Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
Nektar::VelocityCorrectionScheme Class Reference

#include <VelocityCorrectionScheme.h>

Inheritance diagram for Nektar::VelocityCorrectionScheme:
[legend]

Public Member Functions

 VelocityCorrectionScheme (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
 ~VelocityCorrectionScheme () override
 
void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
void SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
void SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
void SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
void SolveViscous (const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
 
void SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
 
void EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
- Public Member Functions inherited from Nektar::IncNavierStokes
 ~IncNavierStokes () override
 
void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
int GetNConvectiveFields (void)
 
void AddForcing (const SolverUtils::ForcingSharedPtr &pForce)
 
void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
bool v_HasConstantDensity () override
 
void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels) override
 
void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels) override
 
void v_SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp) override
 
void v_GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp) override
 
void v_SetMovingFrameProjectionMat (const bnu::matrix< NekDouble > &vProjMat) override
 
void v_GetMovingFrameProjectionMat (bnu::matrix< NekDouble > &vProjMat) override
 
void v_SetAeroForce (Array< OneD, NekDouble > forces) override
 
void v_GetAeroForce (Array< OneD, NekDouble > forces) override
 
bool DefinedForcing (const std::string &sForce)
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
SOLVER_UTILS_EXPORT ~AdvectionSystem () override
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp)
 
SOLVER_UTILS_EXPORT void GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp)
 
SOLVER_UTILS_EXPORT void SetAeroForce (Array< OneD, NekDouble > forces)
 Set aerodynamic force and moment. More...
 
SOLVER_UTILS_EXPORT void GetAeroForce (Array< OneD, NekDouble > forces)
 Get aerodynamic force and moment. More...
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

void SetupFlowrate (NekDouble aii_dt)
 Set up the Stokes solution used to impose constant flowrate through a boundary. More...
 
NekDouble MeasureFlowrate (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 Measure the volumetric flow rate through the volumetric flow rate reference surface. More...
 
bool v_PostIntegrate (int step) override
 
void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
Array< OneD, bool > v_GetSystemSingularChecks () override
 
int v_GetForceDimension () override
 
virtual void v_SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
virtual void v_SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
virtual void v_SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
virtual void v_SolveViscous (const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
 
virtual void v_SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
 
virtual void v_EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
bool v_RequireFwdTrans () override
 
virtual std::string v_GetExtrapolateStr (void)
 
virtual std::string v_GetSubSteppingExtrapolateStr (const std::string &instr)
 
void SetUpSVV (void)
 
void SetUpExtrapolation (void)
 
void SVVVarDiffCoeff (const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble > > &vel=NullNekDoubleArrayOfArray)
 
void AppendSVVFactors (StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
 
void ComputeGJPNormalVelocity (const Array< OneD, const Array< OneD, NekDouble > > &inarray, StdRegions::VarCoeffMap &varcoeffs)
 
- Protected Member Functions inherited from Nektar::IncNavierStokes
 IncNavierStokes (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
EquationType GetEquationType (void)
 
void EvaluateAdvectionTerms (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void WriteModalEnergy (void)
 
void SetBoundaryConditions (NekDouble time)
 time dependent boundary conditions updating More...
 
void SetRadiationBoundaryForcing (int fieldid)
 Set Radiation forcing term. More...
 
void SetZeroNormalVelocity ()
 Set Normal Velocity Component to Zero. More...
 
void SetWomersleyBoundary (const int fldid, const int bndid)
 Set Womersley Profile if specified. More...
 
void SetUpWomersley (const int fldid, const int bndid, std::string womstr)
 Set Up Womersley details. More...
 
void SetMovingReferenceFrameBCs (const NekDouble &time)
 Set the moving reference frame boundary conditions. More...
 
void SetMRFWallBCs (const NekDouble &time)
 
void SetMRFDomainVelBCs (const NekDouble &time)
 
MultiRegions::ExpListSharedPtr v_GetPressure () override
 
void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
virtual int v_GetForceDimension ()=0
 
Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 
bool v_PreIntegrate (int step) override
 
SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp)
 
virtual SOLVER_UTILS_EXPORT void v_SetAeroForce (Array< OneD, NekDouble > forces)
 
virtual SOLVER_UTILS_EXPORT void v_GetAeroForce (Array< OneD, NekDouble > forces)
 

Protected Attributes

bool m_useHomo1DSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useGJPStabilisation
 bool to identify if GJP semi-implicit is active. More...
 
bool m_useGJPNormalVel
 bool to identify if GJP normal Velocity should be applied in explicit approach More...
 
NekDouble m_GJPJumpScale
 
NekDouble m_sVVCutoffRatio
 cutt off ratio from which to start decayhing modes More...
 
NekDouble m_sVVDiffCoeff
 Diffusion coefficient of SVV modes. More...
 
NekDouble m_sVVCutoffRatioHomo1D
 
NekDouble m_sVVDiffCoeffHomo1D
 Diffusion coefficient of SVV modes in homogeneous 1D Direction. More...
 
Array< OneD, NekDoublem_svvVarDiffCoeff
 Array of coefficient if power kernel is used in SVV. More...
 
bool m_IsSVVPowerKernel
 Identifier for Power Kernel otherwise DG kernel. More...
 
Array< OneD, NekDoublem_diffCoeff
 Diffusion coefficients (will be kinvis for velocities) More...
 
StdRegions::VarCoeffMap m_varCoeffLap
 Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise. More...
 
NekDouble m_flowrate
 Desired volumetric flowrate. More...
 
NekDouble m_flowrateArea
 Area of the boundary through which we are measuring the flowrate. More...
 
bool m_homd1DFlowinPlane
 
NekDouble m_greenFlux
 Flux of the Stokes function solution. More...
 
NekDouble m_alpha
 Current flowrate correction. More...
 
int m_flowrateBndID
 Boundary ID of the flowrate reference surface. More...
 
int m_planeID
 Plane ID for cases with homogeneous expansion. More...
 
MultiRegions::ExpListSharedPtr m_flowrateBnd
 Flowrate reference surface. More...
 
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
 Stokes solution used to impose flowrate. More...
 
std::ofstream m_flowrateStream
 Output stream to record flowrate. More...
 
int m_flowrateSteps
 Interval at which to record flowrate data. More...
 
NekDouble m_flowrateAiidt
 Value of aii_dt used to compute Stokes flowrate solution. More...
 
Array< OneD, Array< OneD, NekDouble > > m_F
 
- Protected Attributes inherited from Nektar::IncNavierStokes
ExtrapolateSharedPtr m_extrapolation
 
std::ofstream m_mdlFile
 modal energy file More...
 
bool m_SmoothAdvection
 bool to identify if advection term smoothing is requested More...
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 Forcing terms. More...
 
int m_nConvectiveFields
 Number of fields to be convected;. More...
 
Array< OneD, int > m_velocity
 int which identifies which components of m_fields contains the velocity (u,v,w); More...
 
MultiRegions::ExpListSharedPtr m_pressure
 Pointer to field holding pressure field. More...
 
NekDouble m_kinvis
 Kinematic viscosity. More...
 
int m_energysteps
 dump energy to file at steps time More...
 
EquationType m_equationType
 equation type; More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToElmtID
 Mapping from BCs to Elmt IDs. More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToTraceID
 Mapping from BCs to Elmt Edge IDs. More...
 
Array< OneD, Array< OneD, NekDouble > > m_fieldsRadiationFactor
 RHS Factor for Radiation Condition. More...
 
int m_intSteps
 Number of time integration steps AND Order of extrapolation for pressure boundary conditions. More...
 
Array< OneD, NekDoublem_pivotPoint
 
Array< OneD, NekDoublem_aeroForces
 
std::map< int, std::map< int, WomersleyParamsSharedPtr > > m_womersleyParams
 Womersley parameters if required. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities (u, v, w, omega_x, omega_y, omega_z, a_x, a_y, a_z, domega_x, domega_y, domega_z) More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Static Protected Attributes

static std::string solverTypeLookupId
 
- Static Protected Attributes inherited from Nektar::IncNavierStokes
static std::string eqTypeLookupIds []
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 42 of file VelocityCorrectionScheme.h.

Constructor & Destructor Documentation

◆ VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::VelocityCorrectionScheme ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)

Constructor.

Constructor. Creates ...

Parameters

param

Definition at line 66 of file VelocityCorrectionScheme.cpp.

69 : UnsteadySystem(pSession, pGraph), IncNavierStokes(pSession, pGraph),
71{
72}
IncNavierStokes(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Constructor.
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.
StdRegions::VarCoeffMap m_varCoeffLap
Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.
static VarCoeffMap NullVarCoeffMap
Definition: StdRegions.hpp:347

◆ ~VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::~VelocityCorrectionScheme ( void  )
override

Destructor

Definition at line 518 of file VelocityCorrectionScheme.cpp.

519{
520}

Member Function Documentation

◆ AppendSVVFactors()

void Nektar::VelocityCorrectionScheme::AppendSVVFactors ( StdRegions::ConstFactorMap factors,
MultiRegions::VarFactorsMap varFactorsMap 
)
protected

Definition at line 1133 of file VelocityCorrectionScheme.cpp.

1136{
1137
1138 if (m_useSpecVanVisc)
1139 {
1143 {
1145 {
1148 }
1149 else
1150 {
1153 }
1154 }
1155 }
1156}
NekDouble m_kinvis
Kinematic viscosity.
Array< OneD, NekDouble > m_svvVarDiffCoeff
Array of coefficient if power kernel is used in SVV.
bool m_IsSVVPowerKernel
Identifier for Power Kernel otherwise DG kernel.
NekDouble m_sVVCutoffRatio
cutt off ratio from which to start decayhing modes
NekDouble m_sVVDiffCoeff
Diffusion coefficient of SVV modes.
bool m_useSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
StdRegions::ConstFactorMap factors
static Array< OneD, NekDouble > NullNekDouble1DArray

References Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDGKerDiffCoeff, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorSVVPowerKerDiffCoeff, Nektar::VarcoeffHashingTest::factors, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, m_sVVCutoffRatio, m_sVVDiffCoeff, m_svvVarDiffCoeff, m_useSpecVanVisc, and Nektar::NullNekDouble1DArray.

Referenced by v_SolveViscous(), and Nektar::VCSImplicit::v_SolveViscous().

◆ ComputeGJPNormalVelocity()

void Nektar::VelocityCorrectionScheme::ComputeGJPNormalVelocity ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
StdRegions::VarCoeffMap varcoeffs 
)
protected

Definition at line 1164 of file VelocityCorrectionScheme.cpp.

1167{
1169 {
1171 std::dynamic_pointer_cast<MultiRegions::ContField>(m_fields[0]);
1172
1174 cfield->GetGJPForcing();
1175
1176 int nTracePts = GJPData->GetNumTracePts();
1177 Array<OneD, NekDouble> unorm(nTracePts, 1.0);
1178 Array<OneD, NekDouble> Fwd(nTracePts), Bwd(nTracePts);
1179 Array<OneD, Array<OneD, NekDouble>> traceNormals =
1180 GJPData->GetTraceNormals();
1181
1182 m_fields[0]->GetFwdBwdTracePhys(inarray[0], Fwd, Bwd, true, true);
1183 Vmath::Vmul(nTracePts, Fwd, 1, traceNormals[0], 1, unorm, 1);
1184
1185 // Evaluate u.n on trace
1186 for (int f = 1; f < m_fields[0]->GetCoordim(0); ++f)
1187 {
1188 m_fields[0]->GetFwdBwdTracePhys(inarray[f], Fwd, Bwd, true, true);
1189 Vmath::Vvtvp(nTracePts, Fwd, 1, traceNormals[f], 1, unorm, 1, unorm,
1190 1);
1191 }
1192 Vmath::Vabs(nTracePts, unorm, 1, unorm, 1);
1193 varcoeffs[StdRegions::eVarCoeffGJPNormVel] = unorm;
1194 }
1195}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
bool m_useGJPNormalVel
bool to identify if GJP normal Velocity should be applied in explicit approach
std::shared_ptr< GJPStabilisation > GJPStabilisationSharedPtr
std::shared_ptr< ContField > ContFieldSharedPtr
Definition: ContField.h:268
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.hpp:352
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366

References Nektar::StdRegions::eVarCoeffGJPNormVel, Nektar::SolverUtils::EquationSystem::m_fields, m_useGJPNormalVel, Vmath::Vabs(), Vmath::Vmul(), and Vmath::Vvtvp().

Referenced by v_SolveViscous(), and Nektar::VCSImplicit::v_SolveViscous().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::VelocityCorrectionScheme::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 46 of file VelocityCorrectionScheme.h.

49 {
52 pGraph);
53 p->InitObject();
54 return p;
55 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
inline

Definition at line 104 of file VelocityCorrectionScheme.h.

107 {
108 v_EvaluateAdvection_SetPressureBCs(inarray, outarray, time);
109 }
virtual void v_EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)

References v_EvaluateAdvection_SetPressureBCs().

Referenced by v_InitObject().

◆ MeasureFlowrate()

NekDouble Nektar::VelocityCorrectionScheme::MeasureFlowrate ( const Array< OneD, Array< OneD, NekDouble > > &  inarray)
protected

Measure the volumetric flow rate through the volumetric flow rate reference surface.

This routine computes the volumetric flow rate

\[ Q(\mathbf{u}) = \frac{1}{\mu(R)} \int_R \mathbf{u} \cdot d\mathbf{s} \]

through the boundary region \( R \).

Definition at line 444 of file VelocityCorrectionScheme.cpp.

446{
447 NekDouble flowrate = 0.0;
448
449 if (m_flowrateBnd && m_flowrateBndID >= 0)
450 {
451 // If we're an actual boundary, calculate the vector flux through
452 // the boundary.
453 Array<OneD, Array<OneD, NekDouble>> boundary(m_spacedim);
454
456 {
457 // General case
458 for (int i = 0; i < m_spacedim; ++i)
459 {
460 m_fields[i]->ExtractPhysToBnd(m_flowrateBndID, inarray[i],
461 boundary[i]);
462 }
463 flowrate = m_flowrateBnd->VectorFlux(boundary);
464 }
465 else if (m_planeID == 0)
466 {
467 // Homogeneous with forcing in plane. Calculate flux only on
468 // the meanmode - calculateFlux necessary for hybrid
469 // parallelisation.
470 for (int i = 0; i < m_spacedim; ++i)
471 {
472 m_fields[i]->GetPlane(m_planeID)->ExtractPhysToBnd(
473 m_flowrateBndID, inarray[i], boundary[i]);
474 }
475
476 // the flowrate is calculated on the mean mode so it needs to be
477 // multiplied by LZ to be consistent with the general case.
478 flowrate = m_flowrateBnd->VectorFlux(boundary) *
479 m_session->GetParameter("LZ");
480 }
481 }
483 {
484 // 3DH1D case with no Flowrate boundary defined: compute flux
485 // through the zero-th (mean) plane.
486 flowrate = m_flowrateBnd->Integral(inarray[2]);
487 }
488
489 // Communication to obtain the total flowrate
491 {
492 m_comm->GetColumnComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
493 }
494 else
495 {
496 m_comm->GetSpaceComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
497 }
498 return flowrate / m_flowrateArea;
499}
int m_spacedim
Spatial dimension (>= expansion dim).
LibUtilities::CommSharedPtr m_comm
Communicator.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
enum HomogeneousType m_HomogeneousType
MultiRegions::ExpListSharedPtr m_flowrateBnd
Flowrate reference surface.
NekDouble m_flowrateArea
Area of the boundary through which we are measuring the flowrate.
int m_planeID
Plane ID for cases with homogeneous expansion.
int m_flowrateBndID
Boundary ID of the flowrate reference surface.
double NekDouble

References Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_planeID, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, and Nektar::LibUtilities::ReduceSum.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ SetUpExtrapolation()

void Nektar::VelocityCorrectionScheme::SetUpExtrapolation ( void  )
protected

Definition at line 151 of file VelocityCorrectionScheme.cpp.

152{
153 // creation of the extrapolation object
156 {
157 std::string vExtrapolation = v_GetExtrapolateStr();
158 if (m_session->DefinesSolverInfo("Extrapolation"))
159 {
160 vExtrapolation = v_GetSubSteppingExtrapolateStr(
161 m_session->GetSolverInfo("Extrapolation"));
162 }
164 vExtrapolation, m_session, m_fields, m_pressure, m_velocity,
166
167 m_extrapolation->SetForcing(m_forcing);
168 m_extrapolation->SubSteppingTimeIntegration(m_intScheme);
169 m_extrapolation->GenerateBndElmtExpansion();
170 m_extrapolation->GenerateHOPBCMap(m_session);
171 }
172}
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
ExtrapolateSharedPtr m_extrapolation
Array< OneD, int > m_velocity
int which identifies which components of m_fields contains the velocity (u,v,w);
EquationType m_equationType
equation type;
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:143
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
virtual std::string v_GetExtrapolateStr(void)
virtual std::string v_GetSubSteppingExtrapolateStr(const std::string &instr)
@ eUnsteadyStokes
@ eUnsteadyNavierStokes
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:48

References Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::eUnsteadyNavierStokes, Nektar::eUnsteadyStokes, Nektar::GetExtrapolateFactory(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::IncNavierStokes::m_equationType, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_velocity, v_GetExtrapolateStr(), and v_GetSubSteppingExtrapolateStr().

Referenced by v_InitObject().

◆ SetupFlowrate()

void Nektar::VelocityCorrectionScheme::SetupFlowrate ( NekDouble  aii_dt)
protected

Set up the Stokes solution used to impose constant flowrate through a boundary.

This routine solves a Stokes equation using a unit forcing direction, specified by the user to be in the desired flow direction. This field can then be used to correct the end of each timestep to impose a constant volumetric flow rate through a user-defined boundary.

There are three modes of operation:

  • Standard two-dimensional or three-dimensional simulations (e.g. pipes or channels)
  • 3DH1D simulations where the forcing is not in the homogeneous direction (e.g. channel flow, where the y-direction of the 2D mesh is perpendicular to the wall);
  • 3DH1D simulations where the forcing is in the homogeneous direction (e.g. pipe flow in the z-direction).

In the first two cases, the user should define:

  • the Flowrate parameter, which dictates the volumetric flux through the reference area
  • tag a boundary region with the Flowrate user-defined type to define the reference area
  • define a FlowrateForce function with components ForceX, ForceY and ForceZ that defines a unit forcing in the appropriate direction.

In the latter case, the user should define only the Flowrate; the reference area is taken to be the homogeneous plane and the force is assumed to be the unit z-vector \( \hat{e}_z \).

This routine solves a single timestep of the Stokes problem (premultiplied by the backwards difference coefficient):

\[ \frac{\partial\mathbf{u}}{\partial t} = -\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f} \]

with a zero initial condition to obtain a field \( \mathbf{u}_s \). The flowrate is then corrected at each timestep \( n \) by adding the correction \( \alpha\mathbf{u}_s \) where

\[ \alpha = \frac{\overline{Q} - Q(\mathbf{u^n})}{Q(\mathbf{u}_s)} \]

where \( Q(\cdot)\) is the volumetric flux through the appropriate surface or line, which is implemented in VelocityCorrectionScheme::MeasureFlowrate. For more details, see chapter 3.2 of the thesis of D. Moxey (University of Warwick, 2011).

Definition at line 222 of file VelocityCorrectionScheme.cpp.

223{
224 m_flowrateBndID = -1;
225 m_flowrateArea = 0.0;
226
227 const Array<OneD, const SpatialDomains::BoundaryConditionShPtr> &bcs =
228 m_fields[0]->GetBndConditions();
229
230 std::string forces[] = {"X", "Y", "Z"};
231 Array<OneD, NekDouble> flowrateForce(m_spacedim, 0.0);
232
233 // Set up flowrate forces.
234 bool defined = true;
235 for (int i = 0; i < m_spacedim; ++i)
236 {
237 std::string varName = std::string("Force") + forces[i];
238 defined = m_session->DefinesFunction("FlowrateForce", varName);
239
240 if (!defined && m_HomogeneousType == eHomogeneous1D)
241 {
242 break;
243 }
244
245 ASSERTL0(defined,
246 "A 'FlowrateForce' function must defined with components "
247 "[ForceX, ...] to define direction of flowrate forcing");
248
250 m_session->GetFunction("FlowrateForce", varName);
251 flowrateForce[i] = ffunc->Evaluate();
252 }
253
254 // Define flag for case with homogeneous expansion and forcing not in the
255 // z-direction
256 m_homd1DFlowinPlane = false;
257 if (defined && m_HomogeneousType == eHomogeneous1D)
258 {
259 m_homd1DFlowinPlane = true;
260 }
261
262 // For 3DH1D simulations, if force isn't defined then assume in
263 // z-direction.
264 if (!defined)
265 {
266 flowrateForce[2] = 1.0;
267 }
268
269 // Find the boundary condition that is tagged as the flowrate boundary.
270 for (size_t i = 0; i < bcs.size(); ++i)
271 {
272 if (boost::iequals(bcs[i]->GetUserDefined(), "Flowrate"))
273 {
274 m_flowrateBndID = i;
275 break;
276 }
277 }
278
279 int tmpBr = m_flowrateBndID;
280 m_comm->AllReduce(tmpBr, LibUtilities::ReduceMax);
282 "One boundary region must be marked using the 'Flowrate' "
283 "user-defined type to monitor the volumetric flowrate.");
284
285 // Extract an appropriate expansion list to represents the boundary.
286 if (m_flowrateBndID >= 0)
287 {
288 // For a boundary, extract the boundary itself.
289 m_flowrateBnd = m_fields[0]->GetBndCondExpansions()[m_flowrateBndID];
290 }
292 {
293 // For 3DH1D simulations with no force specified, find the mean
294 // (0th) plane.
295 Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
296 int tmpId = -1;
297
298 for (size_t i = 0; i < zIDs.size(); ++i)
299 {
300 if (zIDs[i] == 0)
301 {
302 tmpId = i;
303 break;
304 }
305 }
306
307 ASSERTL1(tmpId <= 0, "Should be either at location 0 or -1 if not "
308 "found");
309
310 if (tmpId != -1)
311 {
312 m_flowrateBnd = m_fields[0]->GetPlane(tmpId);
313 }
314 }
315
316 // At this point, some processors may not have m_flowrateBnd
317 // set if they don't contain the appropriate boundary. To
318 // calculate the area, we integrate 1.0 over the boundary
319 // (which has been set up with the appropriate subcommunicator
320 // to avoid deadlock), and then communicate this to the other
321 // processors with an AllReduce.
322 if (m_flowrateBnd)
323 {
324 Array<OneD, NekDouble> inArea(m_flowrateBnd->GetNpoints(), 1.0);
325 m_flowrateArea = m_flowrateBnd->Integral(inArea);
326 }
328
329 // In homogeneous case with forcing not aligned to the z-direction,
330 // redefine m_flowrateBnd so it is a 1D expansion
333 {
334 // For 3DH1D simulations with no force specified, find the mean
335 // (0th) plane.
336 Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
337 m_planeID = -1;
338
339 for (size_t i = 0; i < zIDs.size(); ++i)
340 {
341 if (zIDs[i] == 0)
342 {
343 m_planeID = i;
344 break;
345 }
346 }
347
348 ASSERTL1(m_planeID <= 0, "Should be either at location 0 or -1 "
349 "if not found");
350
351 if (m_planeID != -1)
352 {
354 m_fields[0]->GetBndCondExpansions()[m_flowrateBndID]->GetPlane(
355 m_planeID);
356 }
357 }
358
359 // Set up some storage for the Stokes solution (to be stored in
360 // m_flowrateStokes) and its initial condition (inTmp), which holds the
361 // unit forcing.
362 int nqTot = m_fields[0]->GetNpoints();
363 Array<OneD, Array<OneD, NekDouble>> inTmp(m_spacedim);
364 m_flowrateStokes = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
365
366 for (int i = 0; i < m_spacedim; ++i)
367 {
368 inTmp[i] = Array<OneD, NekDouble>(nqTot, flowrateForce[i] * aii_dt);
369 m_flowrateStokes[i] = Array<OneD, NekDouble>(nqTot, 0.0);
370
372 {
373 Array<OneD, NekDouble> inTmp2(nqTot);
374 m_fields[i]->HomogeneousFwdTrans(nqTot, inTmp[i], inTmp2);
375 m_fields[i]->SetWaveSpace(true);
376 inTmp[i] = inTmp2;
377 }
378
379 Vmath::Zero(m_fields[i]->GetNcoeffs(), m_fields[i]->UpdateCoeffs(), 1);
380 }
381
382 // Create temporary extrapolation object to avoid issues with
383 // m_extrapolation for HOPBCs using higher order timestepping schemes.
384 // Zero pressure BCs in Neumann boundaries that may have been
385 // set in the advection step.
386 Array<OneD, const SpatialDomains::BoundaryConditionShPtr> PBndConds =
387 m_pressure->GetBndConditions();
388 Array<OneD, MultiRegions::ExpListSharedPtr> PBndExp =
389 m_pressure->GetBndCondExpansions();
390 for (size_t n = 0; n < PBndConds.size(); ++n)
391 {
392 if (PBndConds[n]->GetBoundaryConditionType() ==
394 {
395 Vmath::Zero(PBndExp[n]->GetNcoeffs(), PBndExp[n]->UpdateCoeffs(),
396 1);
397 }
398 }
399
400 // Finally, calculate the solution and the flux of the Stokes
401 // solution. We set m_greenFlux to maximum numeric limit, which signals
402 // to SolveUnsteadyStokesSystem that we don't need to apply a flowrate
403 // force.
404 m_greenFlux = numeric_limits<NekDouble>::max();
405 m_flowrateAiidt = aii_dt;
406
407 // Save the number of convective field in case it is not set
408 // to spacedim. Only need velocity components for stokes forcing
409 int SaveNConvectiveFields = m_nConvectiveFields;
411 SolveUnsteadyStokesSystem(inTmp, m_flowrateStokes, 0.0, aii_dt);
412 m_nConvectiveFields = SaveNConvectiveFields;
414
415 // If the user specified IO_FlowSteps, open a handle to store output.
416 if (m_comm->GetRank() == 0 && m_flowrateSteps &&
417 !m_flowrateStream.is_open())
418 {
419 std::string filename = m_session->GetSessionName();
420 filename += ".prs";
421 m_flowrateStream.open(filename.c_str());
422 m_flowrateStream.setf(ios::scientific, ios::floatfield);
423 m_flowrateStream << "# step time dP" << endl
424 << "# -------------------------------------------"
425 << endl;
426 }
427
428 // Replace pressure BCs with those evaluated from advection step
429 m_extrapolation->CopyPressureHBCsToPbndExp();
430}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
int m_nConvectiveFields
Number of fields to be convected;.
SOLVER_UTILS_EXPORT int GetNcoeffs()
NekDouble m_greenFlux
Flux of the Stokes function solution.
NekDouble MeasureFlowrate(const Array< OneD, Array< OneD, NekDouble > > &inarray)
Measure the volumetric flow rate through the volumetric flow rate reference surface.
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
Stokes solution used to impose flowrate.
void SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
int m_flowrateSteps
Interval at which to record flowrate data.
std::ofstream m_flowrateStream
Output stream to record flowrate.
NekDouble m_flowrateAiidt
Value of aii_dt used to compute Stokes flowrate solution.
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:125
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273

References ASSERTL0, ASSERTL1, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SpatialDomains::eNeumann, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_flowrateSteps, m_flowrateStokes, m_flowrateStream, m_greenFlux, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::IncNavierStokes::m_nConvectiveFields, m_planeID, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), Nektar::LibUtilities::ReduceMax, SolveUnsteadyStokesSystem(), and Vmath::Zero().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  fields,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 69 of file VelocityCorrectionScheme.h.

72 {
73 v_SetUpPressureForcing(fields, Forcing, aii_Dt);
74 }
virtual void v_SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)

References v_SetUpPressureForcing().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SetUpSVV()

void Nektar::VelocityCorrectionScheme::SetUpSVV ( void  )
protected

Definition at line 907 of file VelocityCorrectionScheme.cpp.

908{
909
910 m_session->MatchSolverInfo("SpectralVanishingViscosity", "PowerKernel",
911 m_useSpecVanVisc, false);
912
914 {
916 }
917 else
918 {
919 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
920 "PowerKernel", m_useSpecVanVisc, false);
921 }
922
924 {
925 m_IsSVVPowerKernel = true;
926 }
927 else
928 {
929 m_session->MatchSolverInfo("SpectralVanishingViscosity", "DGKernel",
930 m_useSpecVanVisc, false);
932 {
934 }
935 else
936 {
937 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
938 "DGKernel", m_useSpecVanVisc, false);
939 }
940
942 {
943 m_IsSVVPowerKernel = false;
944 }
945 }
946
947 // set up varcoeff kernel if PowerKernel or DG is specified
949 {
950 Array<OneD, Array<OneD, NekDouble>> SVVVelFields =
952 if (m_session->DefinesFunction("SVVVelocityMagnitude"))
953 {
954 if (m_comm->GetRank() == 0)
955 {
956 cout << "Seting up SVV velocity from "
957 "SVVVelocityMagnitude section in session file"
958 << endl;
959 }
960 size_t nvel = m_velocity.size();
961 size_t phystot = m_fields[0]->GetTotPoints();
962 SVVVelFields = Array<OneD, Array<OneD, NekDouble>>(nvel);
963 vector<string> vars;
964 for (size_t i = 0; i < nvel; ++i)
965 {
966 SVVVelFields[i] = Array<OneD, NekDouble>(phystot);
967 vars.push_back(m_session->GetVariable(m_velocity[i]));
968 }
969
970 // Load up files into m_fields;
971 GetFunction("SVVVelocityMagnitude")->Evaluate(vars, SVVVelFields);
972 }
973
974 m_svvVarDiffCoeff = Array<OneD, NekDouble>(m_fields[0]->GetNumElmts());
975 SVVVarDiffCoeff(1.0, m_svvVarDiffCoeff, SVVVelFields);
976 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 1.0);
977 }
978 else
979 {
981 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 0.1);
982 }
983
984 // Load parameters for Spectral Vanishing Viscosity
985 if (m_useSpecVanVisc == false)
986 {
987 m_session->MatchSolverInfo("SpectralVanishingViscosity", "True",
988 m_useSpecVanVisc, false);
989 if (m_useSpecVanVisc == false)
990 {
991 m_session->MatchSolverInfo("SpectralVanishingViscosity",
992 "ExpKernel", m_useSpecVanVisc, false);
993 }
995
996 if (m_useSpecVanVisc == false)
997 {
998 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
999 "True", m_useSpecVanVisc, false);
1000 if (m_useSpecVanVisc == false)
1001 {
1002 m_session->MatchSolverInfo(
1003 "SpectralVanishingViscositySpectralHP", "ExpKernel",
1004 m_useSpecVanVisc, false);
1005 }
1006 }
1007 }
1008
1009 // Case of only Homo1D kernel
1010 if (m_session->DefinesSolverInfo("SpectralVanishingViscosityHomo1D"))
1011 {
1012 m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D", "True",
1013 m_useHomo1DSpecVanVisc, false);
1014 if (m_useHomo1DSpecVanVisc == false)
1015 {
1016 m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D",
1017 "ExpKernel", m_useHomo1DSpecVanVisc,
1018 false);
1019 }
1020 }
1021
1022 m_session->LoadParameter("SVVCutoffRatio", m_sVVCutoffRatio, 0.75);
1023 m_session->LoadParameter("SVVCutoffRatioHomo1D", m_sVVCutoffRatioHomo1D,
1025 m_session->LoadParameter("SVVDiffCoeffHomo1D", m_sVVDiffCoeffHomo1D,
1027
1029 {
1030 ASSERTL0(
1032 "Expect to have three velocity fields with homogenous expansion");
1033
1035 {
1036 Array<OneD, unsigned int> planes;
1037 planes = m_fields[0]->GetZIDs();
1038
1039 size_t num_planes = planes.size();
1040 Array<OneD, NekDouble> SVV(num_planes, 0.0);
1041 NekDouble fac;
1042 size_t kmodes = m_fields[0]->GetHomogeneousBasis()->GetNumModes();
1043 size_t pstart;
1044
1045 pstart = m_sVVCutoffRatioHomo1D * kmodes;
1046
1047 for (size_t n = 0; n < num_planes; ++n)
1048 {
1049 if (planes[n] > pstart)
1050 {
1051 fac = (NekDouble)((planes[n] - kmodes) *
1052 (planes[n] - kmodes)) /
1053 ((NekDouble)((planes[n] - pstart) *
1054 (planes[n] - pstart)));
1055 SVV[n] = m_sVVDiffCoeffHomo1D * exp(-fac) / m_kinvis;
1056 }
1057 }
1058
1059 for (size_t i = 0; i < m_velocity.size(); ++i)
1060 {
1061 m_fields[m_velocity[i]]->SetHomo1DSpecVanVisc(SVV);
1062 }
1063 }
1064 }
1065}
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
NekDouble m_sVVDiffCoeffHomo1D
Diffusion coefficient of SVV modes in homogeneous 1D Direction.
void SVVVarDiffCoeff(const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble > > &vel=NullNekDoubleArrayOfArray)
bool m_useHomo1DSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray

References ASSERTL0, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::GetFunction(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_session, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::IncNavierStokes::m_velocity, Nektar::NullNekDouble1DArray, Nektar::NullNekDoubleArrayOfArray, and SVVVarDiffCoeff().

Referenced by v_InitObject().

◆ SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 76 of file VelocityCorrectionScheme.h.

79 {
80 v_SetUpViscousForcing(inarray, Forcing, aii_Dt);
81 }
virtual void v_SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)

References v_SetUpViscousForcing().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SolvePressure()

void Nektar::VelocityCorrectionScheme::SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
inline

Definition at line 83 of file VelocityCorrectionScheme.h.

84 {
85 v_SolvePressure(Forcing);
86 }
virtual void v_SolvePressure(const Array< OneD, NekDouble > &Forcing)

References v_SolvePressure().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const NekDouble  a_iixDt 
)
inline

Definition at line 96 of file VelocityCorrectionScheme.h.

100 {
101 v_SolveUnsteadyStokesSystem(inarray, outarray, time, a_iixDt);
102 }
virtual void v_SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)

References v_SolveUnsteadyStokesSystem().

Referenced by SetupFlowrate(), and v_InitObject().

◆ SolveViscous()

void Nektar::VelocityCorrectionScheme::SolveViscous ( const Array< OneD, const Array< OneD, NekDouble > > &  Forcing,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  aii_Dt 
)
inline

Definition at line 88 of file VelocityCorrectionScheme.h.

92 {
93 v_SolveViscous(Forcing, inarray, outarray, aii_Dt);
94 }
virtual void v_SolveViscous(const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)

References v_SolveViscous().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SVVVarDiffCoeff()

void Nektar::VelocityCorrectionScheme::SVVVarDiffCoeff ( const NekDouble  velmag,
Array< OneD, NekDouble > &  diffcoeff,
const Array< OneD, Array< OneD, NekDouble > > &  vel = NullNekDoubleArrayOfArray 
)
protected

Definition at line 1067 of file VelocityCorrectionScheme.cpp.

1070{
1071 size_t phystot = m_fields[0]->GetTotPoints();
1072 size_t nel = m_fields[0]->GetNumElmts();
1073 size_t nvel, cnt;
1074
1075 Array<OneD, NekDouble> tmp;
1076
1077 Vmath::Fill(nel, velmag, diffcoeff, 1);
1078
1079 if (vel != NullNekDoubleArrayOfArray)
1080 {
1081 Array<OneD, NekDouble> Velmag(phystot);
1082 nvel = vel.size();
1083 // calculate magnitude of v
1084 Vmath::Vmul(phystot, vel[0], 1, vel[0], 1, Velmag, 1);
1085 for (size_t n = 1; n < nvel; ++n)
1086 {
1087 Vmath::Vvtvp(phystot, vel[n], 1, vel[n], 1, Velmag, 1, Velmag, 1);
1088 }
1089 Vmath::Vsqrt(phystot, Velmag, 1, Velmag, 1);
1090
1091 cnt = 0;
1092 Array<OneD, NekDouble> tmp;
1093 // calculate mean value of vel mag.
1094 for (size_t i = 0; i < nel; ++i)
1095 {
1096 size_t nq = m_fields[0]->GetExp(i)->GetTotPoints();
1097 tmp = Velmag + cnt;
1098 diffcoeff[i] = m_fields[0]->GetExp(i)->Integral(tmp);
1099 Vmath::Fill(nq, 1.0, tmp, 1);
1100 NekDouble area = m_fields[0]->GetExp(i)->Integral(tmp);
1101 diffcoeff[i] = diffcoeff[i] / area;
1102 cnt += nq;
1103 }
1104 }
1105 else
1106 {
1107 nvel = m_expdim;
1108 }
1109
1110 for (size_t e = 0; e < nel; e++)
1111 {
1112 LocalRegions::ExpansionSharedPtr exp = m_fields[0]->GetExp(e);
1113 NekDouble h = 0;
1114
1115 // Find maximum length of edge.
1116 size_t nEdge = exp->GetGeom()->GetNumEdges();
1117 for (size_t i = 0; i < nEdge; ++i)
1118 {
1119 h = max(h, exp->GetGeom()->GetEdge(i)->GetVertex(0)->dist(
1120 *(exp->GetGeom()->GetEdge(i)->GetVertex(1))));
1121 }
1122
1123 int p = 0;
1124 for (int i = 0; i < m_expdim; ++i)
1125 {
1126 p = max(p, exp->GetBasisNumModes(i) - 1);
1127 }
1128
1129 diffcoeff[e] *= h / p;
1130 }
1131}
int m_expdim
Expansion dimension.
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:66
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54

References Vmath::Fill(), Nektar::SolverUtils::EquationSystem::m_expdim, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::NullNekDoubleArrayOfArray, CellMLToNektar.cellml_metadata::p, Vmath::Vmul(), Vmath::Vsqrt(), and Vmath::Vvtvp().

Referenced by SetUpSVV().

◆ v_DoInitialise()

void Nektar::VelocityCorrectionScheme::v_DoInitialise ( bool  dumpInitialConditions = true)
overrideprotectedvirtual

Sets up initial conditions.

Sets the initial conditions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSImplicit.

Definition at line 612 of file VelocityCorrectionScheme.cpp.

613{
614 m_F = Array<OneD, Array<OneD, NekDouble>>(m_nConvectiveFields);
615
616 for (int i = 0; i < m_nConvectiveFields; ++i)
617 {
618 m_F[i] = Array<OneD, NekDouble>(m_fields[0]->GetTotPoints(), 0.0);
619 }
620
621 m_flowrateAiidt = 0.0;
622
623 AdvectionSystem::v_DoInitialise(dumpInitialConditions);
624
625 // Set up Field Meta Data for output files
626 m_fieldMetaDataMap["Kinvis"] = boost::lexical_cast<std::string>(m_kinvis);
627 m_fieldMetaDataMap["TimeStep"] =
628 boost::lexical_cast<std::string>(m_timestep);
629
630 // set boundary conditions here so that any normal component
631 // correction are imposed before they are imposed on initial
632 // field below
634
635 // Ensure the initial conditions have correct BCs
636 for (size_t i = 0; i < m_fields.size(); ++i)
637 {
638 m_fields[i]->ImposeDirichletConditions(m_fields[i]->UpdateCoeffs());
639 m_fields[i]->LocalToGlobal();
640 m_fields[i]->GlobalToLocal();
641 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
642 m_fields[i]->UpdatePhys());
643 }
644}
void SetBoundaryConditions(NekDouble time)
time dependent boundary conditions updating
NekDouble m_timestep
Time step size.
NekDouble m_time
Current time of simulation.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
SOLVER_UTILS_EXPORT int GetTotPoints()
SOLVER_UTILS_EXPORT void v_DoInitialise(bool dumpInitialConditions=true) override
Sets up initial conditions.
Array< OneD, Array< OneD, NekDouble > > m_F

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_F, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::IncNavierStokes::SetBoundaryConditions(), and Nektar::SolverUtils::UnsteadySystem::v_DoInitialise().

Referenced by Nektar::VCSImplicit::v_DoInitialise().

◆ v_EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::v_EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protectedvirtual

Explicit part of the method - Advection, Forcing + HOPBCs

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 697 of file VelocityCorrectionScheme.cpp.

700{
701 LibUtilities::Timer timer;
702 timer.Start();
703 EvaluateAdvectionTerms(inarray, outarray, time);
704 timer.Stop();
705 timer.AccumulateRegion("Advection Terms");
706
707 // Smooth advection
709 {
710 for (int i = 0; i < m_nConvectiveFields; ++i)
711 {
712 m_pressure->SmoothField(outarray[i]);
713 }
714 }
715
716 // Add forcing terms
717 for (auto &x : m_forcing)
718 {
719 x->Apply(m_fields, inarray, outarray, time);
720 }
721
722 // Calculate High-Order pressure boundary conditions
723 timer.Start();
724 m_extrapolation->EvaluatePressureBCs(inarray, outarray, m_kinvis);
725 timer.Stop();
726 timer.AccumulateRegion("Pressure BCs");
727}
bool m_SmoothAdvection
bool to identify if advection term smoothing is requested
void EvaluateAdvectionTerms(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::IncNavierStokes::EvaluateAdvectionTerms(), Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_SmoothAdvection, Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by EvaluateAdvection_SetPressureBCs().

◆ v_GenerateSummary()

void Nektar::VelocityCorrectionScheme::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Prints a summary with some information regards the time-stepping.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 525 of file VelocityCorrectionScheme.cpp.

526{
528 SolverUtils::AddSummaryItem(s, "Splitting Scheme",
529 "Velocity correction (strong press. form)");
530
531 if (m_extrapolation->GetSubStepName().size())
532 {
533 SolverUtils::AddSummaryItem(s, "Substepping",
534 m_extrapolation->GetSubStepName());
535 }
536
537 string dealias = m_homogen_dealiasing ? "Homogeneous1D" : "";
539 {
540 dealias += (dealias == "" ? "" : " + ") + string("spectral/hp");
541 }
542 if (dealias != "")
543 {
544 SolverUtils::AddSummaryItem(s, "Dealiasing", dealias);
545 }
546
547 string smoothing = m_useSpecVanVisc ? "spectral/hp" : "";
548 if (smoothing != "")
549 {
551 {
553 s, "Smoothing-SpecHP",
554 "SVV (" + smoothing + " Exp Kernel(cut-off = " +
555 boost::lexical_cast<string>(m_sVVCutoffRatio) +
556 ", diff coeff = " +
557 boost::lexical_cast<string>(m_sVVDiffCoeff) + "))");
558 }
559 else
560 {
562 {
564 s, "Smoothing-SpecHP",
565 "SVV (" + smoothing + " Power Kernel (Power ratio =" +
566 boost::lexical_cast<string>(m_sVVCutoffRatio) +
567 ", diff coeff = " +
568 boost::lexical_cast<string>(m_sVVDiffCoeff) +
569 "*Uh/p))");
570 }
571 else
572 {
574 s, "Smoothing-SpecHP",
575 "SVV (" + smoothing + " DG Kernel (diff coeff = " +
576 boost::lexical_cast<string>(m_sVVDiffCoeff) +
577 "*Uh/p))");
578 }
579 }
580 }
581
583 {
585 s, "Smoothing-Homo1D",
586 "SVV (Homogeneous1D - Exp Kernel(cut-off = " +
587 boost::lexical_cast<string>(m_sVVCutoffRatioHomo1D) +
588 ", diff coeff = " +
589 boost::lexical_cast<string>(m_sVVDiffCoeffHomo1D) + "))");
590 }
591
593 {
595 s, "GJP Stab. Impl. ",
596 m_session->GetSolverInfo("GJPStabilisation"));
597 SolverUtils::AddSummaryItem(s, "GJP Stab. JumpScale", m_GJPJumpScale);
598
599 if (boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
600 "Explicit"))
601 {
603 s, "GJP Normal Velocity",
604 m_session->GetSolverInfo("GJPNormalVelocity"));
605 }
606 }
607}
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
bool m_homogen_dealiasing
Flag to determine if dealiasing is used for homogeneous simulations.
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
bool m_useGJPStabilisation
bool to identify if GJP semi-implicit is active.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::IncNavierStokes::m_extrapolation, m_GJPJumpScale, Nektar::SolverUtils::EquationSystem::m_homogen_dealiasing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useGJPStabilisation, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::NullNekDouble1DArray, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

Referenced by Nektar::SmoothedProfileMethod::v_GenerateSummary().

◆ v_GetExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetExtrapolateStr ( void  )
inlineprotectedvirtual

Reimplemented in Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 216 of file VelocityCorrectionScheme.h.

217 {
218 return "Standard";
219 }

Referenced by SetUpExtrapolation().

◆ v_GetForceDimension()

int Nektar::VelocityCorrectionScheme::v_GetForceDimension ( void  )
overrideprotectedvirtual

Implements Nektar::IncNavierStokes.

Definition at line 689 of file VelocityCorrectionScheme.cpp.

690{
691 return m_session->GetVariables().size() - 1;
692}

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_GetSubSteppingExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetSubSteppingExtrapolateStr ( const std::string &  instr)
inlineprotectedvirtual

Reimplemented in Nektar::VCSWeakPressure.

Definition at line 221 of file VelocityCorrectionScheme.h.

222 {
223 return instr;
224 }

Referenced by SetUpExtrapolation().

◆ v_GetSystemSingularChecks()

Array< OneD, bool > Nektar::VelocityCorrectionScheme::v_GetSystemSingularChecks ( )
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 678 of file VelocityCorrectionScheme.cpp.

679{
680 int vVar = m_session->GetVariables().size();
681 Array<OneD, bool> vChecks(vVar, false);
682 vChecks[vVar - 1] = true;
683 return vChecks;
684}

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_InitObject()

void Nektar::VelocityCorrectionScheme::v_InitObject ( bool  DeclareFeld = true)
overridevirtual

Initialisation object for EquationSystem.

Continuous field

Setting up the normals

Setting up the normals

Reimplemented from Nektar::IncNavierStokes.

Definition at line 74 of file VelocityCorrectionScheme.cpp.

75{
76 int n;
77
79 m_explicitDiffusion = false;
80
81 // Set m_pressure to point to last field of m_fields;
82 if (boost::iequals(m_session->GetVariable(m_fields.size() - 1), "p"))
83 {
84 m_nConvectiveFields = m_fields.size() - 1;
86 }
87 else
88 {
89 ASSERTL0(false, "Need to set up pressure field definition");
90 }
91
92 // Determine diffusion coefficients for each field
93 m_diffCoeff = Array<OneD, NekDouble>(m_nConvectiveFields, m_kinvis);
94 for (n = 0; n < m_nConvectiveFields; ++n)
95 {
96 std::string varName = m_session->GetVariable(n);
97 if (m_session->DefinesFunction("DiffusionCoefficient", varName))
98 {
100 m_session->GetFunction("DiffusionCoefficient", varName);
101 m_diffCoeff[n] = ffunc->Evaluate();
102 }
103 }
104
105 // Integrate only the convective fields
106 for (n = 0; n < m_nConvectiveFields; ++n)
107 {
108 m_intVariables.push_back(n);
109 }
110
112 SetUpSVV();
113
114 // check to see if it is explicity turned off
115 m_session->MatchSolverInfo("GJPStabilisation", "False",
117
118 // if GJPStabilisation set to False bool will be true and
119 // if not false so negate/revese bool
121
122 m_session->MatchSolverInfo("GJPNormalVelocity", "True", m_useGJPNormalVel,
123 false);
124
126 {
127 ASSERTL0(boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
128 "Explicit"),
129 "Can only specify GJPNormalVelocity with"
130 " GJPStabilisation set to Explicit currently");
131 }
132
133 m_session->LoadParameter("GJPJumpScale", m_GJPJumpScale, 1.0);
134
135 m_session->MatchSolverInfo("SmoothAdvection", "True", m_SmoothAdvection,
136 false);
137
138 // set explicit time-intregration class operators
141
142 // set implicit time-intregration class operators
145
146 // Set up bits for flowrate.
147 m_session->LoadParameter("Flowrate", m_flowrate, 0.0);
148 m_session->LoadParameter("IO_FlowSteps", m_flowrateSteps, 0);
149}
void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
NekDouble m_flowrate
Desired volumetric flowrate.
void EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Array< OneD, NekDouble > m_diffCoeff
Diffusion coefficients (will be kinvis for velocities)

References ASSERTL0, Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), EvaluateAdvection_SetPressureBCs(), m_diffCoeff, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateSteps, m_GJPJumpScale, Nektar::SolverUtils::UnsteadySystem::m_intVariables, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_SmoothAdvection, m_useGJPNormalVel, m_useGJPStabilisation, SetUpExtrapolation(), SetUpSVV(), SolveUnsteadyStokesSystem(), and Nektar::IncNavierStokes::v_InitObject().

Referenced by Nektar::SmoothedProfileMethod::v_InitObject(), and Nektar::VCSMapping::v_InitObject().

◆ v_PostIntegrate()

bool Nektar::VelocityCorrectionScheme::v_PostIntegrate ( int  step)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 501 of file VelocityCorrectionScheme.cpp.

502{
503 if (m_flowrateSteps > 0)
504 {
505 if (m_comm->GetRank() == 0 && (step + 1) % m_flowrateSteps == 0)
506 {
507 m_flowrateStream << setw(8) << step << setw(16) << m_time
508 << setw(16) << m_alpha << endl;
509 }
510 }
511
513}
SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step) override
NekDouble m_alpha
Current flowrate correction.

References m_alpha, Nektar::SolverUtils::EquationSystem::m_comm, m_flowrateSteps, m_flowrateStream, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::AdvectionSystem::v_PostIntegrate().

◆ v_RequireFwdTrans()

bool Nektar::VelocityCorrectionScheme::v_RequireFwdTrans ( void  )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 211 of file VelocityCorrectionScheme.h.

212 {
213 return false;
214 }

◆ v_SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  fields,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Poisson solver solver

Reimplemented in Nektar::VCSMapping, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 798 of file VelocityCorrectionScheme.cpp.

801{
802 size_t i;
803 size_t physTot = m_fields[0]->GetTotPoints();
804 size_t nvel = m_velocity.size();
805
806 m_fields[0]->PhysDeriv(eX, fields[0], Forcing[0]);
807
808 for (i = 1; i < nvel; ++i)
809 {
810 // Use Forcing[1] as storage since it is not needed for the pressure
811 m_fields[i]->PhysDeriv(DirCartesianMap[i], fields[i], Forcing[1]);
812 Vmath::Vadd(physTot, Forcing[1], 1, Forcing[0], 1, Forcing[0], 1);
813 }
814
815 Vmath::Smul(physTot, 1.0 / aii_Dt, Forcing[0], 1, Forcing[0], 1);
816}
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eX, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_velocity, Vmath::Smul(), and Vmath::Vadd().

Referenced by SetUpPressureForcing(), and Nektar::VCSMapping::v_SetUpPressureForcing().

◆ v_SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Helmholtz solver

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 821 of file VelocityCorrectionScheme.cpp.

824{
825 NekDouble aii_dtinv = 1.0 / aii_Dt;
826 size_t phystot = m_fields[0]->GetTotPoints();
827
828 // Grad p
829 m_pressure->BwdTrans(m_pressure->GetCoeffs(), m_pressure->UpdatePhys());
830
831 int nvel = m_velocity.size();
832 if (nvel == 2)
833 {
834 m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
835 Forcing[m_velocity[1]]);
836 }
837 else
838 {
839 m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
840 Forcing[m_velocity[1]], Forcing[m_velocity[2]]);
841 }
842
843 // zero convective fields.
844 for (int i = nvel; i < m_nConvectiveFields; ++i)
845 {
846 Vmath::Zero(phystot, Forcing[i], 1);
847 }
848
849 // Subtract inarray/(aii_dt) and divide by kinvis. Kinvis will
850 // need to be updated for the convected fields.
851 for (int i = 0; i < m_nConvectiveFields; ++i)
852 {
853 Blas::Daxpy(phystot, -aii_dtinv, inarray[i], 1, Forcing[i], 1);
854 Blas::Dscal(phystot, 1.0 / m_diffCoeff[i], &(Forcing[i])[0], 1);
855 }
856}
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135

References Blas::Daxpy(), Blas::Dscal(), m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_velocity, and Vmath::Zero().

Referenced by SetUpViscousForcing().

◆ v_SolvePressure()

void Nektar::VelocityCorrectionScheme::v_SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
protectedvirtual

Solve pressure system

Reimplemented in Nektar::VCSMapping, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 861 of file VelocityCorrectionScheme.cpp.

863{
865 // Setup coefficient for equation
867
868 // Solver Pressure Poisson Equation
869 m_pressure->HelmSolve(Forcing, m_pressure->UpdateCoeffs(), factors);
870
871 // Add presure to outflow bc if using convective like BCs
872 m_extrapolation->AddPressureToOutflowBCs(m_kinvis);
873}
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:402

References Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, Nektar::IncNavierStokes::m_extrapolation, Nektar::IncNavierStokes::m_kinvis, and Nektar::IncNavierStokes::m_pressure.

Referenced by SolvePressure(), and Nektar::VCSMapping::v_SolvePressure().

◆ v_SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::v_SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const NekDouble  aii_Dt 
)
protectedvirtual

Implicit part of the method - Poisson + nConv*Helmholtz

Reimplemented in Nektar::SmoothedProfileMethod.

Definition at line 732 of file VelocityCorrectionScheme.cpp.

736{
737 // Set up flowrate if we're starting for the first time or the value of
738 // aii_Dt has changed.
739 if (m_flowrate > 0.0 && (aii_Dt != m_flowrateAiidt))
740 {
741 SetupFlowrate(aii_Dt);
742 }
743
744 size_t physTot = m_fields[0]->GetTotPoints();
745
746 // Substep the pressure boundary condition if using substepping
747 m_extrapolation->SubStepSetPressureBCs(inarray, aii_Dt, m_kinvis);
748
749 // Set up forcing term for pressure Poisson equation
750 LibUtilities::Timer timer;
751 timer.Start();
752 SetUpPressureForcing(inarray, m_F, aii_Dt);
753 timer.Stop();
754 timer.AccumulateRegion("Pressure Forcing");
755
756 // Solve Pressure System
757 timer.Start();
758 SolvePressure(m_F[0]);
759 timer.Stop();
760 timer.AccumulateRegion("Pressure Solve");
761
762 // Set up forcing term for Helmholtz problems
763 timer.Start();
764 SetUpViscousForcing(inarray, m_F, aii_Dt);
765 timer.Stop();
766 timer.AccumulateRegion("Viscous Forcing");
767
768 // Solve velocity system
769 timer.Start();
770 SolveViscous(m_F, inarray, outarray, aii_Dt);
771 timer.Stop();
772 timer.AccumulateRegion("Viscous Solve");
773
774 // Apply flowrate correction
775 if (m_flowrate > 0.0 && m_greenFlux != numeric_limits<NekDouble>::max())
776 {
777 NekDouble currentFlux = MeasureFlowrate(outarray);
778 m_alpha = (m_flowrate - currentFlux) / m_greenFlux;
779
780 for (int i = 0; i < m_spacedim; ++i)
781 {
782 Vmath::Svtvp(physTot, m_alpha, m_flowrateStokes[i], 1, outarray[i],
783 1, outarray[i], 1);
784 // Enusre coeff space is updated for next time step
785 m_fields[i]->FwdTransLocalElmt(outarray[i],
786 m_fields[i]->UpdateCoeffs());
787 // Impsoe symmetry of flow on coeff space (good to enfore
788 // periodicity).
789 m_fields[i]->LocalToGlobal();
790 m_fields[i]->GlobalToLocal();
791 }
792 }
793}
void SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
void SetupFlowrate(NekDouble aii_dt)
Set up the Stokes solution used to impose constant flowrate through a boundary.
void SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
void SolveViscous(const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
void SolvePressure(const Array< OneD, NekDouble > &Forcing)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396

References Nektar::LibUtilities::Timer::AccumulateRegion(), m_alpha, Nektar::IncNavierStokes::m_extrapolation, m_F, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateAiidt, m_flowrateStokes, m_greenFlux, Nektar::IncNavierStokes::m_kinvis, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), SetupFlowrate(), SetUpPressureForcing(), SetUpViscousForcing(), SolvePressure(), SolveViscous(), Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), and Vmath::Svtvp().

Referenced by SolveUnsteadyStokesSystem(), and Nektar::SmoothedProfileMethod::v_SolveUnsteadyStokesSystem().

◆ v_SolveViscous()

void Nektar::VelocityCorrectionScheme::v_SolveViscous ( const Array< OneD, const Array< OneD, NekDouble > > &  Forcing,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  aii_Dt 
)
protectedvirtual

Solve velocity system

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 878 of file VelocityCorrectionScheme.cpp.

882{
886
887 AppendSVVFactors(factors, varFactorsMap);
888 ComputeGJPNormalVelocity(inarray, varCoeffMap);
889
890 // Solve Helmholtz system and put in Physical space
891 for (int i = 0; i < m_nConvectiveFields; ++i)
892 {
893 // Add diffusion coefficient to GJP matrix operator (Implicit part)
895 {
897 }
898
899 // Setup coefficients for equation
900 factors[StdRegions::eFactorLambda] = 1.0 / aii_Dt / m_diffCoeff[i];
901 m_fields[i]->HelmSolve(Forcing[i], m_fields[i]->UpdateCoeffs(), factors,
902 varCoeffMap, varFactorsMap);
903 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
904 }
905}
void AppendSVVFactors(StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
void ComputeGJPNormalVelocity(const Array< OneD, const Array< OneD, NekDouble > > &inarray, StdRegions::VarCoeffMap &varcoeffs)
static VarFactorsMap NullVarFactorsMap
std::map< StdRegions::ConstFactorType, Array< OneD, NekDouble > > VarFactorsMap
std::map< StdRegions::VarCoeffType, VarCoeffEntry > VarCoeffMap
Definition: StdRegions.hpp:346

References AppendSVVFactors(), ComputeGJPNormalVelocity(), Nektar::StdRegions::eFactorGJP, Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, m_GJPJumpScale, Nektar::IncNavierStokes::m_nConvectiveFields, m_useGJPStabilisation, Nektar::StdRegions::NullVarCoeffMap, and Nektar::MultiRegions::NullVarFactorsMap.

Referenced by SolveViscous(), and Nektar::VCSMapping::v_SolveViscous().

◆ v_TransCoeffToPhys()

void Nektar::VelocityCorrectionScheme::v_TransCoeffToPhys ( void  )
overrideprotectedvirtual

Virtual function for transformation to physical space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 649 of file VelocityCorrectionScheme.cpp.

650{
651 size_t nfields = m_fields.size() - 1;
652 for (size_t k = 0; k < nfields; ++k)
653 {
654 // Backward Transformation in physical space for time evolution
655 m_fields[k]->BwdTrans(m_fields[k]->GetCoeffs(),
656 m_fields[k]->UpdatePhys());
657 }
658}

References Nektar::SolverUtils::EquationSystem::m_fields.

◆ v_TransPhysToCoeff()

void Nektar::VelocityCorrectionScheme::v_TransPhysToCoeff ( void  )
overrideprotectedvirtual

Virtual function for transformation to coefficient space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 663 of file VelocityCorrectionScheme.cpp.

664{
665
666 size_t nfields = m_fields.size() - 1;
667 for (size_t k = 0; k < nfields; ++k)
668 {
669 // Forward Transformation in physical space for time evolution
670 m_fields[k]->FwdTransLocalElmt(m_fields[k]->GetPhys(),
671 m_fields[k]->UpdateCoeffs());
672 }
673}

References Nektar::SolverUtils::EquationSystem::m_fields.

Member Data Documentation

◆ className

string Nektar::VelocityCorrectionScheme::className
static
Initial value:
=
"VelocityCorrectionScheme", VelocityCorrectionScheme::create)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 58 of file VelocityCorrectionScheme.h.

◆ m_alpha

NekDouble Nektar::VelocityCorrectionScheme::m_alpha
protected

Current flowrate correction.

Definition at line 150 of file VelocityCorrectionScheme.h.

Referenced by v_PostIntegrate(), and v_SolveUnsteadyStokesSystem().

◆ m_diffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_diffCoeff
protected

◆ m_F

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_F
protected

◆ m_flowrate

NekDouble Nektar::VelocityCorrectionScheme::m_flowrate
protected

Desired volumetric flowrate.

Definition at line 142 of file VelocityCorrectionScheme.h.

Referenced by v_InitObject(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateAiidt

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateAiidt
protected

Value of aii_dt used to compute Stokes flowrate solution.

Definition at line 164 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_DoInitialise(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateArea

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateArea
protected

Area of the boundary through which we are measuring the flowrate.

Definition at line 144 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBnd

MultiRegions::ExpListSharedPtr Nektar::VelocityCorrectionScheme::m_flowrateBnd
protected

Flowrate reference surface.

Definition at line 156 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBndID

int Nektar::VelocityCorrectionScheme::m_flowrateBndID
protected

Boundary ID of the flowrate reference surface.

Definition at line 152 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateSteps

int Nektar::VelocityCorrectionScheme::m_flowrateSteps
protected

Interval at which to record flowrate data.

Definition at line 162 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_InitObject(), and v_PostIntegrate().

◆ m_flowrateStokes

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_flowrateStokes
protected

Stokes solution used to impose flowrate.

Definition at line 158 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateStream

std::ofstream Nektar::VelocityCorrectionScheme::m_flowrateStream
protected

Output stream to record flowrate.

Definition at line 160 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_PostIntegrate().

◆ m_GJPJumpScale

NekDouble Nektar::VelocityCorrectionScheme::m_GJPJumpScale
protected

◆ m_greenFlux

NekDouble Nektar::VelocityCorrectionScheme::m_greenFlux
protected

Flux of the Stokes function solution.

Definition at line 148 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ m_homd1DFlowinPlane

bool Nektar::VelocityCorrectionScheme::m_homd1DFlowinPlane
protected

Definition at line 146 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_IsSVVPowerKernel

bool Nektar::VelocityCorrectionScheme::m_IsSVVPowerKernel
protected

Identifier for Power Kernel otherwise DG kernel.

Definition at line 133 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_planeID

int Nektar::VelocityCorrectionScheme::m_planeID
protected

Plane ID for cases with homogeneous expansion.

Definition at line 154 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_sVVCutoffRatio

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatio
protected

◆ m_sVVCutoffRatioHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatioHomo1D
protected

◆ m_sVVDiffCoeff

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeff
protected

◆ m_sVVDiffCoeffHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeffHomo1D
protected

Diffusion coefficient of SVV modes in homogeneous 1D Direction.

Definition at line 129 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_svvVarDiffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_svvVarDiffCoeff
protected

Array of coefficient if power kernel is used in SVV.

Definition at line 131 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_useGJPNormalVel

bool Nektar::VelocityCorrectionScheme::m_useGJPNormalVel
protected

bool to identify if GJP normal Velocity should be applied in explicit approach

Definition at line 120 of file VelocityCorrectionScheme.h.

Referenced by ComputeGJPNormalVelocity(), and v_InitObject().

◆ m_useGJPStabilisation

bool Nektar::VelocityCorrectionScheme::m_useGJPStabilisation
protected

◆ m_useHomo1DSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useHomo1DSpecVanVisc
protected

bool to identify if spectral vanishing viscosity is active.

Definition at line 113 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), Nektar::VCSImplicit::v_GenerateSummary(), and Nektar::VCSWeakPressure::v_GenerateSummary().

◆ m_useSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useSpecVanVisc
protected

◆ m_varCoeffLap

StdRegions::VarCoeffMap Nektar::VelocityCorrectionScheme::m_varCoeffLap
protected

Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.

Definition at line 139 of file VelocityCorrectionScheme.h.

◆ solverTypeLookupId

string Nektar::VelocityCorrectionScheme::solverTypeLookupId
staticprotected
Initial value:
=
"SolverType", "VelocityCorrectionScheme", eVelocityCorrectionScheme)
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.
@ eVelocityCorrectionScheme

Definition at line 166 of file VelocityCorrectionScheme.h.