Nektar++
NavierStokesCFEAxisym.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: NavierStokesCFEAxisym.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Navier Stokes equations in conservative variables
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar
40{
43 "NavierStokesCFEAxisym", NavierStokesCFEAxisym::create,
44 "Axisymmetric NavierStokes equations in conservative variables.");
45
49 : UnsteadySystem(pSession, pGraph),
50 CompressibleFlowSystem(pSession, pGraph),
51 NavierStokesCFE(pSession, pGraph)
52{
53}
54
56{
57}
58
60{
61 NavierStokesCFE::v_InitObject(DeclareFields);
62
63 int nVariables = m_fields.size();
64 int npoints = GetNpoints();
66 for (int i = 0; i < nVariables; ++i)
67 {
69 }
70}
71
73 const Array<OneD, Array<OneD, NekDouble>> &inarray,
75 const Array<OneD, Array<OneD, NekDouble>> &pFwd,
76 const Array<OneD, Array<OneD, NekDouble>> &pBwd)
77{
78 int npoints = GetNpoints();
79 int nvariables = inarray.size();
80
81 NavierStokesCFE::v_DoDiffusion(inarray, outarray, pFwd, pBwd);
82
83 for (int i = 0; i < nvariables; ++i)
84 {
85 Vmath::Vadd(npoints, m_viscousForcing[i], 1, outarray[i], 1,
86 outarray[i], 1);
87 }
88}
89
90/**
91 * @brief Return the flux vector for the LDG diffusion problem.
92 * \todo Complete the viscous flux vector
93 */
95 const Array<OneD, const Array<OneD, NekDouble>> &physfield,
96 TensorOfArray3D<NekDouble> &derivativesO1,
97 TensorOfArray3D<NekDouble> &viscousTensor)
98{
99 int i, j;
100 int nVariables = m_fields.size();
101 int nPts = physfield[0].size();
102
103 // 1/r
105 Array<OneD, NekDouble> invR(nPts, 0.0);
106 for (int i = 0; i < 3; i++)
107 {
108 coords[i] = Array<OneD, NekDouble>(nPts);
109 }
110 m_fields[0]->GetCoords(coords[0], coords[1], coords[2]);
111 for (int i = 0; i < nPts; ++i)
112 {
113 if (coords[0][i] < NekConstants::kNekZeroTol)
114 {
115 invR[i] = 0;
116 }
117 else
118 {
119 invR[i] = 1.0 / coords[0][i];
120 }
121 }
122
123 // Stokes hypothesis
124 const NekDouble lambda = -2.0 / 3.0;
125
126 // Auxiliary variables
127 Array<OneD, NekDouble> divVel(nPts, 0.0);
128 Array<OneD, NekDouble> tmp(nPts, 0.0);
129 Array<OneD, NekDouble> mu(nPts, 0.0);
130 Array<OneD, NekDouble> thermalConductivity(nPts, 0.0);
131
132 // Update viscosity and thermal conductivity
133 GetViscosityAndThermalCondFromTemp(physfield[nVariables - 2], mu,
134 thermalConductivity);
135
136 // Velocity divergence = d(u_r)/dr + d(u_z)/dz + u_r/r
137 Vmath::Vadd(nPts, derivativesO1[0][0], 1, derivativesO1[1][1], 1, divVel,
138 1);
139 Vmath::Vvtvp(nPts, physfield[0], 1, invR, 1, divVel, 1, divVel, 1);
140
141 // Velocity divergence scaled by lambda * mu
142 Vmath::Smul(nPts, lambda, divVel, 1, divVel, 1);
143 Vmath::Vmul(nPts, mu, 1, divVel, 1, divVel, 1);
144
145 // Viscous flux vector for the rho equation = 0
146 for (i = 0; i < m_spacedim; ++i)
147 {
148 Vmath::Zero(nPts, viscousTensor[i][0], 1);
149 }
150
151 // Viscous stress tensor (for the momentum equations)
152
153 for (i = 0; i < 2; ++i)
154 {
155 for (j = i; j < 2; ++j)
156 {
157 Vmath::Vadd(nPts, derivativesO1[i][j], 1, derivativesO1[j][i], 1,
158 viscousTensor[i][j + 1], 1);
159
160 Vmath::Vmul(nPts, mu, 1, viscousTensor[i][j + 1], 1,
161 viscousTensor[i][j + 1], 1);
162
163 if (i == j)
164 {
165 // Add divergence term to diagonal
166 Vmath::Vadd(nPts, viscousTensor[i][j + 1], 1, divVel, 1,
167 viscousTensor[i][j + 1], 1);
168 }
169 else
170 {
171 // Copy to make symmetric
172 Vmath::Vcopy(nPts, viscousTensor[i][j + 1], 1,
173 viscousTensor[j][i + 1], 1);
174 }
175 }
176 }
177 // Swirl case
178 if (m_spacedim == 3)
179 {
180 // Tau_theta_theta = mu ( 2*u_r/r - 2/3*div(u))
181 Vmath::Vmul(nPts, physfield[0], 1, invR, 1, viscousTensor[2][3], 1);
182 Vmath::Smul(nPts, 2.0, viscousTensor[2][3], 1, viscousTensor[2][3], 1);
183 Vmath::Vmul(nPts, mu, 1, viscousTensor[2][3], 1, viscousTensor[2][3],
184 1);
185 Vmath::Vadd(nPts, viscousTensor[2][3], 1, divVel, 1,
186 viscousTensor[2][3], 1);
187
188 // Tau_r_theta = mu (-u_theta/r + d(u_theta)/dr )
189 Vmath::Vmul(nPts, physfield[2], 1, invR, 1, viscousTensor[2][1], 1);
190 Vmath::Smul(nPts, -1.0, viscousTensor[2][1], 1, viscousTensor[2][1], 1);
191 Vmath::Vadd(nPts, derivativesO1[0][2], 1, viscousTensor[2][1], 1,
192 viscousTensor[2][1], 1);
193 Vmath::Vmul(nPts, mu, 1, viscousTensor[2][1], 1, viscousTensor[2][1],
194 1);
195 Vmath::Vcopy(nPts, viscousTensor[2][1], 1, viscousTensor[0][3], 1);
196
197 // Tau_z_theta = mu (d(u_theta)/dz )
198 Vmath::Vmul(nPts, mu, 1, derivativesO1[1][2], 1, viscousTensor[2][2],
199 1);
200 Vmath::Vcopy(nPts, viscousTensor[2][2], 1, viscousTensor[1][3], 1);
201 }
202
203 // Terms for the energy equation
204 for (i = 0; i < m_spacedim; ++i)
205 {
206 Vmath::Zero(nPts, viscousTensor[i][m_spacedim + 1], 1);
207 // u_j * tau_ij
208 for (j = 0; j < m_spacedim; ++j)
209 {
210 Vmath::Vvtvp(nPts, physfield[j], 1, viscousTensor[i][j + 1], 1,
211 viscousTensor[i][m_spacedim + 1], 1,
212 viscousTensor[i][m_spacedim + 1], 1);
213 }
214 // Add k*T_i
215 if (i != 2)
216 {
217 Vmath::Vvtvp(nPts, thermalConductivity, 1,
218 derivativesO1[i][m_spacedim], 1,
219 viscousTensor[i][m_spacedim + 1], 1,
220 viscousTensor[i][m_spacedim + 1], 1);
221 }
222 else
223 {
224 Vmath::Vmul(nPts, derivativesO1[i][m_spacedim], 1, invR, 1, tmp, 1);
225 Vmath::Vvtvp(nPts, thermalConductivity, 1, tmp, 1,
226 viscousTensor[i][m_spacedim + 1], 1,
227 viscousTensor[i][m_spacedim + 1], 1);
228 }
229 }
230
231 // Update viscous forcing
232 // r-momentum: F = 1/r * (tau_rr - tau_theta_theta)
233 if (m_spacedim == 3)
234 {
235 Vmath::Vsub(nPts, viscousTensor[0][1], 1, viscousTensor[2][3], 1,
236 m_viscousForcing[1], 1);
237 Vmath::Vmul(nPts, m_viscousForcing[1], 1, invR, 1, m_viscousForcing[1],
238 1);
239 }
240 else
241 {
242 Vmath::Vmul(nPts, viscousTensor[0][1], 1, invR, 1, m_viscousForcing[1],
243 1);
244 }
245
246 // z-momentum: F = 1/r * tau_r_z
247 Vmath::Vmul(nPts, viscousTensor[0][2], 1, invR, 1, m_viscousForcing[2], 1);
248
249 // Theta_momentum: F = 2* tau_r_theta
250 if (m_spacedim == 3)
251 {
252 Vmath::Vmul(nPts, viscousTensor[0][3], 1, invR, 1, m_viscousForcing[3],
253 1);
254 Vmath::Smul(nPts, 2.0, m_viscousForcing[3], 1, m_viscousForcing[3], 1);
255 }
256
257 // Energy: F = 1/r* viscousTensor_T_r
258 Vmath::Vmul(nPts, viscousTensor[0][m_spacedim + 1], 1, invR, 1,
260}
261} // namespace Nektar
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
void v_InitObject(bool DeclareFields=true) override
Initialization object for CompressibleFlowSystem class.
void v_DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
Array< OneD, Array< OneD, NekDouble > > m_viscousForcing
void v_GetViscousFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &derivatives, TensorOfArray3D< NekDouble > &viscousTensor) override
Return the flux vector for the LDG diffusion problem.
NavierStokesCFEAxisym(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
void v_InitObject(bool DeclareField=true) override
Initialization object for CompressibleFlowSystem class.
void v_DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
void GetViscosityAndThermalCondFromTemp(const Array< OneD, NekDouble > &temperature, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &thermalCond)
Update viscosity todo: add artificial viscosity here.
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
Base class for unsteady solvers.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
EquationSystemFactory & GetEquationSystemFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220