Nektar++
UnsteadyInviscidBurgers.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: UnsteadyInviscidBurgers.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Unsteady inviscid Burgers solve routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38namespace Nektar
39{
42 "UnsteadyInviscidBurgers", UnsteadyInviscidBurgers::create,
43 "Inviscid Burgers equation");
44
48 : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
49{
50}
51
52/**
53 * @brief Initialisation object for the inviscid Burgers equation.
54 */
56{
57 AdvectionSystem::v_InitObject(DeclareFields);
58
59 // Type of advection class to be used
60 switch (m_projectionType)
61 {
62 // Discontinuous field
64 {
65 // Do not forwards transform initial condition
66 m_homoInitialFwd = false;
67
68 // Define the normal velocity fields
69 if (m_fields[0]->GetTrace())
70 {
72 }
73
74 // Advection term
75 std::string advName;
76 std::string riemName;
77 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
79 advName, advName);
81 this);
82 m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
85 riemName, m_session);
86 m_riemannSolver->SetScalar(
88 m_advObject->SetRiemannSolver(m_riemannSolver);
89 m_advObject->InitObject(m_session, m_fields);
90 break;
91 }
92 // Continuous field
94 {
95 std::string advName;
96 m_session->LoadSolverInfo("AdvectionType", advName,
97 "NonConservative");
99 advName, advName);
101 this);
102 break;
103 }
104 default:
105 {
106 ASSERTL0(false, "Unsupported projection type.");
107 break;
108 }
109 }
110
111 // Forcing terms
112 m_forcing = SolverUtils::Forcing::Load(m_session, shared_from_this(),
113 m_fields, m_fields.size());
114
116 {
119 }
120 else
121 {
122 ASSERTL0(false, "Implicit unsteady Advection not set up.");
123 }
124}
125
126/**
127 * @brief Get the normal velocity for the inviscid Burgers equation.
128 */
130{
131 // Number of trace (interface) points
132 int nTracePts = GetTraceNpoints();
133
134 // Number of solution points
135 int nSolutionPts = GetNpoints();
136
137 // Auxiliary variables to compute the normal velocity
138 Array<OneD, NekDouble> Fwd(nTracePts);
139 Array<OneD, NekDouble> Bwd(nTracePts);
140 Array<OneD, NekDouble> physfield(nSolutionPts);
141
142 // Reset the normal velocity
143 Vmath::Zero(nTracePts, m_traceVn, 1);
144
145 for (int i = 0; i < m_spacedim; ++i)
146 {
147 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), physfield);
148 m_fields[i]->GetFwdBwdTracePhys(physfield, Fwd, Bwd, true);
149 Vmath::Vadd(nTracePts, Fwd, 1, Bwd, 1, Fwd, 1);
150 Vmath::Smul(nTracePts, 0.5, Fwd, 1, Fwd, 1);
151 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Fwd, 1, m_traceVn, 1,
152 m_traceVn, 1);
153 }
154 Vmath::Smul(nTracePts, 0.5, m_traceVn, 1, m_traceVn, 1);
155
156 return m_traceVn;
157}
158
159/**
160 * @brief Compute the right-hand side for the inviscid Burgers equation.
161 *
162 * @param inarray Given fields.
163 * @param outarray Calculated solution.
164 * @param time Time.
165 */
167 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
168 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
169{
170 // Number of fields (variables of the problem)
171 int nVariables = inarray.size();
172
173 // Number of solution points
174 int nSolutionPts = GetNpoints();
175
177 timer.Start();
178 // RHS computation using the new advection base class
179 m_advObject->Advect(nVariables, m_fields, inarray, inarray, outarray, time);
180 timer.Stop();
181 // Elapsed time
182 timer.AccumulateRegion("Advect");
183
184 // Negate the RHS
185 for (int i = 0; i < nVariables; ++i)
186 {
187 Vmath::Neg(nSolutionPts, outarray[i], 1);
188 }
189
190 // Add forcing terms
191 for (auto &x : m_forcing)
192 {
193 // set up non-linear terms
194 x->Apply(m_fields, inarray, outarray, time);
195 }
196}
197
198/**
199 * @brief Compute the projection for the inviscid Burgers equation.
200 *
201 * @param inarray Given fields.
202 * @param outarray Calculated solution.
203 * @param time Time.
204 */
206 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
207 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
208{
209 // Number of variables of the problem
210 int nVariables = inarray.size();
211
212 // Set the boundary conditions
214
215 // Switch on the projection type (Discontinuous or Continuous)
216 switch (m_projectionType)
217 {
218 // Discontinuous projection
220 {
221 // Just copy over array
222 if (inarray != outarray)
223 {
224 int npoints = GetNpoints();
225
226 for (int i = 0; i < nVariables; ++i)
227 {
228 Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
229 }
230 }
231 break;
232 }
233 // Continuous projection
235 {
237
238 for (int i = 0; i < nVariables; ++i)
239 {
240 m_fields[i]->FwdTrans(inarray[i], coeffs);
241 m_fields[i]->BwdTrans(coeffs, outarray[i]);
242 }
243 break;
244 }
245 default:
246 {
247 ASSERTL0(false, "Unknown projection scheme");
248 break;
249 }
250 }
251}
252
253/**
254 * @brief Return the flux vector for the inviscid Burgers equation.
255 *
256 * @param physfield Fields.
257 * @param flux Resulting flux.
258 */
260 const Array<OneD, Array<OneD, NekDouble>> &physfield,
262{
263 const int nq = GetNpoints();
264
265 for (int i = 0; i < flux.size(); ++i)
266 {
267 for (int j = 0; j < flux[0].size(); ++j)
268 {
269 Vmath::Vmul(nq, physfield[i], 1, physfield[i], 1, flux[i][j], 1);
270 Vmath::Smul(nq, 0.5, flux[i][j], 1, flux[i][j], 1);
271 }
272 }
273}
274
276{
278}
279} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:143
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void AccumulateRegion(std::string, int iolevel=0)
Accumulate elapsed time for a region.
Definition: Timer.cpp:70
A base class for PDEs which include an advection component.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:118
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void v_GenerateSummary(SolverUtils::SummaryList &s) override
Print Summary.
UnsteadyInviscidBurgers(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Session reader.
void v_InitObject(bool DeclareFields=true) override
Initialise the object.
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the RHS.
static std::string className
Name of class.
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Evaluate the flux at each solution point.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:46
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825