Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::SegExp Class Reference

#include <SegExp.h>

Inheritance diagram for Nektar::LocalRegions::SegExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::SegExp:
Collaboration graph
[legend]

Public Member Functions

 SegExp (const LibUtilities::BasisKey &Ba, const SpatialDomains::Geometry1DSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition.
 SegExp (const SegExp &S)
 Copy Constructor.
 ~SegExp ()
- Public Member Functions inherited from Nektar::StdRegions::StdSegExp
 StdSegExp ()
 Default constructor.
 StdSegExp (const LibUtilities::BasisKey &Ba)
 Constructor using BasisKey class for quadrature points and order definition.
 StdSegExp (const StdSegExp &T)
 Copy Constructor.
 ~StdSegExp ()
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion1D
 StdExpansion1D ()
 StdExpansion1D (int numcoeffs, const LibUtilities::BasisKey &Ba)
 StdExpansion1D (const StdExpansion1D &T)
virtual ~StdExpansion1D ()
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor.
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor.
 StdExpansion (const StdExpansion &T)
 Copy Constructor.
virtual ~StdExpansion ()
 Destructor.
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion.
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis.
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction.
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion.
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element.
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction.
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction.
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions.
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction.
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction.
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction.
int GetNverts () const
 This function returns the number of vertices of the expansion domain.
int GetNedges () const
 This function returns the number of edges of the expansion domain.
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge.
int GetTotalEdgeIntNcoeffs () const
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge.
int DetCartesianDirOfEdge (const int edge)
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face.
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face.
int GetFaceIntNcoeffs (const int i) const
int GetTotalFaceIntNcoeffs () const
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
int NumBndryCoeffs (void) const
int NumDGBndryCoeffs (void) const
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge.
int GetNfaces () const
 This function returns the number of faces of the expansion domain.
int GetNtrace () const
 Returns the number of trace elements connected to this element.
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain.
int GetShapeDimension () const
bool IsBoundaryInteriorExpansion ()
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space.
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space.
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain.
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion.
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id.
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
virtual void SetUpPhysNormals (const int edge)
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
StdRegions::Orientation GetForient (int face)
StdRegions::Orientation GetEorient (int edge)
StdRegions::Orientation GetPorient (int point)
StdRegions::Orientation GetCartesianEorient (int edge)
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
int GetCoordim ()
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp.
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention).
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta.
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
virtual void v_SetUpPhysNormals (const int edge)
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
virtual StdRegions::Orientation v_GetForient (int face)
virtual StdRegions::Orientation v_GetEorient (int edge)
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol.
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol.
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol.
const NormalVectorGetEdgeNormal (const int edge) const
void ComputeEdgeNormal (const int edge)
void NegateEdgeNormal (const int edge)
bool EdgeNormalNegated (const int edge)
void ComputeFaceNormal (const int face)
void NegateFaceNormal (const int face)
void ComputeVertexNormal (const int vertex)
const NormalVectorGetFaceNormal (const int face) const
const NormalVectorGetVertexNormal (const int vertex) const
const NormalVectorGetSurfaceNormal (const int id) const
const LibUtilities::PointsKeyVector GetPointsKeys () const
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values.
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced.
template<class T >
boost::shared_ptr< T > as ()
- Public Member Functions inherited from Nektar::LocalRegions::Expansion1D
 Expansion1D (SpatialDomains::Geometry1DSharedPtr pGeom)
virtual ~Expansion1D ()
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Expansion2DSharedPtr GetLeftAdjacentElementExp () const
Expansion2DSharedPtr GetRightAdjacentElementExp () const
int GetLeftAdjacentElementEdge () const
int GetRightAdjacentElementEdge () const
void SetAdjacentElementExp (int edge, Expansion2DSharedPtr &e)
void AddHDGHelmholtzTraceTerms (const NekDouble tau, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
SpatialDomains::Geometry1DSharedPtr GetGeom1D () const
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 Expansion (const Expansion &pSrc)
virtual ~Expansion ()
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
SpatialDomains::GeometrySharedPtr GetGeom () const
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region and return the value.
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction.
virtual void v_PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 Evaluate the derivative along a line: $ d/ds=\frac{spacedim}{||tangent||}d/d{\xi} $. The derivative is calculated performing *the product $ du/d{s}=\nabla u \cdot tangent $.
virtual void v_PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 Evaluate the derivative normal to a line: $ d/dn=\frac{spacedim}{||normal||}d/d{\xi} $. The derivative is calculated performing *the product $ du/d{s}=\nabla u \cdot normal $.
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return in outarray.
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 Inner product of inarray over region with respect to expansion basis base and return in outarray.
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
virtual void v_GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
virtual int v_GetCoordim ()
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual int v_GetNumPoints (const int dir) const
virtual int v_GetNcoeffs (void) const
virtual const
LibUtilities::BasisSharedPtr
v_GetBasis (int dir) const
virtual int v_NumBndryCoeffs () const
virtual int v_NumDGBndryCoeffs () const
virtual void v_ComputeVertexNormal (const int vertex)
virtual StdRegions::Orientation v_GetPorient (int point)
virtual SpatialDomains::GeomType v_MetricInfoType ()
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from.
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
- Protected Member Functions inherited from Nektar::StdRegions::StdSegExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray.
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
virtual int v_GetNverts () const
virtual bool v_IsBoundaryInteriorExpansion ()
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return Shape of region, using ShapeType enum list. i.e. Segment.
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion1D
virtual void v_AddRobinMassMatrix (const int vert, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
virtual void v_AddRobinEdgeContribution (const int vert, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
void ComputeQuadratureMetric ()
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_ComputeLaplacianMetric ()
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition.
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc.
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

Private Member Functions

 SegExp ()
void ReverseCoeffsAndSign (const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Reverse the coefficients in a boundary interior expansion this routine is of use when we need the segment coefficients corresponding to a expansion in the reverse coordinate direction.
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion1D
std::map< int, NormalVectorm_vertexNormals
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
MetricMap m_metrics

Detailed Description

Defines a Segment local expansion.

Definition at line 52 of file SegExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::SegExp::SegExp ( const LibUtilities::BasisKey Ba,
const SpatialDomains::Geometry1DSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key of segment expansion.
geomDescription of geometry.

Definition at line 57 of file SegExp.cpp.

:
StdExpansion(Ba.GetNumModes(), 1, Ba),
StdExpansion1D(Ba.GetNumModes(), Ba),
StdRegions::StdSegExp(Ba),
Expansion(geom),
Expansion1D(geom),
boost::bind(&SegExp::CreateMatrix, this, _1),
std::string("SegExpMatrix")),
boost::bind(&SegExp::CreateStaticCondMatrix, this, _1),
std::string("SegExpStaticCondMatrix"))
{
}
Nektar::LocalRegions::SegExp::SegExp ( const SegExp S)

Copy Constructor.

Parameters
SExisting segment to duplicate.

Definition at line 78 of file SegExp.cpp.

:
m_matrixManager(S.m_matrixManager),
m_staticCondMatrixManager(S.m_staticCondMatrixManager)
{
}
Nektar::LocalRegions::SegExp::~SegExp ( )

Definition at line 93 of file SegExp.cpp.

{
}
Nektar::LocalRegions::SegExp::SegExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::SegExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1171 of file SegExp.cpp.

References ASSERTL1, ASSERTL2, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorGaussVertex, Nektar::StdRegions::eFactorLambda, ErrorUtil::efatal, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInterpGauss, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and NEKERROR.

{
NekDouble fac;
ASSERTL2(m_metricinfo->GetGtype() !=
"Geometric information is not set up");
switch (mkey.GetMatrixType())
{
{
|| (mkey.GetNVarCoeff()))
{
fac = 1.0;
goto UseLocRegionsMatrix;
}
else
{
fac = (m_metricinfo->GetJac(ptsKeys))[0];
goto UseStdRegionsMatrix;
}
}
break;
{
|| (mkey.GetNVarCoeff()))
{
NekDouble one = 1.0;
StdRegions::StdMatrixKey masskey(
DNekMatSharedPtr mat = GenMatrix(masskey);
mat->Invert();
returnval = MemoryManager<DNekScalMat>::
AllocateSharedPtr(one,mat);
}
else
{
fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
goto UseStdRegionsMatrix;
}
}
break;
{
if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
mkey.GetNVarCoeff())
{
fac = 1.0;
goto UseLocRegionsMatrix;
}
else
{
int dir = 0;
switch(mkey.GetMatrixType())
{
dir = 0;
break;
ASSERTL1(m_geom->GetCoordim() >= 2,
"Cannot call eWeakDeriv2 in a "
"coordinate system which is not at "
"least two-dimensional");
dir = 1;
break;
ASSERTL1(m_geom->GetCoordim() == 3,
"Cannot call eWeakDeriv2 in a "
"coordinate system which is not "
"three-dimensional");
dir = 2;
break;
default:
break;
}
MatrixKey deriv0key(StdRegions::eWeakDeriv0,
mkey.GetShapeType(), *this);
DNekMatSharedPtr WeakDerivStd = GetStdMatrix(deriv0key);
fac = m_metricinfo->GetDerivFactors(ptsKeys)[dir][0]*
m_metricinfo->GetJac(ptsKeys)[0];
returnval = MemoryManager<DNekScalMat>::
AllocateSharedPtr(fac,WeakDerivStd);
}
}
break;
{
{
fac = 1.0;
goto UseLocRegionsMatrix;
}
else
{
int coordim = m_geom->GetCoordim();
fac = 0.0;
for (int i = 0; i < coordim; ++i)
{
fac += m_metricinfo->GetDerivFactors(ptsKeys)[i][0]*
m_metricinfo->GetDerivFactors(ptsKeys)[i][0];
}
fac *= m_metricinfo->GetJac(ptsKeys)[0];
goto UseStdRegionsMatrix;
}
}
break;
{
NekDouble factor =
mkey.GetConstFactor(StdRegions::eFactorLambda);
MatrixKey masskey(StdRegions::eMass,
mkey.GetShapeType(), *this);
DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
MatrixKey lapkey(StdRegions::eLaplacian, mkey.GetShapeType(),
*this, mkey.GetConstFactors(),
mkey.GetVarCoeffs());
DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
int rows = LapMat.GetRows();
int cols = LapMat.GetColumns();
MemoryManager<DNekMat>::AllocateSharedPtr(rows,cols);
NekDouble one = 1.0;
(*helm) = LapMat + factor*MassMat;
returnval =
MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
}
break;
{
NekDouble one = 1.0;
returnval =
MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
}
break;
{
NekDouble one = 1.0;
// StdRegions::StdMatrixKey hkey(StdRegions::eHybridDGHelmholtz,
// DetShapeType(),*this,
// mkey.GetConstant(0),
// mkey.GetConstant(1));
*this, mkey.GetConstFactors(),
mkey.GetVarCoeffs());
mat->Invert();
returnval =
MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
}
break;
{
Array<OneD, NekDouble> coords(1, 0.0);
StdRegions::ConstFactorMap factors = mkey.GetConstFactors();
int vertex = (int)factors[StdRegions::eFactorGaussVertex];
coords[0] = (vertex == 0) ? -1.0 : 1.0;
m_Ix = m_base[0]->GetI(coords);
returnval =
MemoryManager<DNekScalMat>::AllocateSharedPtr(1.0,m_Ix);
}
break;
UseLocRegionsMatrix:
{
returnval =
MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
}
break;
UseStdRegionsMatrix:
{
returnval =
MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
}
break;
default:
NEKERROR(ErrorUtil::efatal, "Matrix creation not defined");
break;
}
return returnval;
}
DNekScalBlkMatSharedPtr Nektar::LocalRegions::SegExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected
Todo:
Really need a constructor which takes Arrays

Definition at line 1405 of file SegExp.cpp.

References ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

{
ASSERTL2(m_metricinfo->GetGtype() !=
"Geometric information is not set up");
// set up block matrix system
int nbdry = NumBndryCoeffs();
int nint = m_ncoeffs - nbdry;
Array<OneD, unsigned int> exp_size(2);
exp_size[0] = nbdry;
exp_size[1] = nint;
/// \todo Really need a constructor which takes Arrays
returnval = MemoryManager<DNekScalBlkMat>::
AllocateSharedPtr(exp_size,exp_size);
NekDouble factor = 1.0;
switch (mkey.GetMatrixType())
{
case StdRegions::eHelmholtz: // special case since Helmholtz
// not defined in StdRegions
// use Deformed case for both regular and deformed geometries
factor = 1.0;
goto UseLocRegionsMatrix;
break;
default:
{
factor = 1.0;
goto UseLocRegionsMatrix;
}
else
{
factor = mat->Scale();
goto UseStdRegionsMatrix;
}
break;
UseStdRegionsMatrix:
{
NekDouble invfactor = 1.0/factor;
NekDouble one = 1.0;
returnval->SetBlock(0,0,Atmp =
MemoryManager<DNekScalMat>::AllocateSharedPtr(
factor,Asubmat = mat->GetBlock(0,0)));
returnval->SetBlock(0,1,Atmp =
MemoryManager<DNekScalMat>::AllocateSharedPtr(
one,Asubmat = mat->GetBlock(0,1)));
returnval->SetBlock(1,0,Atmp =
MemoryManager<DNekScalMat>::AllocateSharedPtr(
factor,Asubmat = mat->GetBlock(1,0)));
returnval->SetBlock(1,1,Atmp =
MemoryManager<DNekScalMat>::AllocateSharedPtr(
invfactor,Asubmat = mat->GetBlock(1,1)));
}
break;
UseLocRegionsMatrix:
{
int i,j;
NekDouble invfactor = 1.0/factor;
NekDouble one = 1.0;
DNekScalMat &mat = *GetLocMatrix(mkey);
MemoryManager<DNekMat>::AllocateSharedPtr(nbdry,nbdry);
MemoryManager<DNekMat>::AllocateSharedPtr(nbdry,nint);
MemoryManager<DNekMat>::AllocateSharedPtr(nint,nbdry);
MemoryManager<DNekMat>::AllocateSharedPtr(nint,nint);
Array<OneD,unsigned int> bmap(nbdry);
Array<OneD,unsigned int> imap(nint);
for (i = 0; i < nbdry; ++i)
{
for (j = 0; j < nbdry; ++j)
{
(*A)(i,j) = mat(bmap[i],bmap[j]);
}
for (j = 0; j < nint; ++j)
{
(*B)(i,j) = mat(bmap[i],imap[j]);
}
}
for (i = 0; i < nint; ++i)
{
for (j = 0; j < nbdry; ++j)
{
(*C)(i,j) = mat(imap[i],bmap[j]);
}
for (j = 0; j < nint; ++j)
{
(*D)(i,j) = mat(imap[i],imap[j]);
}
}
// Calculate static condensed system
if (nint)
{
D->Invert();
(*B) = (*B)*(*D);
(*A) = (*A) - (*B)*(*C);
}
returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::
AllocateSharedPtr(factor,A));
returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::
AllocateSharedPtr(one,B));
returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::
AllocateSharedPtr(factor,C));
returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::
AllocateSharedPtr(invfactor,D));
}
}
return returnval;
}
void Nektar::LocalRegions::SegExp::MultiplyByElmtInvMass ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
private
Todo:
Same method exists in ExpList and everyone references ExpList::MultiplyByElmtInvMass. Remove this one?

Definition at line 1594 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

{
// get Mass matrix inverse
MatrixKey masskey(StdRegions::eInvMass,
DetShapeType(),*this);
NekVector<NekDouble> in(m_ncoeffs,inarray,eCopy);
NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
out = (*matsys)*in;
}
void Nektar::LocalRegions::SegExp::ReverseCoeffsAndSign ( const Array< OneD, NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
private

Reverse the coefficients in a boundary interior expansion this routine is of use when we need the segment coefficients corresponding to a expansion in the reverse coordinate direction.

Definition at line 1552 of file SegExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_ncoeffs.

Referenced by v_SetCoeffsToOrientation().

{
int m;
NekDouble sgn = 1;
ASSERTL1(&inarray[0] != &outarray[0],
"inarray and outarray can not be the same");
switch(GetBasisType(0))
{
//Swap vertices
outarray[0] = inarray[1];
outarray[1] = inarray[0];
// negate odd modes
for(m = 2; m < m_ncoeffs; ++m)
{
outarray[m] = sgn*inarray[m];
sgn = -sgn;
}
break;
for(m = 0; m < m_ncoeffs; ++m)
{
outarray[m_ncoeffs-1-m] = inarray[m];
}
break;
default:
ASSERTL0(false,"This basis is not allowed in this method");
break;
}
}
void Nektar::LocalRegions::SegExp::v_ComputeVertexNormal ( const int  vertex)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 858 of file SegExp.cpp.

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion1D::m_vertexNormals, and Vmath::Smul().

{
int i;
GetGeom()->GetMetricInfo();
SpatialDomains::GeomType type = geomFactors->GetGtype();
const Array<TwoD, const NekDouble> &gmat =
geomFactors->GetDerivFactors(GetPointsKeys());
int nqe = m_base[0]->GetNumPoints();
int vCoordDim = GetCoordim();
m_vertexNormals[vertex] =
Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
Array<OneD, Array<OneD, NekDouble> > &normal =
m_vertexNormals[vertex];
for (i = 0; i < vCoordDim; ++i)
{
normal[i] = Array<OneD, NekDouble>(nqe);
}
// Regular geometry case
if ((type == SpatialDomains::eRegular) ||
{
NekDouble vert;
// Set up normals
switch (vertex)
{
case 0:
for(i = 0; i < vCoordDim; ++i)
{
Vmath::Fill(nqe, -gmat[i][0], normal[i], 1);
}
break;
case 1:
for(i = 0; i < vCoordDim; ++i)
{
Vmath::Fill(nqe, gmat[i][0], normal[i], 1);
}
break;
default:
ASSERTL0(false,
"point is out of range (point < 2)");
}
// normalise
vert = 0.0;
for (i =0 ; i < vCoordDim; ++i)
{
vert += normal[i][0]*normal[i][0];
}
vert = 1.0/sqrt(vert);
for (i = 0; i < vCoordDim; ++i)
{
Vmath::Smul(nqe, vert, normal[i], 1, normal[i], 1);
}
}
}
DNekMatSharedPtr Nektar::LocalRegions::SegExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1160 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

{
LibUtilities::BasisKey bkey = m_base[0]->GetBasisKey();
MemoryManager<StdSegExp>::AllocateSharedPtr(bkey);
return tmp->GetStdMatrix(mkey);
}
void Nektar::LocalRegions::SegExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1149 of file SegExp.cpp.

References Nektar::LibUtilities::NekManager< KeyType, ValueT, opLessCreator >::DeleteObject(), and m_staticCondMatrixManager.

void Nektar::LocalRegions::SegExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 814 of file SegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGaussGaussLegendre, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

{
switch(m_base[0]->GetBasisType())
{
{
int fillorder = min((int) nummodes[mode_offset],m_ncoeffs);
Vmath::Vcopy(fillorder,&data[0],1,&coeffs[0],1);
}
break;
{
// Assume that input is also Gll_Lagrange
// but no way to check;
LibUtilities::PointsKey p0(
nummodes[mode_offset],
p0,data, m_base[0]->GetPointsKey(), coeffs);
}
break;
{
// Assume that input is also Gauss_Lagrange
// but no way to check;
LibUtilities::PointsKey p0(
nummodes[mode_offset],
p0,data, m_base[0]->GetPointsKey(), coeffs);
}
break;
default:
ASSERTL0(false,
"basis is either not set up or not hierarchicial");
}
}
void Nektar::LocalRegions::SegExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.

Perform a forward transform using a Galerkin projection by taking the inner product of the physical points and multiplying by the inverse of the mass matrix using the Solve method of the standard matrix container holding the local mass matrix, i.e. $ {\bf \hat{u}} = {\bf M}^{-1} {\bf I} $ where $ {\bf I}[p] = \int^1_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 $

Inputs:

Outputs:

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 375 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

Referenced by v_FwdTrans_BndConstrained().

{
if (m_base[0]->Collocation())
{
Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
}
else
{
v_IProductWRTBase(inarray,outarray);
// get Mass matrix inverse
MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
// copy inarray in case inarray == outarray
NekVector<NekDouble> in(m_ncoeffs,outarray,eCopy);
NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
out = (*matsys)*in;
}
}
void Nektar::LocalRegions::SegExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 399 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::eMass, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetVertexMap(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, m_staticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), v_FwdTrans(), v_IProductWRTBase(), Vmath::Vcopy(), and Vmath::Vsub().

{
if(m_base[0]->Collocation())
{
Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
}
else
{
int nInteriorDofs = m_ncoeffs-2;
int offset;
switch (m_base[0]->GetBasisType())
{
{
offset = 1;
}
break;
{
nInteriorDofs = m_ncoeffs;
offset = 0;
}
break;
{
offset = 2;
}
break;
default:
ASSERTL0(false,"This type of FwdTrans is not defined"
"for this expansion type");
}
fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
{
outarray[GetVertexMap(0)] = inarray[0];
outarray[GetVertexMap(1)] =
inarray[m_base[0]->GetNumPoints()-1];
if (m_ncoeffs>2)
{
// ideally, we would like to have tmp0 to be replaced
// by outarray (currently MassMatrixOp does not allow
// aliasing)
Array<OneD, NekDouble> tmp0(m_ncoeffs);
Array<OneD, NekDouble> tmp1(m_ncoeffs);
StdRegions::StdMatrixKey stdmasskey(
MassMatrixOp(outarray,tmp0,stdmasskey);
v_IProductWRTBase(inarray,tmp1);
Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
// get Mass matrix inverse (only of interior DOF)
MatrixKey masskey(
(m_staticCondMatrixManager[masskey])->GetBlock(1,1);
Blas::Dgemv('N',nInteriorDofs,nInteriorDofs,
matsys->Scale(),
&((matsys->GetOwnedMatrix())->GetPtr())[0],
nInteriorDofs,tmp1.get()+offset,1,0.0,
outarray.get()+offset,1);
}
}
else
{
SegExp::v_FwdTrans(inarray, outarray);
}
}
}
DNekMatSharedPtr Nektar::LocalRegions::SegExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1381 of file SegExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, and Nektar::StdRegions::StdMatrixKey::GetMatrixType().

{
DNekMatSharedPtr returnval;
switch (mkey.GetMatrixType())
{
returnval = Expansion1D::v_GenMatrix(mkey);
break;
default:
returnval = StdSegExp::v_GenMatrix(mkey);
break;
}
return returnval;
}
const LibUtilities::BasisSharedPtr & Nektar::LocalRegions::SegExp::v_GetBasis ( int  dir) const
protectedvirtual

Definition at line 794 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetBasis().

{
return GetBasis(dir);
}
void Nektar::LocalRegions::SegExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 670 of file SegExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

{
int i;
ASSERTL1(Lcoords[0] >= -1.0&& Lcoords[0] <= 1.0,
"Local coordinates are not in region [-1,1]");
m_geom->FillGeom();
for(i = 0; i < m_geom->GetCoordim(); ++i)
{
coords[i] = m_geom->GetCoord(i,Lcoords);
}
}
int Nektar::LocalRegions::SegExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion1D.

Definition at line 768 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

{
return m_geom->GetCoordim();
}
void Nektar::LocalRegions::SegExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 686 of file SegExp.cpp.

{
Expansion::v_GetCoords(coords_0, coords_1, coords_2);
}
DNekScalMatSharedPtr Nektar::LocalRegions::SegExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1154 of file SegExp.cpp.

References m_matrixManager.

{
return m_matrixManager[mkey];
}
DNekScalBlkMatSharedPtr Nektar::LocalRegions::SegExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1143 of file SegExp.cpp.

References m_staticCondMatrixManager.

{
}
int Nektar::LocalRegions::SegExp::v_GetNcoeffs ( void  ) const
protectedvirtual

Definition at line 789 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_ncoeffs.

{
return m_ncoeffs;
}
int Nektar::LocalRegions::SegExp::v_GetNumPoints ( const int  dir) const
protectedvirtual

Definition at line 784 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints().

{
return GetNumPoints(dir);
}
const Array< OneD, const NekDouble > & Nektar::LocalRegions::SegExp::v_GetPhysNormals ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 773 of file SegExp.cpp.

References ErrorUtil::efatal, NEKERROR, and Nektar::NullNekDouble1DArray.

{
NEKERROR(ErrorUtil::efatal, "Got to SegExp");
}
StdRegions::Orientation Nektar::LocalRegions::SegExp::v_GetPorient ( int  point)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 762 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

{
return m_geom->GetPorient(point);
}
void Nektar::LocalRegions::SegExp::v_GetVertexPhysVals ( const int  vertex,
const Array< OneD, const NekDouble > &  inarray,
NekDouble outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 695 of file SegExp.cpp.

References Vmath::Ddot(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eFactorGaussVertex, Nektar::LibUtilities::eGaussGaussLegendre, Nektar::StdRegions::eInterpGauss, Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::m_base, and m_matrixManager.

{
int nquad = m_base[0]->GetNumPoints();
{
switch (vertex)
{
case 0:
outarray = inarray[0];
break;
case 1:
outarray = inarray[nquad - 1];
break;
}
}
else
{
factors[StdRegions::eFactorGaussVertex] = vertex;
StdRegions::StdMatrixKey key(
DetShapeType(),*this,factors);
outarray = Blas::Ddot(nquad, mat_gauss->GetOwnedMatrix()
->GetPtr().get(), 1, &inarray[0], 1);
}
}
void Nektar::LocalRegions::SegExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1028 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::PhysDeriv(), v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

{
int nquad = m_base[0]->GetNumPoints();
const Array<TwoD, const NekDouble>& gmat =
m_metricinfo->GetDerivFactors(GetPointsKeys());
const NekDouble lambda =
mkey.GetConstFactor(StdRegions::eFactorLambda);
Array<OneD,NekDouble> physValues(nquad);
Array<OneD,NekDouble> dPhysValuesdx(nquad);
Array<OneD,NekDouble> wsp(m_ncoeffs);
BwdTrans(inarray, physValues);
// mass matrix operation
v_IProductWRTBase((m_base[0]->GetBdata()),physValues,wsp,1);
// Laplacian matrix operation
switch (m_geom->GetCoordim())
{
case 1:
{
PhysDeriv(physValues,dPhysValuesdx);
// multiply with the proper geometric factors
{
Vmath::Vmul(nquad,
&gmat[0][0],1,dPhysValuesdx.get(),1,
dPhysValuesdx.get(),1);
}
else
{
Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
}
}
break;
case 2:
{
Array<OneD,NekDouble> dPhysValuesdy(nquad);
PhysDeriv(physValues, dPhysValuesdx, dPhysValuesdy);
// multiply with the proper geometric factors
{
Vmath::Vmul (nquad,
&gmat[0][0], 1, dPhysValuesdx.get(), 1,
dPhysValuesdx.get(), 1);
Vmath::Vvtvp(nquad,
&gmat[1][0], 1, dPhysValuesdy.get(), 1,
dPhysValuesdx.get(), 1,
dPhysValuesdx.get(), 1);
}
else
{
Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
Blas::Daxpy(nquad,
gmat[1][0], dPhysValuesdy.get(), 1,
dPhysValuesdx.get(), 1);
}
}
break;
case 3:
{
Array<OneD,NekDouble> dPhysValuesdy(nquad);
Array<OneD,NekDouble> dPhysValuesdz(nquad);
PhysDeriv(physValues, dPhysValuesdx,
dPhysValuesdy, dPhysValuesdz);
// multiply with the proper geometric factors
{
Vmath::Vmul (nquad,
&gmat[0][0], 1, dPhysValuesdx.get(), 1,
dPhysValuesdx.get(), 1);
Vmath::Vvtvp(nquad,
&gmat[1][0], 1, dPhysValuesdy.get(), 1,
dPhysValuesdx.get(), 1,
dPhysValuesdx.get(), 1);
Vmath::Vvtvp(nquad,
&gmat[2][0], 1, dPhysValuesdz.get(), 1,
dPhysValuesdx.get(), 1,
dPhysValuesdx.get(), 1);
}
else
{
Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
Blas::Daxpy(nquad,
gmat[1][0], dPhysValuesdy.get(), 1,
dPhysValuesdx.get(), 1);
Blas::Daxpy(nquad,
gmat[2][0], dPhysValuesdz.get(),
1, dPhysValuesdx.get(), 1);
}
}
break;
default:
ASSERTL0(false,"Wrong number of dimensions");
break;
}
v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
Blas::Daxpy(m_ncoeffs, lambda, wsp.get(), 1, outarray.get(), 1);
}
NekDouble Nektar::LocalRegions::SegExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region and return the value.

Inputs:

Outputs:

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 116 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

{
int nquad0 = m_base[0]->GetNumPoints();
Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
NekDouble ival;
Array<OneD,NekDouble> tmp(nquad0);
// multiply inarray with Jacobian
{
Vmath::Vmul(nquad0, jac, 1, inarray, 1, tmp,1);
}
else
{
Vmath::Smul(nquad0, jac[0], inarray, 1, tmp, 1);
}
// call StdSegExp version;
ival = StdSegExp::v_Integral(tmp);
//ival = StdSegExp::Integral(tmp);
return ival;
}
void Nektar::LocalRegions::SegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return in outarray.

Wrapper call to SegExp::IProduct_WRT_B

Input:

Output:

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 501 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_FwdTrans(), v_FwdTrans_BndConstrained(), v_HelmholtzMatrixOp(), v_IProductWRTBase(), v_IProductWRTDerivBase(), v_LaplacianMatrixOp(), and v_NormVectorIProductWRTBase().

{
v_IProductWRTBase(m_base[0]->GetBdata(),inarray,outarray,1);
}
void Nektar::LocalRegions::SegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  base,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
int  coll_check 
)
protectedvirtual

Inner product of inarray over region with respect to expansion basis base and return in outarray.

Calculate $ I[p] = \int^{1}_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 = \sum_{i=0}^{nq-1} \phi_p(\xi_{1i}) u(\xi_{1i}) w_i $ where $ outarray[p] = I[p], inarray[i] = u(\xi_{1i}), base[p*nq+i] = \phi_p(\xi_{1i}) $.

Inputs:

Output:

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 536 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), v_IProductWRTBase(), and Vmath::Vmul().

{
int nquad0 = m_base[0]->GetNumPoints();
Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
Array<OneD,NekDouble> tmp(nquad0);
// multiply inarray with Jacobian
{
Vmath::Vmul(nquad0, jac, 1, inarray, 1, tmp, 1);
}
else
{
Vmath::Smul(nquad0, jac[0], inarray, 1, tmp, 1);
}
StdSegExp::v_IProductWRTBase(base,tmp,outarray,coll_check);
}
void Nektar::LocalRegions::SegExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 560 of file SegExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), v_IProductWRTBase(), and Vmath::Vmul().

{
int nquad = m_base[0]->GetNumPoints();
const Array<TwoD, const NekDouble>& gmat =
m_metricinfo->GetDerivFactors(GetPointsKeys());
Array<OneD, NekDouble> tmp1(nquad);
switch(dir)
{
case 0:
{
{
Vmath::Vmul(nquad,gmat[0],1,inarray,1,tmp1,1);
}
else
{
Vmath::Smul(nquad, gmat[0][0], inarray, 1, tmp1, 1);
}
}
break;
case 1:
{
{
Vmath::Vmul(nquad,gmat[1],1,inarray,1,tmp1,1);
}
else
{
Vmath::Smul(nquad, gmat[1][0], inarray, 1, tmp1, 1);
}
}
break;
case 2:
{
ASSERTL1(m_geom->GetCoordim() == 3,"input dir is out of range");
{
Vmath::Vmul(nquad,gmat[2],1,inarray,1,tmp1,1);
}
else
{
Vmath::Smul(nquad, gmat[2][0], inarray, 1, tmp1, 1);
}
}
break;
default:
{
ASSERTL1(false,"input dir is out of range");
}
break;
}
v_IProductWRTBase(m_base[0]->GetDbdata(),tmp1,outarray,1);
}
void Nektar::LocalRegions::SegExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 922 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::PhysDeriv(), v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

{
int nquad = m_base[0]->GetNumPoints();
const Array<TwoD, const NekDouble>& gmat =
m_metricinfo->GetDerivFactors(GetPointsKeys());
Array<OneD,NekDouble> physValues(nquad);
Array<OneD,NekDouble> dPhysValuesdx(nquad);
BwdTrans(inarray,physValues);
// Laplacian matrix operation
switch (m_geom->GetCoordim())
{
case 1:
{
PhysDeriv(physValues,dPhysValuesdx);
// multiply with the proper geometric factors
{
Vmath::Vmul(nquad,
&gmat[0][0],1,dPhysValuesdx.get(),1,
dPhysValuesdx.get(),1);
}
else
{
Blas::Dscal(nquad,
gmat[0][0], dPhysValuesdx.get(), 1);
}
}
break;
case 2:
{
Array<OneD,NekDouble> dPhysValuesdy(nquad);
PhysDeriv(physValues,dPhysValuesdx,dPhysValuesdy);
// multiply with the proper geometric factors
{
Vmath::Vmul (nquad,
&gmat[0][0],1,dPhysValuesdx.get(),1,
dPhysValuesdx.get(),1);
Vmath::Vvtvp(nquad,
&gmat[1][0],1,dPhysValuesdy.get(),1,
dPhysValuesdx.get(),1,
dPhysValuesdx.get(),1);
}
else
{
Blas::Dscal(nquad,
gmat[0][0], dPhysValuesdx.get(), 1);
Blas::Daxpy(nquad,
gmat[1][0], dPhysValuesdy.get(), 1,
dPhysValuesdx.get(), 1);
}
}
break;
case 3:
{
Array<OneD,NekDouble> dPhysValuesdy(nquad);
Array<OneD,NekDouble> dPhysValuesdz(nquad);
PhysDeriv(physValues,dPhysValuesdx,
dPhysValuesdy,dPhysValuesdz);
// multiply with the proper geometric factors
{
Vmath::Vmul (nquad,
&gmat[0][0], 1, dPhysValuesdx.get(), 1,
dPhysValuesdx.get(),1);
Vmath::Vvtvp(nquad,
&gmat[1][0], 1, dPhysValuesdy.get(), 1,
dPhysValuesdx.get(),1,
dPhysValuesdx.get(),1);
Vmath::Vvtvp(nquad,
&gmat[2][0], 1, dPhysValuesdz.get(), 1,
dPhysValuesdx.get(),1,
dPhysValuesdx.get(),1);
}
else
{
Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
Blas::Daxpy(nquad,
gmat[1][0], dPhysValuesdy.get(), 1,
dPhysValuesdx.get(), 1);
Blas::Daxpy(nquad,
gmat[2][0], dPhysValuesdz.get(), 1,
dPhysValuesdx.get(), 1);
}
}
break;
default:
ASSERTL0(false,"Wrong number of dimensions");
break;
}
v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
}
SpatialDomains::GeomType Nektar::LocalRegions::SegExp::v_MetricInfoType ( )
protectedvirtual

Definition at line 779 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::m_metricinfo.

{
return m_metricinfo->GetGtype();
}
void Nektar::LocalRegions::SegExp::v_NormVectorIProductWRTBase ( const Array< OneD, const NekDouble > &  Fx,
const Array< OneD, const NekDouble > &  Fy,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 619 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetEdgeNormal(), Nektar::LocalRegions::Expansion1D::GetLeftAdjacentElementEdge(), Nektar::LocalRegions::Expansion1D::GetLeftAdjacentElementExp(), Nektar::StdRegions::StdExpansion::m_base, v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

{
int nq = m_base[0]->GetNumPoints();
Array<OneD, NekDouble > Fn(nq);
// cout << "I am segment " << GetGeom()->GetGlobalID() << endl;
// cout << "I want edge " << GetLeftAdjacentElementEdge() << endl;
// @TODO: This routine no longer makes sense as a normal is not unique to an edge
const Array<OneD, const Array<OneD, NekDouble> >
&normals =
Vmath::Vmul (nq, &Fx[0], 1, &normals[0][0], 1, &Fn[0], 1);
Vmath::Vvtvp(nq, &Fy[0], 1, &normals[1][0], 1, &Fn[0], 1, &Fn[0], 1);
v_IProductWRTBase(Fn,outarray);
}
int Nektar::LocalRegions::SegExp::v_NumBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 800 of file SegExp.cpp.

{
return 2;
}
int Nektar::LocalRegions::SegExp::v_NumDGBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 806 of file SegExp.cpp.

{
return 2;
}
void Nektar::LocalRegions::SegExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.

This is a wrapper around StdExpansion1D::Tensor_Deriv

Input:

Output:

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 164 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv(), Vmath::Smul(), and Vmath::Vmul().

Referenced by v_PhysDeriv_n().

{
int nquad0 = m_base[0]->GetNumPoints();
Array<TwoD, const NekDouble> gmat =
m_metricinfo->GetDerivFactors(GetPointsKeys());
Array<OneD,NekDouble> diff(nquad0);
//StdExpansion1D::PhysTensorDeriv(inarray,diff);
PhysTensorDeriv(inarray,diff);
{
if(out_d0.num_elements())
{
Vmath::Vmul(nquad0,&gmat[0][0],1,&diff[0],1,
&out_d0[0],1);
}
if(out_d1.num_elements())
{
Vmath::Vmul(nquad0,&gmat[1][0],1,&diff[0],1,
&out_d1[0],1);
}
if(out_d2.num_elements())
{
Vmath::Vmul(nquad0,&gmat[2][0],1,&diff[0],1,
&out_d2[0],1);
}
}
else
{
if(out_d0.num_elements())
{
Vmath::Smul(nquad0, gmat[0][0], diff, 1,
out_d0, 1);
}
if(out_d1.num_elements())
{
Vmath::Smul(nquad0, gmat[1][0], diff, 1,
out_d1, 1);
}
if(out_d2.num_elements())
{
Vmath::Smul(nquad0, gmat[2][0], diff, 1,
out_d2, 1);
}
}
}
void Nektar::LocalRegions::SegExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See Also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 317 of file SegExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

{
switch(dir)
{
case 0:
{
PhysDeriv(inarray, outarray, NullNekDouble1DArray,
}
break;
case 1:
{
PhysDeriv(inarray, NullNekDouble1DArray, outarray,
}
break;
case 2:
{
}
break;
default:
{
ASSERTL1(false,"input dir is out of range");
}
break;
}
}
void Nektar::LocalRegions::SegExp::v_PhysDeriv_n ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_dn 
)
protectedvirtual

Evaluate the derivative normal to a line: $ d/dn=\frac{spacedim}{||normal||}d/d{\xi} $. The derivative is calculated performing *the product $ du/d{s}=\nabla u \cdot normal $.

Parameters
inarrayfunction to derive
out_dnresult of the derivative operation

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 267 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::NullNekDoubleArrayofArray, v_PhysDeriv(), Vmath::Vadd(), Vmath::Vmul(), and Vmath::Zero().

{
int nquad0 = m_base[0]->GetNumPoints();
Array<TwoD, const NekDouble> gmat =
m_metricinfo->GetDerivFactors(GetPointsKeys());
int coordim = m_geom->GetCoordim();
Array<OneD, NekDouble> out_dn_tmp(nquad0,0.0);
switch(coordim)
{
case 2:
Array<OneD, NekDouble> inarray_d0(nquad0);
Array<OneD, NekDouble> inarray_d1(nquad0);
v_PhysDeriv(inarray,inarray_d0,inarray_d1);
Array<OneD, Array<OneD, NekDouble> > normals;
normals = Array<OneD, Array<OneD, NekDouble> >(coordim);
cout<<"der_n"<<endl;
for(int k=0; k<coordim; ++k)
{
normals[k]= Array<OneD, NekDouble>(nquad0);
}
// @TODO: this routine no longer makes sense, since normals are not unique on
// an edge
// normals = GetMetricInfo()->GetNormal();
for(int i=0; i<nquad0; i++)
{
cout<<"nx= "<<normals[0][i]<<" ny="<<normals[1][i]<<endl;
}
"normal vectors do not exist: check if a"
"boundary region is defined as I ");
// \nabla u \cdot normal
Vmath::Vmul(nquad0,normals[0],1,inarray_d0,1,out_dn_tmp,1);
Vmath::Vadd(nquad0,out_dn_tmp,1,out_dn,1,out_dn,1);
Vmath::Zero(nquad0,out_dn_tmp,1);
Vmath::Vmul(nquad0,normals[1],1,inarray_d1,1,out_dn_tmp,1);
Vmath::Vadd(nquad0,out_dn_tmp,1,out_dn,1,out_dn,1);
for(int i=0; i<nquad0; i++)
{
cout<<"deps/dx ="<<inarray_d0[i]<<" deps/dy="<<inarray_d1[i]<<endl;
}
}
}
void Nektar::LocalRegions::SegExp::v_PhysDeriv_s ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_ds 
)
protectedvirtual

Evaluate the derivative along a line: $ d/ds=\frac{spacedim}{||tangent||}d/d{\xi} $. The derivative is calculated performing *the product $ du/d{s}=\nabla u \cdot tangent $.

Parameters
inarrayfunction to derive
out_dsresult of the derivative operation

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 227 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv(), Vmath::Smul(), Vmath::Vdiv(), and Vmath::Zero().

{
int nquad0 = m_base[0]->GetNumPoints();
int coordim = m_geom->GetCoordim();
Array<OneD, NekDouble> diff (nquad0);
//this operation is needed if you put out_ds==inarray
Vmath::Zero(nquad0,out_ds,1);
switch(coordim)
{
case 2:
//diff= dU/de
Array<OneD,NekDouble> diff(nquad0);
PhysTensorDeriv(inarray,diff);
//get dS/de= (Jac)^-1
Array<OneD, NekDouble> Jac = m_metricinfo->GetJac(GetPointsKeys());
{
//calculate the derivative as (dU/de)*(Jac)^-1
Vmath::Vdiv(nquad0,diff,1,Jac ,1,out_ds,1);
}
else
{
NekDouble invJac = 1/Jac[0];
Vmath::Smul(nquad0, invJac,diff,1,out_ds,1);
}
}
}
NekDouble Nektar::LocalRegions::SegExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 657 of file SegExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

Referenced by v_StdPhysEvaluate().

{
Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(1);
ASSERTL0(m_geom,"m_geom not defined");
m_geom->GetLocCoords(coord,Lcoord);
return StdSegExp::v_PhysEvaluate(Lcoord, physvals);
}
void Nektar::LocalRegions::SegExp::v_SetCoeffsToOrientation ( Array< OneD, NekDouble > &  coeffs,
StdRegions::Orientation  dir 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 735 of file SegExp.cpp.

{
v_SetCoeffsToOrientation(dir,coeffs,coeffs);
}
void Nektar::LocalRegions::SegExp::v_SetCoeffsToOrientation ( StdRegions::Orientation  dir,
Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 742 of file SegExp.cpp.

References Nektar::StdRegions::eBackwards, and ReverseCoeffsAndSign().

{
{
if (&inarray[0] != &outarray[0])
{
Array<OneD,NekDouble> intmp (inarray);
ReverseCoeffsAndSign(intmp,outarray);
}
else
{
ReverseCoeffsAndSign(inarray,outarray);
}
}
}
NekDouble Nektar::LocalRegions::SegExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 649 of file SegExp.cpp.

References v_PhysEvaluate().

{
// Evaluate point in local (eta) coordinates.
return StdSegExp::v_PhysEvaluate(Lcoord,physvals);
}

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::SegExp::m_matrixManager
private

Definition at line 232 of file SegExp.h.

Referenced by CreateMatrix(), MultiplyByElmtInvMass(), v_FwdTrans(), v_GetLocMatrix(), and v_GetVertexPhysVals().

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::SegExp::m_staticCondMatrixManager
private

Definition at line 234 of file SegExp.h.

Referenced by v_DropLocStaticCondMatrix(), v_FwdTrans_BndConstrained(), and v_GetLocStaticCondMatrix().