grad0, 1);
361 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1,
362 1, grad1, 1);
363 }
364 // and sum terms
365 Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
366 Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
367 // Now solve Poisson problem for \phi_e
368 m_fields[i]->SetPhys(grad);
369 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
370 m_fields[i]->UpdateCoeffs(), factors,
372 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
373 m_fields[i]->UpdatePhys());
374 m_fields[i]->SetPhysState(true);
375 // Copy the solution vector (required as m_fields must be set).
376 outarray[i] = m_fields[i]->GetPhys();
377 }
378
379 if (m_spacedim == 3)
380 {
381 // Take first partial derivative
382 m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0, grad1,
383 grad2);
384 // Take second derivative
385 m_fields[i]->PhysDeriv(0, grad0, grad0);
386 m_fields[i]->PhysDeriv(1, grad1, grad1);
387 m_fields[i]->PhysDeriv(2, grad2, grad2);
388 // Multiply by Intracellular-Conductivity
389 if (m_session->DefinesFunction("IntracellularConductivity") &&
390 m_session->DefinesFunction("ExtracellularConductivity"))
391 {
392 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
393 1, grad0, 1);
394 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1,
395 1, grad1, 1);
396 Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), grad2,
397 1, grad2, 1);
398 }
399 // and sum terms
400 Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
401 Vmath::Vadd(nq, grad2, 1, grad, 1, grad, 1);
402 Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
403 // Now solve Poisson problem for \phi_e
404 m_fields[i]->SetPhys(grad);
405 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
406 m_fields[i]->UpdateCoeffs(), factors,
408 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
409 m_fields[i]->UpdatePhys());
410 m_fields[i]->SetPhysState(true);
411 // Copy the solution vector (required as m_fields must be set).
412 outarray[i] = m_fields[i]->GetPhys();
413 }
414 }
415 }
416}
NekDouble m_chi
Definition: Bidomain.h:99
StdRegions::VarCoeffMap m_vardiffi
Definition: Bidomain.h:102
NekDouble m_capMembrane
Definition: Bidomain.h:99
StdRegions::VarCoeffMap m_vardiffie
Definition: Bidomain.h:103
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:402
StdRegions::ConstFactorMap factors
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, m_capMembrane, m_chi, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_vardiffi, m_vardiffie, Vmath::Smul(), Vmath::Vadd(), and Vmath::Vcopy().

Referenced by v_InitObject().

◆ DoOdeRhs()

void Nektar::Bidomain::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Computes the reaction terms \(f(u,v)\) and \(g(u,v)\).

Definition at line 418 of file Bidomain.cpp.

421{
422 int nq = m_fields[0]->GetNpoints();
423 m_cell->TimeIntegrate(inarray, outarray, time);
424 if (m_stimDuration > 0 && time < m_stimDuration)
425 {
426 Array<OneD, NekDouble> x0(nq);
427 Array<OneD, NekDouble> x1(nq);
428 Array<OneD, NekDouble> x2(nq);
429 Array<OneD, NekDouble> result(nq);
430
431 // get the coordinates
432 m_fields[0]->GetCoords(x0, x1, x2);
433
435 m_session->GetFunction("Stimulus", "u");
436 ifunc->Evaluate(x0, x1, x2, time, result);
437
438 Vmath::Vadd(nq, outarray[0], 1, result, 1, outarray[0], 1);
439 }
440 Vmath::Smul(nq, 1.0 / m_capMembrane, outarray[0], 1, outarray[0], 1);
441}
CellModelSharedPtr m_cell
Cell model.
Definition: Bidomain.h:97
NekDouble m_stimDuration
Stimulus current.
Definition: Bidomain.h:110
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:125

References m_capMembrane, m_cell, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, m_stimDuration, Vmath::Smul(), and Vmath::Vadd().

Referenced by v_InitObject().

◆ v_GenerateSummary()

void Nektar::Bidomain::v_GenerateSummary ( SummaryList s)
overrideprotectedvirtual

Prints a summary of the model parameters.

@TODO Update summary

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 455 of file Bidomain.cpp.

456{
458
459 /// @TODO Update summary
460 ASSERTL0(false, "Update the generate summary");
461 //
462 // out << "\tChi : " << m_chi << endl;
463 // out << "\tCm : " << m_capMembrane << endl;
464 // if (m_session->DefinesFunction("IntracellularConductivity",
465 // "AnisotropicConductivityX") &&
466 // m_session->GetFunctionType("IntracellularConductivity",
467 // "AnisotropicConductivityX") ==
468 // LibUtilities::eFunctionTypeExpression)
469 // {
470 // out << "\tIntra-Diffusivity-x : "
471 // << m_session->GetFunction("IntracellularConductivity",
472 // "AnisotropicConductivityX")->GetExpression()
473 // << endl;
474 // }
475 // if (m_session->DefinesFunction("IntracellularConductivity",
476 // "AnisotropicConductivityY") &&
477 // m_session->GetFunctionType("IntracellularConductivity",
478 // "AnisotropicConductivityY") ==
479 // LibUtilities::eFunctionTypeExpression)
480 // {
481 // out << "\tIntra-Diffusivity-y : "
482 // << m_session->GetFunction("IntracellularConductivity",
483 // "AnisotropicConductivityY")->GetExpression()
484 // << endl;
485 // }
486 // if (m_session->DefinesFunction("IntracellularConductivity",
487 // "AnisotropicConductivityZ") &&
488 // m_session->GetFunctionType("IntracellularConductivity",
489 // "AnisotropicConductivityZ") ==
490 // LibUtilities::eFunctionTypeExpression)
491 // {
492 // out << "\tIntra-Diffusivity-z : "
493 // << m_session->GetFunction("IntracellularConductivity",
494 // "AnisotropicConductivityZ")->GetExpression()
495 // << endl;
496 // }
497 // if (m_session->DefinesFunction("ExtracellularConductivity",
498 // "AnisotropicConductivityX") &&
499 // m_session->GetFunctionType("ExtracellularConductivity",
500 // "AnisotropicConductivityX") ==
501 // LibUtilities::eFunctionTypeExpression)
502 // {
503 // out << "\tExtra-Diffusivity-x : "
504 // << m_session->GetFunction("ExtracellularConductivity",
505 // "AnisotropicConductivityX")->GetExpression()
506 // << endl;
507 // }
508 // if (m_session->DefinesFunction("ExtracellularConductivity",
509 // "AnisotropicConductivityY") &&
510 // m_session->GetFunctionType("ExtracellularConductivity",
511 // "AnisotropicConductivityY") ==
512 // LibUtilities::eFunctionTypeExpression)
513 // {
514 // out << "\tExtra-Diffusivity-y : "
515 // << m_session->GetFunction("ExtracellularConductivity",
516 // "AnisotropicConductivityY")->GetExpression()
517 // << endl;
518 // }
519 // if (m_session->DefinesFunction("ExtracellularConductivity",
520 // "AnisotropicConductivityZ") &&
521 // m_session->GetFunctionType("ExtracellularConductivity",
522 // "AnisotropicConductivityZ") ==
523 // LibUtilities::eFunctionTypeExpression)
524 // {
525 // out << "\tExtra-Diffusivity-z : "
526 // << m_session->GetFunction("ExtracellularConductivity",
527 // "AnisotropicConductivityZ")->GetExpression()
528 // << endl;
529 // }
530 m_cell->GenerateSummary(s);
531}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.

References ASSERTL0, m_cell, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

◆ v_InitObject()

void Nektar::Bidomain::v_InitObject ( bool  DeclareField = true)
overrideprotectedvirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 74 of file Bidomain.cpp.

75{
76 UnsteadySystem::v_InitObject(DeclareField);
77 m_session->LoadParameter("Chi", m_chi);
78 m_session->LoadParameter("Cm", m_capMembrane);
79
80 std::string vCellModel;
81 m_session->LoadSolverInfo("CELLMODEL", vCellModel, "");
82
83 ASSERTL0(vCellModel != "", "Cell Model not specified.");
84
86 m_fields[0]);
87 m_intVariables.push_back(0);
88 m_intVariables.push_back(1);
89
90 // Load variable coefficients
94 std::string varName[3] = {"AnisotropicConductivityX",
95 "AnisotropicConductivityY",
96 "AnisotropicConductivityZ"};
97
98 if (m_session->DefinesFunction("IntracellularConductivity") &&
99 m_session->DefinesFunction("ExtracellularConductivity"))
100 {
101 for (int i = 0; i < m_spacedim; ++i)
102 {
103 int nq = m_fields[0]->GetNpoints();
104 Array<OneD, NekDouble> x0(nq);
105 Array<OneD, NekDouble> x1(nq);
106 Array<OneD, NekDouble> x2(nq);
107
108 // get the coordinates
109 m_fields[0]->GetCoords(x0, x1, x2);
110 tmp1 = Array<OneD, const Array<OneD, NekDouble>>(nq);
111 tmp2 = Array<OneD, const Array<OneD, NekDouble>>(nq);
112 tmp3 = Array<OneD, const Array<OneD, NekDouble>>(nq);
113 tmp1[i] = Array<OneD, NekDouble>(nq);
114 tmp2[i] = Array<OneD, NekDouble>(nq);
115 tmp3[i] = Array<OneD, NekDouble>(nq);
116
118 m_session->GetFunction("IntracellularConductivity", varName[i]);
120 m_session->GetFunction("ExtracellularConductivity", varName[i]);
121 for (int j = 0; j < nq; j++)
122 {
123 tmp1[i][j] = ifunc1->Evaluate(x0[j], x1[j], x2[j], 0.0);
124 tmp2[i][j] = ifunc2->Evaluate(x0[j], x1[j], x2[j], 0.0);
125 }
126 Vmath::Vadd(nq, tmp1[i], 1, tmp2[i], 1, tmp3[i], 1);
127 m_vardiffi[varCoeffEnum[i]] = tmp1[i];
128 m_vardiffie[varCoeffEnum[i]] = tmp3[i];
129 }
130 }
131
132 if (m_session->DefinesParameter("StimulusDuration"))
133 {
134 ASSERTL0(m_session->DefinesFunction("Stimulus", "u"),
135 "Stimulus function not defined.");
136 m_session->LoadParameter("StimulusDuration", m_stimDuration);
137 }
138 else
139 {
140 m_stimDuration = 0;
141 }
142
143 // Search through the loaded filters and pass the cell model to any
144 // CheckpointCellModel filters loaded.
145 for (auto &x : m_filters)
146 {
147 if (x.first == "CheckpointCellModel")
148 {
149 std::shared_ptr<FilterCheckpointCellModel> c =
150 std::dynamic_pointer_cast<FilterCheckpointCellModel>(x.second);
151 c->SetCellModel(m_cell);
152 }
153 }
154
156 {
158 }
161}
Array< OneD, Array< OneD, NekDouble > > tmp3
Definition: Bidomain.h:107
Array< OneD, Array< OneD, NekDouble > > tmp2
Definition: Bidomain.h:106
Array< OneD, Array< OneD, NekDouble > > tmp1
Definition: Bidomain.h:105
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Computes the reaction terms and .
Definition: Bidomain.cpp:418
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Solve for the diffusion term.
Definition: Bidomain.cpp:176
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:143
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
SOLVER_UTILS_EXPORT void DoDummyProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Perform dummy projection.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
CellModelFactory & GetCellModelFactory()
Definition: CellModel.cpp:46

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), Nektar::SolverUtils::UnsteadySystem::DoDummyProjection(), DoImplicitSolve(), DoOdeRhs(), Nektar::StdRegions::eVarCoeffD00, Nektar::StdRegions::eVarCoeffD11, Nektar::StdRegions::eVarCoeffD22, Nektar::GetCellModelFactory(), m_capMembrane, m_cell, m_chi, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_filters, Nektar::SolverUtils::UnsteadySystem::m_intVariables, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_stimDuration, m_vardiffi, m_vardiffie, tmp1, tmp2, tmp3, Nektar::SolverUtils::UnsteadySystem::v_InitObject(), and Vmath::Vadd().

◆ v_SetInitialConditions()

void Nektar::Bidomain::v_SetInitialConditions ( NekDouble  initialtime,
bool  dumpInitialConditions,
const int  domain 
)
overrideprotectedvirtual

Sets a custom initial condition.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 443 of file Bidomain.cpp.

446{
447 EquationSystem::v_SetInitialConditions(initialtime, dumpInitialConditions,
448 domain);
449 m_cell->Initialise();
450}
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)

References m_cell, and Nektar::SolverUtils::EquationSystem::v_SetInitialConditions().

Friends And Related Function Documentation

◆ MemoryManager< Bidomain >

friend class MemoryManager< Bidomain >
friend

Definition at line 1 of file Bidomain.h.

Member Data Documentation

◆ className

string Nektar::Bidomain::className
static
Initial value:
"Bidomain", Bidomain::create,
"Bidomain model of cardiac electrophysiology with 3D diffusion.")
static EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
Definition: Bidomain.h:53
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Registers the class with the Factory.

Definition at line 64 of file Bidomain.h.

◆ m_capMembrane

NekDouble Nektar::Bidomain::m_capMembrane
private

Definition at line 99 of file Bidomain.h.

Referenced by DoImplicitSolve(), DoOdeRhs(), and v_InitObject().

◆ m_cell

CellModelSharedPtr Nektar::Bidomain::m_cell
private

Cell model.

Definition at line 97 of file Bidomain.h.

Referenced by DoOdeRhs(), v_GenerateSummary(), v_InitObject(), and v_SetInitialConditions().

◆ m_chi

NekDouble Nektar::Bidomain::m_chi
private

Definition at line 99 of file Bidomain.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_sigmaex

NekDouble Nektar::Bidomain::m_sigmaex
private

Definition at line 99 of file Bidomain.h.

◆ m_sigmaey

NekDouble Nektar::Bidomain::m_sigmaey
private

Definition at line 100 of file Bidomain.h.

◆ m_sigmaez

NekDouble Nektar::Bidomain::m_sigmaez
private

Definition at line 100 of file Bidomain.h.

◆ m_sigmaix

NekDouble Nektar::Bidomain::m_sigmaix
private

Definition at line 99 of file Bidomain.h.

◆ m_sigmaiy

NekDouble Nektar::Bidomain::m_sigmaiy
private

Definition at line 99 of file Bidomain.h.

◆ m_sigmaiz

NekDouble Nektar::Bidomain::m_sigmaiz
private

Definition at line 99 of file Bidomain.h.

◆ m_stimDuration

NekDouble Nektar::Bidomain::m_stimDuration
private

Stimulus current.

Definition at line 110 of file Bidomain.h.

Referenced by DoOdeRhs(), and v_InitObject().

◆ m_vardiffi

StdRegions::VarCoeffMap Nektar::Bidomain::m_vardiffi
private

Definition at line 102 of file Bidomain.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_vardiffie

StdRegions::VarCoeffMap Nektar::Bidomain::m_vardiffie
private

Definition at line 103 of file Bidomain.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ tmp1

Array<OneD, Array<OneD, NekDouble> > Nektar::Bidomain::tmp1
private

Definition at line 105 of file Bidomain.h.

Referenced by v_InitObject().

◆ tmp2

Array<OneD, Array<OneD, NekDouble> > Nektar::Bidomain::tmp2
private

Definition at line 106 of file Bidomain.h.

Referenced by v_InitObject().

◆ tmp3

Array<OneD, Array<OneD, NekDouble> > Nektar::Bidomain::tmp3
private

Definition at line 107 of file Bidomain.h.

Referenced by v_InitObject().