Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | List of all members
Nektar::StdRegions::StdSegExp Class Reference

Class representing a segment element in reference space. More...

#include <StdSegExp.h>

Inheritance diagram for Nektar::StdRegions::StdSegExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::StdRegions::StdSegExp:
Collaboration graph
[legend]

Public Member Functions

 StdSegExp ()
 Default constructor.
 StdSegExp (const LibUtilities::BasisKey &Ba)
 Constructor using BasisKey class for quadrature points and order definition.
 StdSegExp (const StdSegExp &T)
 Copy Constructor.
 ~StdSegExp ()
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion1D
 StdExpansion1D ()
 StdExpansion1D (int numcoeffs, const LibUtilities::BasisKey &Ba)
 StdExpansion1D (const StdExpansion1D &T)
virtual ~StdExpansion1D ()
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor.
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor.
 StdExpansion (const StdExpansion &T)
 Copy Constructor.
virtual ~StdExpansion ()
 Destructor.
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion.
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis.
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction.
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion.
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element.
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction.
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction.
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions.
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction.
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction.
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction.
int GetNverts () const
 This function returns the number of vertices of the expansion domain.
int GetNedges () const
 This function returns the number of edges of the expansion domain.
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge.
int GetTotalEdgeIntNcoeffs () const
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge.
int DetCartesianDirOfEdge (const int edge)
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face.
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face.
int GetFaceIntNcoeffs (const int i) const
int GetTotalFaceIntNcoeffs () const
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
int NumBndryCoeffs (void) const
int NumDGBndryCoeffs (void) const
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge.
int GetNfaces () const
 This function returns the number of faces of the expansion domain.
int GetNtrace () const
 Returns the number of trace elements connected to this element.
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain.
int GetShapeDimension () const
bool IsBoundaryInteriorExpansion ()
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space.
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space.
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain.
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion.
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id.
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
virtual void SetUpPhysNormals (const int edge)
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
StdRegions::Orientation GetForient (int face)
StdRegions::Orientation GetEorient (int edge)
StdRegions::Orientation GetPorient (int point)
StdRegions::Orientation GetCartesianEorient (int edge)
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
int GetCoordim ()
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp.
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention).
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta.
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
virtual void v_SetUpPhysNormals (const int edge)
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type.
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
virtual StdRegions::Orientation v_GetForient (int face)
virtual StdRegions::Orientation v_GetEorient (int edge)
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
virtual StdRegions::Orientation v_GetPorient (int point)
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol.
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol.
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol.
const NormalVectorGetEdgeNormal (const int edge) const
void ComputeEdgeNormal (const int edge)
void NegateEdgeNormal (const int edge)
bool EdgeNormalNegated (const int edge)
void ComputeFaceNormal (const int face)
void NegateFaceNormal (const int face)
void ComputeVertexNormal (const int vertex)
const NormalVectorGetFaceNormal (const int face) const
const NormalVectorGetVertexNormal (const int vertex) const
const NormalVectorGetSurfaceNormal (const int id) const
const LibUtilities::PointsKeyVector GetPointsKeys () const
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values.
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced.
template<class T >
boost::shared_ptr< T > as ()

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region and return the value.
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction.
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray.
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return in outarray.
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 Inner product of inarray over region with respect to expansion basis base and return in outarray.
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &Lcoords, const Array< OneD, const NekDouble > &physvals)
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_0, Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2)
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
virtual int v_GetNverts () const
virtual int v_NumBndryCoeffs () const
virtual int v_NumDGBndryCoeffs () const
virtual bool v_IsBoundaryInteriorExpansion ()
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return Shape of region, using ShapeType enum list. i.e. Segment.
virtual DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey)
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey)

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion1D
std::map< int, NormalVectorm_vertexNormals

Detailed Description

Class representing a segment element in reference space.

All interface of this class sits in StdExpansion class

Definition at line 54 of file StdSegExp.h.

Constructor & Destructor Documentation

Nektar::StdRegions::StdSegExp::StdSegExp ( )

Default constructor.

Definition at line 45 of file StdSegExp.cpp.

{
}
Nektar::StdRegions::StdSegExp::StdSegExp ( const LibUtilities::BasisKey Ba)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasisKey class definition containing order and quadrature points.

Definition at line 57 of file StdSegExp.cpp.

:
StdExpansion(Ba.GetNumModes(), 1, Ba),
StdExpansion1D(Ba.GetNumModes(),Ba)
{
}
Nektar::StdRegions::StdSegExp::StdSegExp ( const StdSegExp T)

Copy Constructor.

Definition at line 66 of file StdSegExp.cpp.

Nektar::StdRegions::StdSegExp::~StdSegExp ( )

Definition at line 73 of file StdSegExp.cpp.

{
}

Member Function Documentation

void Nektar::StdRegions::StdSegExp::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray.

Operation can be evaluated as $ u(\xi_{1i}) = \sum_{p=0}^{order-1} \hat{u}_p \phi_p(\xi_{1i}) $ or equivalently $ {\bf u} = {\bf B}^T {\bf \hat{u}} $ where ${\bf B}[i][j] = \phi_i(\xi_{1j}), \mbox{\_coeffs}[p] = {\bf \hat{u}}[p] $

The function takes the coefficient array inarray as input for the transformation

Parameters
inarray,:the coeffficients of the expansion
outarray,:the resulting array of the values of the function at the physical quadrature points will be stored in the array outarray

Implements Nektar::StdRegions::StdExpansion.

Definition at line 214 of file StdSegExp.cpp.

References Nektar::eWrapper, Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

Referenced by v_BwdTrans_SumFac(), v_HelmholtzMatrixOp(), and v_LaplacianMatrixOp().

{
int nquad = m_base[0]->GetNumPoints();
if(m_base[0]->Collocation())
{
Vmath::Vcopy(nquad, inarray, 1, outarray, 1);
}
else
{
#ifdef NEKTAR_USING_DIRECT_BLAS_CALLS
Blas::Dgemv('N',nquad,m_base[0]->GetNumModes(),1.0, (m_base[0]->GetBdata()).get(),
nquad,&inarray[0],1,0.0,&outarray[0],1);
#else //NEKTAR_USING_DIRECT_BLAS_CALLS
NekVector<NekDouble> in(m_ncoeffs,inarray,eWrapper);
NekVector<NekDouble> out(nquad,outarray,eWrapper);
NekMatrix<NekDouble> B(nquad,m_ncoeffs,m_base[0]->GetBdata(),eWrapper);
out = B * in;
#endif //NEKTAR_USING_DIRECT_BLAS_CALLS
}
}
void Nektar::StdRegions::StdSegExp::v_BwdTrans_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 359 of file StdSegExp.cpp.

References v_BwdTrans().

{
v_BwdTrans(inarray, outarray);
}
int Nektar::StdRegions::StdSegExp::v_CalcNumberOfCoefficients ( const std::vector< unsigned int > &  nummodes,
int &  modes_offset 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 555 of file StdSegExp.cpp.

{
int nmodes = nummodes[modes_offset];
modes_offset += 1;
return nmodes;
}
DNekMatSharedPtr Nektar::StdRegions::StdSegExp::v_CreateStdMatrix ( const StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 609 of file StdSegExp.cpp.

References v_GenMatrix().

{
return v_GenMatrix(mkey);
}
LibUtilities::ShapeType Nektar::StdRegions::StdSegExp::v_DetShapeType ( ) const
protectedvirtual

Return Shape of region, using ShapeType enum list. i.e. Segment.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 80 of file StdSegExp.cpp.

References Nektar::LibUtilities::eSegment.

Referenced by v_FwdTrans(), v_FwdTrans_BndConstrained(), and v_GenMatrix().

void Nektar::StdRegions::StdSegExp::v_FillMode ( const int  mode,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 463 of file StdSegExp.cpp.

References ASSERTL2, Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

{
int nquad = m_base[0]->GetNumPoints();
const NekDouble * base = m_base[0]->GetBdata().get();
"calling argument mode is larger than total expansion order");
Vmath::Vcopy(nquad,(NekDouble *)base+mode*nquad,1, &outarray[0],1);
}
void Nektar::StdRegions::StdSegExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.

Perform a forward transform using a Galerkin projection by taking the inner product of the physical points and multiplying by the inverse of the mass matrix using the Solve method of the standard matrix container holding the local mass matrix, i.e. $ {\bf \hat{u}} = {\bf M}^{-1} {\bf I} $ where $ {\bf I}[p] = \int^1_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 $

This function stores the expansion coefficients calculated by the transformation in the coefficient space array outarray

Parameters
inarray,:array of physical quadrature points to be transformed
outarray,:the coeffficients of the expansion

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 263 of file StdSegExp.cpp.

References Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_DetShapeType(), v_IProductWRTBase(), and Vmath::Vcopy().

Referenced by v_FwdTrans_BndConstrained().

{
if(m_base[0]->Collocation())
{
Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
}
else
{
v_IProductWRTBase(inarray,outarray);
// get Mass matrix inverse
StdMatrixKey masskey(eInvMass,v_DetShapeType(),*this);
DNekMatSharedPtr matsys = GetStdMatrix(masskey);
NekVector<NekDouble> in(m_ncoeffs,outarray,eCopy);
NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
out = (*matsys)*in;
}
}
void Nektar::StdRegions::StdSegExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 285 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::eMass, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetVertexMap(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::m_stdStaticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), v_DetShapeType(), v_FwdTrans(), v_IProductWRTBase(), Vmath::Vcopy(), and Vmath::Vsub().

{
if(m_base[0]->Collocation())
{
Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
}
else
{
int nInteriorDofs = m_ncoeffs-2;
int offset;
switch(m_base[0]->GetBasisType())
{
{
offset = 1;
}
break;
{
nInteriorDofs = m_ncoeffs;
offset = 0;
}
break;
{
offset = 2;
}
break;
default:
ASSERTL0(false,"This type of FwdTrans is not defined for this expansion type");
}
fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
{
outarray[GetVertexMap(0)] = inarray[0];
outarray[GetVertexMap(1)] = inarray[m_base[0]->GetNumPoints()-1];
if(m_ncoeffs>2)
{
// ideally, we would like to have tmp0 to be replaced by
// outarray (currently MassMatrixOp does not allow aliasing)
Array<OneD, NekDouble> tmp0(m_ncoeffs);
Array<OneD, NekDouble> tmp1(m_ncoeffs);
StdMatrixKey masskey(eMass,v_DetShapeType(),*this);
MassMatrixOp(outarray,tmp0,masskey);
v_IProductWRTBase(inarray,tmp1);
Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
// get Mass matrix inverse (only of interior DOF)
(m_stdStaticCondMatrixManager[masskey])-> GetBlock(1,1);
Blas::Dgemv('N',nInteriorDofs,nInteriorDofs,1.0,
&(matsys->GetPtr())[0],nInteriorDofs,tmp1.get()
+offset,1,0.0,outarray.get()+offset,1);
}
}
else
{
StdSegExp::v_FwdTrans(inarray, outarray);
}
}
}
DNekMatSharedPtr Nektar::StdRegions::StdSegExp::v_GenMatrix ( const StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 569 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::CreateGeneralMatrix(), Nektar::LibUtilities::eFourier, Nektar::StdRegions::eFwdTrans, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eMass, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and v_DetShapeType().

Referenced by v_CreateStdMatrix().

{
MatrixType mattype;
switch(mattype = mkey.GetMatrixType())
{
case eFwdTrans:
{
Mat = MemoryManager<DNekMat>::AllocateSharedPtr(m_ncoeffs,m_ncoeffs);
StdMatrixKey iprodkey(eIProductWRTBase,v_DetShapeType(),*this);
DNekMat &Iprod = *GetStdMatrix(iprodkey);
StdMatrixKey imasskey(eInvMass,v_DetShapeType(),*this);
DNekMat &Imass = *GetStdMatrix(imasskey);
(*Mat) = Imass*Iprod;
}
break;
default:
{
if(mattype == eMass)
{
// For Fourier basis set the imaginary component
// of mean mode to have a unit diagonal component
// in mass matrix
{
(*Mat)(1,1) = 1.0;
}
}
}
break;
}
return Mat;
}
void Nektar::StdRegions::StdSegExp::v_GetBoundaryMap ( Array< OneD, unsigned int > &  outarray)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 619 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eChebyshev, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

{
if(outarray.num_elements() != NumBndryCoeffs())
{
outarray = Array<OneD, unsigned int>(NumBndryCoeffs());
}
int nummodes = m_base[0]->GetNumModes();
outarray[0] = 0;
switch(Btype)
{
outarray[1]= nummodes-1;
break;
outarray[1] = 1;
break;
default:
ASSERTL0(0,"Mapping array is not defined for this expansion");
break;
}
}
void Nektar::StdRegions::StdSegExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_0,
Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 523 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints(), and Nektar::StdRegions::StdExpansion::m_base.

{
Blas::Dcopy(GetNumPoints(0),(m_base[0]->GetZ()).get(),
1,&coords_0[0],1);
}
void Nektar::StdRegions::StdSegExp::v_GetInteriorMap ( Array< OneD, unsigned int > &  outarray)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 648 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eChebyshev, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

{
int i;
if(outarray.num_elements()!=GetNcoeffs()-NumBndryCoeffs())
{
outarray = Array<OneD, unsigned int>(GetNcoeffs()-NumBndryCoeffs());
}
switch(Btype)
{
for(i = 0 ; i < GetNcoeffs()-2;i++)
{
outarray[i] = i+1;
}
break;
for(i = 0 ; i < GetNcoeffs()-2;i++)
{
outarray[i] = i+2;
}
break;
default:
ASSERTL0(0,"Mapping array is not defined for this expansion");
break;
}
}
int Nektar::StdRegions::StdSegExp::v_GetNverts ( ) const
protectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 540 of file StdSegExp.cpp.

{
return 2;
}
int Nektar::StdRegions::StdSegExp::v_GetVertexMap ( int  localVertexId,
bool  useCoeffPacking = false 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 681 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

{
ASSERTL0((localVertexId==0)||(localVertexId==1),"local vertex id"
"must be between 0 or 1");
int localDOF = localVertexId;
(localVertexId==1) )
{
localDOF = m_base[0]->GetNumModes()-1;
}
return localDOF;
}
void Nektar::StdRegions::StdSegExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 500 of file StdSegExp.cpp.

References Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_BwdTrans(), v_IProductWRTBase(), and v_PhysDeriv().

{
int nquad = m_base[0]->GetNumPoints();
Array<OneD,NekDouble> physValues(nquad);
Array<OneD,NekDouble> dPhysValuesdx(nquad);
Array<OneD,NekDouble> wsp(m_ncoeffs);
v_BwdTrans(inarray,physValues);
// mass matrix operation
v_IProductWRTBase((m_base[0]->GetBdata()),physValues,wsp,1);
// Laplacian matrix operation
v_PhysDeriv(physValues,dPhysValuesdx);
v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
Blas::Daxpy(m_ncoeffs, mkey.GetConstFactor(eFactorLambda), wsp.get(), 1, outarray.get(), 1);
}
NekDouble Nektar::StdRegions::StdSegExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region and return the value.

Parameters
inarraydefinition of function to be integrated evauluated at quadrature point of expansion.
Returns
returns $\int^1_{-1} u(\xi_1)d \xi_1 $ where $inarray[i] = u(\xi_{1i}) $

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 118 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, Vmath::Vmul(), and Vmath::Vsum().

{
NekDouble Int = 0.0;
int nquad0 = m_base[0]->GetNumPoints();
Array<OneD, NekDouble> tmp(nquad0);
Array<OneD, const NekDouble> z = m_base[0]->GetZ();
Array<OneD, const NekDouble> w0 = m_base[0]->GetW();
// multiply by integration constants
Vmath::Vmul(nquad0, inarray, 1, w0, 1, tmp, 1);
Int = Vmath::Vsum(nquad0, tmp, 1);
return Int;
}
void Nektar::StdRegions::StdSegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return in outarray.

Wrapper call to StdSegExp::IProductWRTBase

Parameters
inarrayarray of function values evaluated at the physical collocation points
outarraythe values of the inner product with respect to each basis over region will be stored in the array outarray as output of the function

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 433 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_FwdTrans(), v_FwdTrans_BndConstrained(), v_HelmholtzMatrixOp(), v_IProductWRTBase_SumFac(), v_IProductWRTDerivBase(), and v_LaplacianMatrixOp().

{
v_IProductWRTBase(m_base[0]->GetBdata(),inarray,outarray,1);
}
void Nektar::StdRegions::StdSegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  base,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
int  coll_check 
)
protectedvirtual

Inner product of inarray over region with respect to expansion basis base and return in outarray.

Calculate $ I[p] = \int^{1}_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 = \sum_{i=0}^{nq-1} \phi_p(\xi_{1i}) u(\xi_{1i}) w_i $ where $ outarray[p] = I[p], inarray[i] = u(\xi_{1i}), base[p*nq+i] = \phi_p(\xi_{1i}) $.

Parameters
basean array defining the local basis for the inner product usually passed from Basis->GetBdata() or Basis->GetDbdata()
inarray,:physical point array of function to be integrated $ u(\xi_1) $
coll_checkflag to identify when a Basis->Collocation() call should be performed to see if this is a GLL_Lagrange basis with a collocation property. (should be set to 0 if taking the inner product with respect to the derivative of basis)
outarraythe values of the inner product with respect to each basis over region will be stored in the array outarray as output of the function

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 394 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vmul().

{
int nquad = m_base[0]->GetNumPoints();
Array<OneD, NekDouble> tmp(nquad);
Array<OneD, const NekDouble> z = m_base[0]->GetZ();
Array<OneD, const NekDouble> w = m_base[0]->GetW();
Vmath::Vmul(nquad, inarray, 1, w, 1, tmp, 1);
/* Comment below was a bug for collocated basis
if(coll_check&&m_base[0]->Collocation())
{
Vmath::Vcopy(nquad, tmp, 1, outarray, 1);
}
else
{
Blas::Dgemv('T',nquad,m_ncoeffs,1.0,base.get(),nquad,
&tmp[0],1,0.0,outarray.get(),1);
}*/
// Correct implementation
Blas::Dgemv('T',nquad,m_ncoeffs,1.0,base.get(),nquad,
&tmp[0],1,0.0,outarray.get(),1);
}
void Nektar::StdRegions::StdSegExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 448 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, and v_IProductWRTBase().

{
v_IProductWRTBase(m_base[0]->GetBdata(),inarray,outarray,1);
}
void Nektar::StdRegions::StdSegExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 439 of file StdSegExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::m_base, and v_IProductWRTBase().

{
ASSERTL1(dir >= 0 && dir < 1,"input dir is out of range");
v_IProductWRTBase(m_base[0]->GetDbdata(),inarray,outarray,1);
}
bool Nektar::StdRegions::StdSegExp::v_IsBoundaryInteriorExpansion ( )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 85 of file StdSegExp.cpp.

References Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

{
bool returnval = false;
{
returnval = true;
}
{
returnval = true;
}
return returnval;
}
void Nektar::StdRegions::StdSegExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 482 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, v_BwdTrans(), v_IProductWRTBase(), and v_PhysDeriv().

{
int nquad = m_base[0]->GetNumPoints();
Array<OneD,NekDouble> physValues(nquad);
Array<OneD,NekDouble> dPhysValuesdx(nquad);
v_BwdTrans(inarray,physValues);
// Laplacian matrix operation
v_PhysDeriv(physValues,dPhysValuesdx);
v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
}
int Nektar::StdRegions::StdSegExp::v_NumBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 545 of file StdSegExp.cpp.

{
return 2;
}
int Nektar::StdRegions::StdSegExp::v_NumDGBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 550 of file StdSegExp.cpp.

{
return 2;
}
void Nektar::StdRegions::StdSegExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.

This is a wrapper around StdExpansion1D::Tensor_Deriv

Parameters
inarrayarray of a function evaluated at the quadrature points
outarraythe resulting array of the derivative $ du/d_{\xi_1}|_{\xi_{1i}} $ will be stored in the array outarra

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 151 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

Referenced by v_HelmholtzMatrixOp(), and v_LaplacianMatrixOp().

{
PhysTensorDeriv(inarray,out_d0);
}
void Nektar::StdRegions::StdSegExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See Also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 160 of file StdSegExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

{
ASSERTL1(dir==0,"input dir is out of range");
PhysTensorDeriv(inarray,outarray);
// PhysDeriv(inarray, outarray);
}
NekDouble Nektar::StdRegions::StdSegExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion1D.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 475 of file StdSegExp.cpp.

{
return StdExpansion1D::v_PhysEvaluate(coords, physvals);
}
void Nektar::StdRegions::StdSegExp::v_StdPhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 169 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

{
PhysTensorDeriv(inarray,out_d0);
// PhysDeriv(inarray, out_d0);
}
void Nektar::StdRegions::StdSegExp::v_StdPhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 179 of file StdSegExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

{
ASSERTL1(dir==0,"input dir is out of range");
PhysTensorDeriv(inarray,outarray);
// PhysDeriv(inarray, outarray);
}